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• Faster than trends Major cause of stress for living organisms
• Global change alters magnitude and predictability of fluctuations1

1: Boer, G. J. (2009. J. Clim.)

Environments fluctuate randomly



Random environments make demography stochastic 

• Cause fluctuations in vital rates (survival/fecundity), affecting population size/density1

• Strong source of stochasticity Extinction risk even for initially large populations1

1: reviewed by Lande et al (2003 OUP)
2: Saether et al (1998, Am Nat)

3: Rogers et al (2017 J Anim Ecol)

Cods3
Great tits2
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Marrot et al (2018)

• Source of fluctuating selection:
Different phenotypes/genotypes are favored by natural selection at different times

Laying date of blue tits in Mediterranean forests 
(near Montpellier and Corsica)

Charmantier et al (2015 Evol Appl)

Random environments make evolution stochastic 
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• Source of fluctuating selection:
Different phenotypes/genotypes are favored by natural selection at different times

• Major source of chance in evolution:
Increases variance among replicate instances of evolution, as drift does

(causing fixations, etc…)

 Uncertainty needs to be accounted for

Random environments make evolution stochastic 



• Source of fluctuating selection:
Different phenotypes/genotypes are favored by natural selection at different times

• Can cause the evolution of specific response mechanisms such as phenotypic 
plasticity = phenotypic change of given genotype in response to environment

LM Chevin - MMB 2025 - Fluct Env

Bonamour et al (2019 Phil Trans)
Laying date of blue tits in Mediterranean forests 
(near Montpellier and Corsica)

Charmantier et al (2015 Evol Appl)

Random environments make evolution stochastic 



• How do random environmental fluctuations 
translate into fluctuations at all levels of population biology? 

• What determines the predictability  of responses at each level?

Population responses to stochastic environments 
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Epigenetics
Transcripts

Environment

Phenotype Fitness Population sizeGenotype

ATCGGTACG

2 3
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What is a randomness
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• Regardless of what randomness means in an absolute sense, 
treating environments as random accounts for:
 Absence of obvious pattern
 Ignorance of underlying causes, 

some of which may in fact be deterministic, but complex
(multifactorial)

 Imperfect knowledge/measurement



Prediction in stochastic environment
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• Deterministic: the future is certain provided accurate measurement of the past, 
and perfect knowledge of causal factors.

𝜕𝜕𝑥𝑥
𝜕𝜕𝑡𝑡

= 𝑓𝑓(𝑥𝑥, 𝑡𝑡)

Measured Projected



Prediction in stochastic environment
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• Stochastic: The future is probabilistic even with perfect measurement

Pr 𝑥𝑥𝑡𝑡+𝜏𝜏 = 𝑓𝑓(𝑥𝑥𝑡𝑡)

Measured Projected



• Temporal autocorrelation ρ determines timescale of predictability
• Related to “colour » of environmental noise1

Fig. from Leung et al (2020 Ecol Lett) 
1: Vasseur & Yodzis (2004 Ecology)

ρ = 0.9

ρ = 0

Prediction in stochastic environment
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Evolutionary demography

• Evolution and demography are connected through the fitness landscape1,2

• In simple discrete-time model where multiplicative fitness (number of offspring per 

parent) is, with mean �𝑊𝑊 in the population:

Demography: 𝑁𝑁𝑡𝑡+1 = �𝑊𝑊𝑡𝑡𝑁𝑁𝑡𝑡  ln𝑁𝑁𝑡𝑡+1 = ln𝑁𝑁𝑡𝑡 + ln �𝑊𝑊𝑡𝑡

Evolution:    Allelic frequency1 ∆𝑝𝑝 = 𝑝𝑝𝑝𝑝 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕𝜕𝜕

Mean of quantitative trait2 ∆ ̅𝑧𝑧 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

(𝐺𝐺: additive genetic variance)

𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊: selection gradient, local slope of fitness landscape. 
1 : Wright (1937 PNAS) 

2: Lande (1976 Evolution, 1982 Ecology)
Crow & Kimura (1970)LM Chevin - MMB 2025 - Fluct Env

(For frequency-independent 
selection, i.e. no interaction 
between genotypes)



Phenotype z

Fitness 𝑊𝑊 𝑧𝑧 = exp − 𝑧𝑧−𝜃𝜃 2

2 𝜔𝜔2

A conceptual framework: Moving optimum models

• Fitness (reproductive success) depends on
phenotypic trait z
Maximized when z matches intermediate 
phenotypic optimum θ

• Fitness peak has width ω, 
Strength of stabilizing selection increases with  1

𝜔𝜔2
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1: Lande (1976, 1979 Evolution)
reviewed by Kopp & Matuszewski (2014 Evol Appl)

Figure from de Villemereuil et al (2020 PNAS)



A conceptual framework: Moving optimum models

• The optimum phenotype 𝜃𝜃 is assumed to  
move with the environment 

• Gaussian process:
Random environmental fluctuations lead to 
normal distribution of 𝜃𝜃 with

variance 𝜎𝜎𝜃𝜃2
autocorrelation 𝜌𝜌 per generation

LM Chevin - MMB 2025 - Fluct Env

1: Lande (1976, 1979 Evolution)
reviewed by Kopp & Matuszewski (2014 Evol Appl)

Figure from de Villemereuil et al (2020 PNAS)



A conceptual framework: Moving optimum models
• Empirical evidence from wild populations: great tits in Netherland (40 years)1

1: Chevin, Visser & Tufto (2015 Evolution)

Phénotype optimal pour la sélection
Phénotype moyenPic d’abundance de ressources

ω
𝜎𝜎𝜀𝜀
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1: de Villemereuil et al (2020 PNAS)

• Fluctuating selection estimated as movements of Gaussian fitness peak,
for breeding time across birds and mammals in the wild1 : 

39 populations, 21 species, average 33.2 yrs [9-63]
Pierre de Villemereuil

Evidence for moving optimum
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Bighorn sheep
(Ovis canadensis)

Blue tits
(Cyanistes caeruleus)

Alpine swift
(Tachymarptis melba)

