anr[®] Love as a stopping rule: An example of optimal delusion

Lyon 1

UNIVERSITE FRANCHE-COMTE

PhD supervisor: François-Xavier Dechaume-Moncharmont Interns: Agnès Hivet, Lélio Belloir, Augustin d'Aboville

Rational decision making

Rational contribution making

Cognitive side effects?

Rational consistent making

Cognitive side effects?

Adaptation?

Cognitive side eff

Ra

SIMPLE HEURISTICS THAT MAKE US SMART

king

GERD GIGERENZER, PETER M. TODD, AND THE ABC RESEARCH GROUP

Adaptation?

A Framework for Studying Emotions across Species

David J. Anderson^{1,3,*} and Ralph Adolphs^{1,2,*} ¹Division of Biology and Biological Engineering ²Division of Humanities and Social Sciences ³Howard Hughes Medical Institute California Institute of Technology, Pasadena, CA 91125, USA *Correspondence: wuwei@caltech.edu (D.J.A.), radolphs@caltech.edu (R.A.) http://dx.doi.org/10.1016/j.cell.2014.03.003

Negative emotions

Negative emotions

Positive emotions?

Negative emotions

Positive emotions?

Negative emotions

Mate choice

Positive emotions

"Does love act as a satisficing mechanism to stop further mate search?"

Peter M. Todd

Geoffrey F. Miller

"Does love act as a satisficing mechanism to stop further mate search?"

Laubu, Chloé, Philippe Louâpre, et François-Xavier Dechaume-Moncharmont. « Pair-bonding influences affective state in a monogamous fish species ». Proc. B. 2019

"Does love act as a satisficing mechanism to stop further mate search?"

Houston, Alasdair I., et John M. McNamara. *Models of Adaptive Behaviour: An Approach Based on State*. Cambridge University Press, 1999. Laubu, Chloé, Philippe Louâpre, et François-Xavier Dechaume-Moncharmont. « Pair-bonding influences affective state in a monogamous fish species ». *Proc. B.* 2019

Time since courtship has started

Model description Love bias

Model description Love bias

A accepts to leave B for C only if:

Model description Love bias

A accepts to leave B for C only if:

+ BIAS

- Depends on:
- A's quality
- time in the season
- time in A & B courtship

Can be negative or positive

course of the season:

trade-up & mating

state of the population

(courtships & matings in function of time)

Dynamic programming

Dynamic programming

Dynamic programming

Iterations of the model until convergence = evolutionarily stable strategy (ESS)

Results Biased vs unbiased populations

Results Biased vs unbiased populations

Mating season duration

Results Biased vs unbiased populations

Mating season duration

-00

Mating season duration

Ratio of switching opportunities:

number of individuals met during **the season**

number of individuals met during **a courtship**

number of individuals met during **the season**

number of individuals met during **a courtship**

Conclusion

-Being biased can be an adaptive strategy in mate choice.

-The biased strategy leads to contrasted fitness outcomes depending on individual qualities.

-The optimal biased strategy depends on the available opportunities.

Perspectives

-Eco-evo feedback loops

-Effects of different mating systems

-Consequences on homogamy pattern

Acknowledgments

FX Dechaume-Moncharmont Agnès Hivet Lélio Belloir Augustin d'Aboville E2C team (LEHNA)

Chaire MMB

anr®

CNrs