Great tits
(Parus major)

Pied flycatcher
(Ficedula hypoleuca)

Columbian ground squirrel
(Urocitellus columbianus)

Dipper
(Cinclus cinclus)

Hi hi
(Notiomystis cincta)
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(Macropus giganteus)

House sparrow
(Passer domesticus)

Mountain goats
(Oreamnos americanus)

Eurasian oystercatcher
(Haematopus ostralegus)

Red deer
(Cervus elaphus)

Red squirrel
(Tamiasciurus hudsonicus)

Reindeer
(Rangifer tarandus)

Savannah sparrow
(Passerculus sandwichensis)

Superb fairywren
(Malurus cyaneus)

Sheep
(Ovis aries)

Northern wheatear
(Oenanthe oenanthe)

Red-winged Fairy-wren
(Malurus elegans)

Collared flycatcher
(Ficedula albicollis)

New Zealand

France, Netherl., 
Engl…

A. Ozgul Scotland

US



Mean optimum SD of optimum Peak width

Majority of support across datasets 
for models with optimum 

1: de Villemereuil et al (2020 PNAS)

• Fluctuating selection estimated as movements of Gaussian fitness peak,
for breeding time across birds and mammals in the wild1 : 

39 populations, 21 species, average 33.2 yrs [9-63]
Pierre de Villemereuil

Evidence for moving optimum
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Also evidence for substantial optimum fluctuations
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Quantitative traits and adaptation
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Maize flowering time (Buckler al 2009, Science)
Human height

“We show that 12111 independent SNPs that are significantly
associated with height account for nearly all of the common SNP-
based heritability [that is,] for 40% (45%) of phenotypic variance
in populations of European ancestry” (Yengo et al 2022 Nature)

• Many ecologically important phenotypic traits are determined by many genes of 
weak effects  Polygenic inheritance



Quantitative traits and adaptation
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• Many ecologically important phenotypic traits are determined by many genes of 
weak effects  Polygenic inheritance

• These traits tend to continuous, normal distributions (infinitesimal model1)

1: Fisher (1918), Barton et al (2017)



Quantitative traits and adaptation
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• Many ecologically important phenotypic traits are determined by many genes of 
weak effects  Polygenic inheritance

• These traits tend to continuous, normal distributions (infinitesimal model1)
 Can be studied using quantitative genetics, robust to departures from normality2

• Response to selection by mean phenotype3: ∆ ̅𝑧𝑧 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

𝛽𝛽 = 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

is the directional selection gradient
𝐺𝐺 is the additive genetic variance of the trait

1: Fisher (1918), Barton et al (2017)
2: Turelli & Barton (1994 Genetics)

3:  Lande (1976)



Quantitative traits and adaptation
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• Many ecologically important phenotypic traits are determined by many genes of 
weak effects  Polygenic inheritance

• These traits tend to continuous, normal distributions (infinitesimal model1)
 Can be studied using quantitative genetics, robust to departures from normality2

• Response to selection by mean phenotype3: ∆ ̅𝑧𝑧 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

• Genetic variance 𝐺𝐺 is maintained trough segregation and recombination among 
loci1, as well as polygenic mutation4.

• With stationary fluctuations of an optimum, 𝐺𝐺 will reach an expected equilibrium.
To first order 𝐺𝐺 can be approximated as constant to study changes in the mean 
phenotype across generations

1: Fisher (1918), Barton et al (2017)
2: Turelli & Barton (1994 Genetics)

3:  Lande (1976)
4: Kimura (1965); Turelli (1984)
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• A Gaussian fitness peak approximates well any phenotype-
fitness map with an optimum for multiplicative fitness:

𝑊𝑊 𝑧𝑧 = 𝑊𝑊max exp − 𝑧𝑧−𝜃𝜃 2

2 𝜔𝜔2

• When the trait 𝑧𝑧 is has normal distribution 𝑝𝑝(𝑧𝑧), 
then mean fitness is also Gaussian (convolution): 

�𝑊𝑊 = ∫−∞
∞ 𝑝𝑝(𝑧𝑧)𝑊𝑊 𝑧𝑧 𝑑𝑑𝑧𝑧 = 𝑊𝑊max

𝜔𝜔2

𝜔𝜔2+𝜎𝜎𝑧𝑧2
exp − �̅�𝑧−𝜃𝜃 2

2(𝜔𝜔2+𝜎𝜎𝑧𝑧2)

• Response to selection becomes1:
∆ ̅𝑧𝑧 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊

𝜕𝜕�̅�𝑧
= −𝐺𝐺𝐺𝐺 ̅𝑧𝑧 − 𝜃𝜃 with 𝐺𝐺 = 1

(𝜔𝜔2+𝜎𝜎𝑧𝑧2)
Linear restoring force on mean phenotype towards optimum

Lande (1976 Evolution)

Quantitative trait tracking a fluctuating optimum
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• Iterating over generations assuming constant genetic variance, we have1

̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧0 1 − 𝐺𝐺𝐺𝐺 𝑡𝑡 + 𝐺𝐺𝐺𝐺�
𝑗𝑗=1

𝑡𝑡

1 − 𝐺𝐺𝐺𝐺 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗 →
𝑡𝑡→∞

𝐺𝐺𝐺𝐺�
𝑗𝑗=1

∞

1 − 𝐺𝐺𝐺𝐺 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗

Mean phenotype is weighted average of past optima, with more weight on more recent. 
Smoothes environmental “signal”, all the more as adaptive potential 𝐺𝐺𝐺𝐺 is small

(evolutionary inertia)

1 : Charlesworth et al (1993 Genet Res); 
Figure from Chevin (2013 Evolution)     

Quantitative trait tracking a fluctuating optimum
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1 : Charlesworth et al (1993 Genet Res); 

Figure from Chevin (2013 Evolution)     

Quantitative trait tracking a fluctuating optimum
• Iterating over generations assuming constant genetic variance, we have1

̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧0 1 − 𝐺𝐺𝐺𝐺 𝑡𝑡 + 𝐺𝐺𝐺𝐺�
𝑗𝑗=1

𝑡𝑡

1 − 𝐺𝐺𝐺𝐺 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗 →
𝑡𝑡→∞

𝐺𝐺𝐺𝐺�
𝑗𝑗=1

∞

1 − 𝐺𝐺𝐺𝐺 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗

• If optimum undergoes Gaussian process, so do:
- the mean phenotype ̅𝑧𝑧 (linear combination of Gaussians)
- the mismatch with optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃

The distribution of maladaptation can be summarized by its mean and variance.
• At stationarity:
The expected mean phenotype matches the expected optimum
But the variance and autocorrelation of mismatch play important roles.



Random 
genetic drift

Selection
gradients
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Fluctuations of mismatch & selection gradient
• Directional selection gradient is proportional to phenotypic mismatch, β = −𝐺𝐺( ̅𝑧𝑧 − 𝜃𝜃)
• Even with a constant optimum, drift causes temporal variation in mismatch ( ̅𝑧𝑧 − 𝜃𝜃)

• The variance of directional selection caused by drift 
around the constant optimum is V(β) = 𝑆𝑆

(2−𝑆𝑆𝑆𝑆)𝑁𝑁𝑒𝑒
Lower bound for fluctuations in directional selection, 

larger for lower 𝑁𝑁𝑒𝑒 and larger 𝐺𝐺. 
• The autocorrelation function of selection gradients is

ACF(β, 𝜏𝜏) = (1 − 𝐺𝐺𝐺𝐺)𝜏𝜏

 Evolutionary inertia over timescale 1/(𝐺𝐺𝐺𝐺)
longer with lower evolutionary potential

Chevin & Haller (2014 Evolution)
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Fluctuations of mismatch & selection gradient

Chevin & Haller (2014 Evolution)

• Autocorrelated fluctuating optimum (AR1), 
with 𝑇𝑇 the characteristic time over which optimum is autocorrelated

small 𝑇𝑇

large 𝑇𝑇



LM Chevin - MMB 2025 - Fluct Env

Fluctuations of mismatch & selection gradient

Unpredictable optimum Predictable optimum
Chevin & Haller (2014 Evolution)

 Higher autocorrelation leads 
to better adaptive tracking, 
thus smaller fluctuations in β

 The variance due to drift 
around optimum adds up to 
that of optimum fluctuations

• Autocorrelated fluctuating optimum (AR1), 
with 𝑇𝑇 the characteristic time over which optimum is autocorrelated

• Without drift: V β ≈ 𝑆𝑆2𝜎𝜎𝜃𝜃
2

1+𝑆𝑆𝑆𝑆𝑆𝑆

small 𝑇𝑇

large 𝑇𝑇
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Fluctuations of mismatch & selection gradient
• Autocorrelated fluctuating optimum (AR1), 

with 𝑇𝑇 the characteristic time over which optimum is autocorrelated

• Without drift: V β ≈ 𝑆𝑆2𝜎𝜎𝜃𝜃
2

1+𝑆𝑆𝑆𝑆𝑆𝑆

ACF(β, 𝜏𝜏) = 𝑒𝑒−
𝜏𝜏
𝑇𝑇−𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒−𝑆𝑆𝑆𝑆𝜏𝜏

1−𝑆𝑆𝑆𝑆𝑆𝑆

(Weighted) difference between
autocorrelation of optimum 
and evolutionary inertia
 Fluctuations in β do not tell 
the whole story about fluctuating
selection!

Chevin & Haller (2014 Evolution)

Limit of drift around
constant optimum

≈White noise

≈Random walk
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Fluctuations of mismatch & selection gradient
• Analytical predictions assuming constant genetic variance work well on individual-

based simulations with explicit loci and high mutation rates 

Chevin & Haller (2014 Evolution)



Selection on large-effect mutation
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• Haploid model: mutation in frequency 𝑝𝑝 (with 𝑝𝑝 = 1 − 𝑝𝑝),
with phenotypic effect 𝛼𝛼, arising in background genotype with mean phenotype 𝑚𝑚, 
selected towards optimum 𝜃𝜃

𝜃𝜃

𝑚𝑚 + 𝛼𝛼𝑚𝑚
a A

Phenotype

Genotype focal >locus

Frequency

𝑝𝑝𝑝𝑝



Selection on large-effect mutation
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• Haploid model: mutation in frequency 𝑝𝑝 (with 𝑝𝑝 = 1 − 𝑝𝑝),
with phenotypic effect 𝛼𝛼, arising in background genotype with mean phenotype 𝑚𝑚, 
selected towards optimum 𝜃𝜃

• Effect of selection on frequency change: 
𝑝𝑝′ = 𝜕𝜕𝑊𝑊𝑚𝑚+𝛼𝛼

𝜕𝜕𝑊𝑊𝑚𝑚+𝛼𝛼+𝑞𝑞𝑊𝑊𝑚𝑚
and 𝑝𝑝′ = 𝑞𝑞𝑊𝑊𝑚𝑚

𝜕𝜕𝑊𝑊𝑚𝑚+𝛼𝛼+𝑞𝑞𝑊𝑊𝑚𝑚
, so 𝜕𝜕′

𝑞𝑞′
= 𝑊𝑊𝑚𝑚+𝛼𝛼

𝑊𝑊𝑚𝑚

𝜕𝜕
𝑞𝑞

• On logit scale ψ = ln 𝜕𝜕
𝑞𝑞

: Δ𝜓𝜓 = ln𝑊𝑊𝑚𝑚+𝛼𝛼 − ln𝑊𝑊𝑚𝑚 = −𝑆𝑆𝛼𝛼
2
𝛼𝛼 + 2 𝑚𝑚− 𝜃𝜃

Mutations compensating for mean mismatch 𝑚𝑚 − 𝜃𝜃 are favored

• After 𝑡𝑡 generation of selection: 𝜓𝜓𝑡𝑡 = 𝜓𝜓0 −
𝑆𝑆𝛼𝛼
2
𝛼𝛼 𝑡𝑡 + 2∑𝑖𝑖=0𝑡𝑡−1 𝑚𝑚𝑖𝑖 − 𝜃𝜃𝑖𝑖

Linear in mismatch 𝑚𝑚 − 𝜃𝜃 If the optimum 𝜽𝜽 follows a Gaussian process, so does 𝝍𝝍.
𝜓𝜓 simply integrates all past mismatches, with equal weight on all times

1: Kimura (1954 Genetics), Gillespie (1991),
Chevin (2019 Genetics)
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• Assume the optimum follows a stationary autocorrelated Gaussian process (AR1), 
and background mean phenotype 𝑚𝑚 is constant, 

• Fluctuation pattern has no influence on 
expected change in (logit) frequency

• Stochastic variance of 𝜓𝜓 is
σ𝜓𝜓,𝑡𝑡
2 ≈ σ𝑠𝑠2

1+𝜌𝜌
1−𝜌𝜌

𝑡𝑡, with σ𝑠𝑠2 = 𝐺𝐺𝛼𝛼𝜎𝜎𝜃𝜃 2

 Increases linearly, faster under higher 
autocorrelation
• On p scale, variance of 𝜓𝜓 translates into 

variance in the timing of selective sweeps 

Chevin (2019 Genetics)

Selection on large-effect mutation



𝜃𝜃

• If other small effect loci cause normally distributed background genetic variance, 
then mean background 𝒎𝒎 also evolves in response to fluctuating optimum.

Influence of background genetic variation

LM Chevin - MMB 2025 - Fluct Env

𝑚𝑚 + 𝛼𝛼𝑚𝑚
a A

Phenotype

Genotype focal >locus

Frequency

𝑝𝑝
𝑝𝑝

= 1 − 𝑝𝑝



• If other small effect loci cause normally distributed background genetic variance, 
then mean background 𝒎𝒎 also evolves in response to fluctuating optimum.

• The process for 𝜓𝜓 = logit 𝑝𝑝 then becomes stationary: variance plateaus
 Polygenic background variation buffers the stochasticity perceived by major gene

No background genetic variation

Increasing ρ

Chevin (2019 Genetics)

Influence of background genetic variation

LM Chevin - MMB 2025 - Fluct Env

Background genetic variation

Increasing ρ



• Bistability: Evolution of mean background phenotype towards optimum via 
polygenic background variation may interrupt sweep at QTL1

Background mismatch 𝑚𝑚− 𝜃𝜃

Frequency 𝑝𝑝
at QTL

𝒑𝒑𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎

𝒑𝒑𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎

Frequency p

1: Adapted from Lande (1983 Heredity),
Chevin & Hospital (2008 Genetics)LM Chevin - MMB 2025 - Fluct Env

Time

Influence of background genetic variation



• Bistability: Evolution of mean background phenotype towards optimum via 
polygenic background variation may interrupt sweep at QTL1

• In stochastic environment: autocorrelation 𝜌𝜌 changes probability of complete
sweep, by increasing the stochastic variance of this process. 

Chevin (2019 Genetics)

Influence of background genetic variation

LM Chevin - MMB 2025 - Fluct Env
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Agrawal (2001, Science)

D. lumholtzi D. monacha

2 daphnia species
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Agrawal (2001, Science)

D. lumholtzi D. monacha

2 daphnia species

The same clone, 
with and without
predator cues



Phenotypic plasticity
• Ability of a given genotype to produce different phenotypes in different environments
• Captured by the reaction norm relating trait to environment

Charmantier et al (2008 Science)

Breeding time vs temperatureBody shape vs resources …  or predator cues
Woltereck (1909) Tollrian (1993 J Plankt Res)

Gibert et al (2016, PLoS Genetics)Darkness vs temperature

Wet-season 
vs dry-season forms

(F. Nijhout, in Pfennig et al 2010 TREE)

LM Chevin - MMB 2025 - Fluct Env



Environmental tolerance curves
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• Fitness (or survival, performance, etc) against environment: 
Environmental tolerance curve1 = one axis of fundamental niche. 

• Emerges from phenotypic plasticity & selection of underlying traits.  

 Predictions about plastic tracking of a moving optimum phenotype
can be translated into predictions about environmental tolerance curves2.

1: Lynch & Gabriel (1987 Am Nat); Buckley & Kingsolver (2021 ARESE)  
2: Chevin, Lande & Mace (2010 PLoS Biol); Lande (2014 JEB)
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Plastic tracking of moving optimum in the wild
• Moving optimum for breeding time estimated across

birds and mammals in the wild

Bighorn sheep
(Ovis canadensis)

Blue tits
(Cyanistes caeruleus)

Alpine swift
(Tachymarptis melba)

Great tits
(Parus major)

Pied flycatcher
(Ficedula hypoleuca)

Columbian ground squirrel
(Urocitellus columbianus)

Dipper
(Cinclus cinclus)

Hi hi
(Notiomystis cincta)

Eastern grey kangaroo
(Macropus giganteus)

House sparrow
(Passer domesticus)

Mountain goats
(Oreamnos americanus)

Eurasian oystercatcher
(Haematopus ostralegus)

Red deer
(Cervus elaphus)

Red squirrel
(Tamiasciurus hudsonicus)

Reindeer
(Rangifer tarandus)

Savannah sparrow
(Passerculus sandwichensis)

Superb fairywren
(Malurus cyaneus)

Sheep
(Ovis aries)

Northern wheatear
(Oenanthe oenanthe)

Red-winged Fairy-wren
(Malurus elegans)

Collared flycatcher
(Ficedula albicollis)

New Zealand

France, Netherl., 
Engl…

A. Ozgul Scotland

US

De Villemereuil et al (2020 PNAS)



Plastic change 

Plastic change 
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Plastic tracking of moving optimum in the wild
• Moving optimum for breeding time estimated across

birds and mammals in the wild

• Plastic phenological changes across years can be
estimated from individuals that breed repeatedly

De Villemereuil et al (2020 PNAS)



• Moving optimum for breeding time estimated across
birds and mammals in the wild

• Plastic phenological changes across years can be
estimated from individuals that breed repeatedly

• Significantly correlated to movements of optimum 
across birds.  

 Plastic tracking of optimum reduces magnitude 
of phenotypic mismatch:

V ̅𝑧𝑧 − 𝜃𝜃 = V 𝜃𝜃 + 𝑉𝑉( ̅𝑧𝑧) − 2Cov ̅𝑧𝑧,𝜃𝜃

LM Chevin - MMB 2025 - Fluct Env

Plastic tracking of moving optimum in the wild

De Villemereuil et al (2020 PNAS)
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Breeding value

Environment

Inheritance of plasticity
• For continuous, polygenic traits: 

plasticity investigated by applying quantitative genetics to reaction norms. 
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• For continuous, polygenic traits: 
plasticity investigated by applying quantitative genetics to reaction norms. 

• Character state approach1

z1 and z2 = 2 traits, 
possibly genetically correlated.

1: Falconer 1952 Am Nat; Via & Lande 1985 Evolution

Breeding value

Environment

z2

ε1 ε2

z1

Inheritance of plasticity



• Character state approach1

z1 and z2 = 2 traits, 
possibly genetically correlated.

• Reaction norm approach2

Reaction norm shape parameters
(intercept a, slope b, …) 
are quantitative traits. 
If linear, slope b quantifies plasticity

LM Chevin - MMB 2025 - Fluct Env
1: Falconer 1952 Am Nat; Via & Lande 1985 Evolution

2: de Jong 1990; Gavrilets & Scheiner 1993 JEB

Breeding value

Environment

b

a

Inheritance of plasticity
• For continuous, polygenic traits: 

plasticity investigated by applying quantitative genetics to reaction norms. 



• Parameters of reaction shape are selected indirectly via their effects on the 
expressed trait across environments. 

• Directional selection on any normally distributed polygenic reaction norm 
parameter 𝜗𝜗 is

𝛽𝛽𝜗𝜗 =
𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕𝜗𝜗

=
𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕 ̅𝑧𝑧

𝜕𝜕 ̅𝑧𝑧
𝜕𝜕𝜗𝜗

• With linear reaction norms 𝑧𝑧 = 𝑎𝑎 + 𝑏𝑏𝜀𝜀𝐷𝐷 + 𝑒𝑒 (with 𝜀𝜀𝐷𝐷 the env of development) , 
the vector of selection gradients on reaction norm parameters is

𝛽𝛽𝑎𝑎
𝛽𝛽𝑏𝑏

= −𝐺𝐺 ̅𝑧𝑧 − 𝜃𝜃
𝜕𝜕�̅�𝑧
𝜕𝜕 �𝑎𝑎
𝜕𝜕�̅�𝑧
𝜕𝜕 �𝑏𝑏

= −𝐺𝐺 ̅𝑧𝑧 − 𝜃𝜃 1
𝜀𝜀𝐷𝐷

LM Chevin - MMB 2025 - Fluct Env Gavrilets & Scheiner 1993 JEB, de Jong 1999 JEB 

Selection on plasticity

Selection gradient 
on expressed trait

Reaction norm gradient,
depends on environment



Evolution in fluctuating environment

• Assuming the optimum also changes linearly with environment of selection, 𝜃𝜃 = 𝐴𝐴 + 𝐵𝐵𝜀𝜀𝑠𝑠, 
the expected selection gradient in a stationary fluctuating environment (with ̅𝜀𝜀 = 0) is

E 𝛽𝛽𝑎𝑎
𝛽𝛽𝑏𝑏

= −𝐺𝐺 E
�̅�𝑎 − 𝐴𝐴 + �̅�𝑏𝜀𝜀𝐷𝐷 − 𝐵𝐵𝜀𝜀𝑠𝑠

�̅�𝑎 − 𝐴𝐴 𝜀𝜀𝐷𝐷 + �̅�𝑏𝜀𝜀𝐷𝐷 − 𝐵𝐵𝜀𝜀𝑠𝑠 𝜀𝜀𝐷𝐷
= −𝐺𝐺 �𝑎𝑎 − 𝐴𝐴

(�𝑏𝑏 − 𝐵𝐵𝜌𝜌𝐷𝐷𝑆𝑆)𝜎𝜎𝜀𝜀2

 Plasticity evolves towards slope of optimum 𝐵𝐵 discounted by correlation 𝝆𝝆𝑫𝑫𝑫𝑫 between 
environment of development of selection (predictability of selection)

 Faster evolution under larger magnitude 𝜎𝜎𝜀𝜀2 of environmental fluctuations
• In general 𝜌𝜌𝐷𝐷𝑆𝑆 < 1 because of developmental delay (and possibly dispersal)

between development and selection, and imperfect cue reliability
 Reaction norm shallower than changes in optimum.

1: Gavrilets & Scheiner 1993 JEB, de Jong 1999 JEB 
2: Lande 2009 JEB

LM Chevin - MMB 2025 - Fluct Env



Selection at QTL for plasticity

LM Chevin - MMB 2025 - Fluct Env

• Mutation at locus with environment-dependent effect on trait: 𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀

Chevin (2019 Genetics)

𝜃𝜃

𝑚𝑚 + 𝛼𝛼𝑚𝑚
a A

Phenotype

Genotype focal >locus

Frequency

𝑝𝑝𝑝𝑝



Selection at QTL for plasticity

LM Chevin - MMB 2025 - Fluct Env

• Mutation at locus with environment-dependent effect on trait: 𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀
• Expected selection coefficient in fluctuating environment 𝜀𝜀:

E Δ𝜓𝜓 = −𝑆𝑆
2
𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼[(𝑏𝑏𝛼𝛼 − 2 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚 ]𝜎𝜎𝜀𝜀2

Chevin (2019 Genetics)



Selection at QTL for plasticity

LM Chevin - MMB 2025 - Fluct Env

• Mutation at locus with environment-dependent effect on trait: 𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀
• Expected selection coefficient in fluctuating environment 𝜀𝜀:

E Δ𝜓𝜓 = −𝑆𝑆
2
𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼[(𝑏𝑏𝛼𝛼 − 2 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚 ]𝜎𝜎𝜀𝜀2

Environmental fluctuations influence expected frequency change, 
unlike for non-plastic QTL
Selection strength also scales with background mismatch with optimal plasticity, 

which depends on predictability of selection

Chevin (2019 Genetics)



𝑎𝑎𝛼𝛼

Selection at QTL for plasticity

LM Chevin - MMB 2025 - Fluct Env

• Mutation at locus with environment-dependent effect on trait: 𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀
• Expected selection coefficient in fluctuating environment 𝜀𝜀:

E Δ𝜓𝜓 = −𝑆𝑆
2
𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼[(𝑏𝑏𝛼𝛼 − 2 𝑏𝑏𝜃𝜃 − 𝑏𝑏𝑚𝑚 ]𝜎𝜎𝜀𝜀2

• An allele favored through its effect on plasticity
(buffering environmental fluctuations) can spread 
despite a deleterious side effect on the mean trait 
(optimum displacement in average environment)

• The mean background trait m can then evolve
to compensate for the pleiotropic effect

Chevin (2019 Genetics)



Ecology and evolution 
in randomly fluctuating environments

- Basics and framework -
- Evolutionary dynamics -
- Phenotypic plasticity -

- Evolutionary demography -
- Experimental results -



• Evolution and demography are connected through the fitness landscape1

relating population mean fitness �𝑊𝑊 to the mean phenotype ̅𝑧𝑧
• Simple discrete-time model:

Demography: ln𝑁𝑁𝑡𝑡+1 − ln𝑁𝑁𝑡𝑡 = ln �𝑊𝑊𝑡𝑡

Evolution: ̅𝑧𝑧𝑡𝑡+1 − ̅𝑧𝑧𝑡𝑡 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

(𝐺𝐺 : additive genetic variance of 𝑧𝑧)

1 : Wright (1937 PNAS) 
Crow & Kimura (1970)

Lande (1976 Evolution, 1982 Ecology)LM Chevin - MMB 2025 - Fluct Env

Population dynamics under moving optimum



• Evolution and demography are connected through the fitness landscape1

relating population mean fitness �𝑊𝑊 to the mean phenotype ̅𝑧𝑧
• Simple discrete-time model:

Demography: ln𝑁𝑁𝑡𝑡+1 − ln𝑁𝑁𝑡𝑡 = ln �𝑊𝑊𝑡𝑡

Evolution: ̅𝑧𝑧𝑡𝑡+1 − ̅𝑧𝑧𝑡𝑡 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

(𝐺𝐺 : additive genetic variance of 𝑧𝑧)

• With Gaussian fitness peak, mean mismatch with optimum drives eco-evo dynamics

Demography: ln𝑁𝑁𝑡𝑡+1 − ln𝑁𝑁𝑡𝑡 = 𝑟𝑟max −
𝑆𝑆
2
�𝑧𝑧t − 𝜃𝜃t 2 − 𝑔𝑔 𝑁𝑁𝑡𝑡

Evolution: ̅𝑧𝑧𝑡𝑡+1 − ̅𝑧𝑧𝑡𝑡 = −𝐺𝐺𝐺𝐺 �𝑧𝑧t − 𝜃𝜃t
𝑔𝑔 𝑁𝑁𝑡𝑡 accounts for density-dependent regulation (increasing function).

1 : Wright (1937 PNAS) 
Crow & Kimura (1970)

Lande (1976 Evolution, 1982 Ecology)LM Chevin - MMB 2025 - Fluct Env

Population dynamics under moving optimum



Population dynamics under moving optimum
• Neglecting density dependence (eg under severe stress):

ln𝑁𝑁𝑡𝑡 = 𝜕𝜕𝑡𝑡 = 𝜕𝜕0 + 𝑟𝑟max𝑡𝑡 −
𝑆𝑆
2
�𝑘𝑘=0

𝑡𝑡−1( ̅𝑧𝑧𝑘𝑘 − 𝜃𝜃𝑘𝑘)2
Unweighted sum of all past maladaptations
 Extreme events in the past may have long-lasting consequences

Chevin et al 2017 (Am Nat)LM Chevin - MMB 2025 - Fluct Env



Population dynamics under moving optimum
• Neglecting density dependence (eg under severe stress):

ln𝑁𝑁𝑡𝑡 = 𝜕𝜕𝑡𝑡 = 𝜕𝜕0 + 𝑟𝑟max𝑡𝑡 −
𝑆𝑆
2
�𝑘𝑘=0

𝑡𝑡−1( ̅𝑧𝑧𝑘𝑘 − 𝜃𝜃𝑘𝑘)2
Unweighted sum of all past maladaptations
 Extreme events in the past may have long-lasting consequences

• With density regulation of Gompertz form, 𝑔𝑔 𝑁𝑁 = 𝛾𝛾 ln𝑁𝑁 = 𝛾𝛾𝜕𝜕, asymptotically:
𝜕𝜕𝑡𝑡 = 𝜕𝜕max −

𝑆𝑆
2
�𝑘𝑘=0

𝑡𝑡−1 1 − 𝜑𝜑 𝑡𝑡−1−𝑘𝑘 ( ̅𝑧𝑧𝑘𝑘 − 𝜃𝜃𝑘𝑘)2
Weighted sum of all past maladaptations
More sensitive to recent events, especially if density dependence is strong

Chevin et al 2017 (Am Nat)LM Chevin - MMB 2025 - Fluct Env



Population dynamics under moving optimum
• Neglecting density dependence (eg under severe stress):

ln𝑁𝑁𝑡𝑡 = 𝜕𝜕𝑡𝑡 = 𝜕𝜕0 + 𝑟𝑟max𝑡𝑡 −
𝑆𝑆
2
�𝑘𝑘=0

𝑡𝑡−1( ̅𝑧𝑧𝑘𝑘 − 𝜃𝜃𝑘𝑘)2
Unweighted sum of all past maladaptations
 Extreme events in the past may have long-lasting consequences

• With density regulation of Gompertz form, 𝑔𝑔 𝑁𝑁 = 𝛾𝛾 ln𝑁𝑁 = 𝛾𝛾𝜕𝜕, asymptotically:
𝜕𝜕𝑡𝑡 = 𝜕𝜕max −

𝑆𝑆
2
�𝑘𝑘=0

𝑡𝑡−1 1 − 𝜑𝜑 𝑡𝑡−1−𝑘𝑘 ( ̅𝑧𝑧𝑘𝑘 − 𝜃𝜃𝑘𝑘)2
Weighted sum of all past maladaptations
More sensitive to recent events, especially if density dependence is strong

• Stationary distribution of mismatch ̅𝑧𝑧 − 𝜃𝜃 is shaped by plasticity and evolution
If 𝜃𝜃 is a Gaussian process, so are ̅𝑧𝑧 and ̅𝑧𝑧 − 𝜃𝜃
Then 𝜕𝜕 = ln𝑁𝑁 is ~ (reverse non-central) chi-square/gamma

Chevin et al 2017 (Am Nat)LM Chevin - MMB 2025 - Fluct Env



Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Skewed downward (towards small N)

LM Chevin - MMB 2025 - Fluct Env Chevin et al 2017 (Am Nat)



Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Skewed downward (towards small N)
Transient, density-independent dynamics tends to 

normal over time (increasing DOF of 𝜒𝜒2), but slowly
 Residual excess of small population sizes with 
high extinction risk

LM Chevin - MMB 2025 - Fluct Env Chevin et al 2017 (Am Nat)



Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Skewed downward (towards small N)
Transient, density-independent dynamics tends to 

normal over time (increasing DOF of 𝜒𝜒2), but slowly
 Residual excess of small population sizes with 
high extinction risk
Autocorrelation of optimum :

- increases the expected growth rate and pop size
(facilitates adaptive tracking of optimum)

- increases variance of population size 
(among independent lineages)1.
 possibly antagonistic for persistence

LM Chevin - MMB 2025 - Fluct Env Chevin et al 2017 (Am Nat)
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Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Skewed downward (towards small N)
Transient, density-independent dynamics tends to 

normal over time (increasing DOF of 𝜒𝜒2), but slowly
 Residual excess of small population sizes with 
high extinction risk
With Gompertz density regulation, distribution 

becomes stationary. More skewed under more 
autocorrelated mismatch.
Why? Fewer effective generations of maladaptation 
are summed  𝜒𝜒2 with lower DOF

Chevin et al 2017 (Am Nat)



Evolutionary rescue in stochastic environment
• Abrupt shift + random fluctuations in environment
• Population starts declining because of maladaptation, 

risking extinction unless it evolves fast enough
= Evolutionary rescue

• Mean phenotype evolves towards new mean 
optimum, and also tracks stochastic fluctuations 

• Stochasticity causes pop size to span several orders 
of magnitude, increasing extinction risk when rescue 
would occur deterministically1

1: Chevin et al (2017 Am Nat)
LM Chevin - MMB 2025 - Fluct Env



Evolutionary rescue in stochastic environment
• Abrupt shift + random fluctuations in environment
• Population starts declining because of maladaptation, 

risking extinction unless it evolves fast enough
= Evolutionary rescue

• Mean phenotype evolves towards new mean 
optimum, and also tracks stochastic fluctuations 

• Stochasticity causes pop size to span several orders 
of magnitude, increasing extinction risk when rescue 
would occur deterministically1

1: Chevin et al (2017 Am Nat)
LM Chevin - MMB 2025 - Fluct Env
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Evolutionary rescue in stochastic environment
• Abrupt shift + random fluctuations in environment
• Population starts declining because of maladaptation, 

risking extinction unless it evolves fast enough
= Evolutionary rescue

• Mean phenotype evolves towards new mean 
optimum, and also tracks stochastic fluctuations 

• Stochasticity causes pop size to span several orders 
of magnitude, increasing extinction risk when 
rescue would occur deterministically1

• Conversely, environmental stochasticity can facilitate 
ER in population that would be doomed in constant 
environment2

1: Chevin et al (2017 Am Nat)
2: Peniston et al (2020 Proc B)LM Chevin - MMB 2025 - Fluct Env



• Under stationary fluctuations, reaction norm slope (plasticity) affects the variance of 
phenotypic mismatch with optimum. 

• Effective variance of fluctuating optimum as “perceived “ by reaction norm elevation 
(« non-plastic » phenotypic component) is1

�𝜎𝜎𝜓𝜓2 = 𝜎𝜎𝜃𝜃2[1 + 𝛼𝛼(𝛼𝛼 − 2𝜌𝜌𝐷𝐷𝑆𝑆) 𝛼𝛼 = 𝑏𝑏/𝐵𝐵: slope of reaction norm scaled to 
slope of optimum vs environment
𝝆𝝆𝑫𝑫𝑫𝑫: environmental correlation between 
development and selection

• Plasticity close to environmental predictability 𝜌𝜌𝐷𝐷𝑆𝑆 buffers fluctuations
BUT: Plasticity larger than 2𝜌𝜌𝐷𝐷𝑆𝑆 amplifies fluctuations

• Variance of deviations from optimum decreases expected population size

Plasticity and stochastic demography

LM Chevin - MMB 2025 - Fluct Env



• Plasticity buffers demographic impacts of fluctuating environment only if the 
inducing environment accurately predicts future selective pressure

• Otherwise plasticity increases phenotypic mismatches (eg overshoots optimum), 
amplifies population fluctuations, and may cause extinction1

Plasticity and stochastic demography

LM Chevin - MMB 2025 - Fluct Env

Weak predictability Strong predictability

1: Reed et al (2010 Proc B)



Plasticity and stochastic demography

LM Chevin - MMB 2025 - Fluct Env

• Climate change alters environmental (auto)correlations and predictability
• A change in cue nature / reliability can increase variance of mismatch with 

optimum, reducing expected population growth rate. 
• Evolution of plasticity may then be required for evolutionary rescue 

Chevin et al (2013 Phil Trans B)
Ashander, Chevin & Baskett (2016 Proc B)



• Model where environmental shift modifies the mean (δ) and autocorrelation (𝜌𝜌𝛿𝛿) of 
random fluctuations in environment

ER by evolving plasticity in stochastic environment

LM Chevin - MMB 2025 - Fluct Env 1: Ashander, Chevin & Baskett (2016 Proc B)
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• Evolutionary dynamics in two phases1: 
1 - Adaptation to the new mean environment by transient increase in plasticity. 
2 - Evolution of plasticity to match new level of environmental predictability

• Transient increase in plasticity in phase I causes increased stochastic lag load2

(caused by variance of mismatch with optimum) 

1: Lande (2009 JEB) 
2: Ashander, Chevin & Baskett (2016 Proc B)LM Chevin - MMB 2025 - Fluct Env

ER by evolving plasticity in stochastic environment



• Potential for ER at end of phase 1, when mean phenotype largely matches mean optimum:

• ER more likely under high predictability after the shift
With low predictability, the high plasticity that evolves transiently in phase 1 amplifies the 
negative demographic impact of environmental stochasticity

1: Ashander, Chevin & Baskett (2016 Proc B)

Probability of population below critical sizeTime-averaged growth rate

LM Chevin - MMB 2025 - Fluct Env

ER by evolving plasticity in stochastic environment
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Population responses to stochastic environments 

LM Chevin - MMB 2025 - Fluct Env

Reminder of predictions from moving optimum theory: 

• Population dynamics: ln(𝑁𝑁)
Reverse gamma distributed
Mean and variance influenced by autocorrelation,

through adaptive tracking by plasticity and/or evolution

• Selection at single locus: logit(𝑝𝑝)
Expected change not affected by fluctuations, 

unless allele influences plasticity/tolerance breath
Change in variance depends on env autocorrelation

• Evolution of plasticity: reaction norm slope
Higher plasticity evolves in more predictable

environments (and reciprocally)



Dunaliella salina:
A model organism for salinity tolerance

• Micro-algae, most halotolerant eucaryote
(freshwater to NaCl saturation).

• Common in coastal lagoons & salterns. 
Shallow salinity fluctuates 
with precipitation, wind, sunlight…

• Extremophile: few ecological interactions 
 Niche easily mimicked in the lab

• Short generation time ~ 1 day
multigenerational experiments

http://www.lesalindegruissan.fr/

LM Chevin - MMB 2025 - Fluct Env






Long-term experiment under fluctuating salinity

• Salinity changed twice a week 
using a pipetting robot
 High replication
 Complex fluctuation pattern

• Exposed during several months
 hundreds of generations.

LM Chevin - MMB 2025 - Fluct Env



• Random change, with environmental autocorrelation as the treatment

Low predictability High predictability

LM Chevin - MMB 2025 - Fluct Env

Predictability treatment



• Random change, with environmental autocorrelation as the treatment

Time series

Subsequent 
time points

Predictability

LM Chevin - MMB 2025 - Fluct Env

Predictability treatment
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Population fluctuations
• Tracking population size through time
• Populations reach stationary distribution similar to moving optimum theory1

• Is it for the same reason?
Experiment1 Theory2

1: Rescan et al (2020 Nat Ecol Evol) 
2: Chevin et al (2017 Am Nat)
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Salinity tolerance curve

Rescan et al (2020 Nat Ecol Evol)

• Analysis of population growth rates from times series of N

• 3 types of observations (colored dots): 
cytometer counts, fluorescence, and absorbance

• Used in state-space model to extract intrinsic growth 
rates and their distributions

• Reverse gamma distribution favored over normal 
distribution for r
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Small autocorrelation Large autocorrelation 

Salinity tolerance curve
• Informed model: salinity included as covariate for r

Rescan et al (2020 Nat Ecol Evol)
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• Population growth rate well predicted by tolerance curve with optimum environment,

Salinity tolerance curve
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• Population growth rate well predicted by tolerance curve with optimum environment, 
BUT with respect to both current and previous salinity 
 Phenotypic memory, lagged plasticity

Salinity tolerance curve



Rescan et al (2020 Nat Ecol Evol)

• Population growth rate well predicted by tolerance curve with optimum environment, 
BUT with respect to both current and previous salinity
 Phenotypic memory, lagged plasticity

Salinity tolerance curve

• Likely contribution from glycerol, main osmoprotectant

Coming from low salinity:
Slower change requiring production

Coming from high salinity:
Rapid change via excretion

Towards high salinity

Towards medium salinity

Towards low salinity
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• Population growth rate well predicted by tolerance curve with optimum environment, 
BUT with respect to both current and previous salinity 
 Phenotypic memory, lagged plasticity

Salinity tolerance curve

Env. autocorrelation Env. autocorrelation

With 
memory

Without 
memory

• Explains effect of env autocorrelation on r distribution
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Environmental predictability & population dynamics

Env. autocorrelation
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• Mean population size

Rescan et al (2020 Nat Ecol Evol)

• Large effect of environmental autocorrelation on pop size and extinction risk

• Extinction risk
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Environmental predictability & population dynamics
• Large effect of environmental autocorrelation on pop size and extinction risk
• Consistent with predicted salinity responses with memory, otherwise reversed
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• Extinction risk

Rescan et al (2020 Nat Ecol Evol)



Population genetics in stochastic environment
• Tracking frequency of one strain among two in a mixture, 

by amplicon sequencing of two loci at regular time points

LM Chevin - MMB 2025 - Fluct Env

Fluctuating salinityConstant salinity

Rescan et al (2021 Plos Gen)



Population genetics in stochastic environment
• Tracking frequency of one strain among two in a mixture, 

by amplicon sequencing of two loci at regular time points
• Analyzed by state-space model for logit(p)

Equivalent to logistic GLMM with bivariate observations (2 loci).
Random regression on time: 

Mean slope = Mean selection coefficient 
Variance of slopes = Drift + fluctuating selection (+block effects on selection?)

LM Chevin - MMB 2025 - Fluct Env Rescan et al (2021 Plos Gen)



Constant 

Fluctuating

Effect of environmental variance on mean selection
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• Environmental variance reduces the mean selection coefficient

Rescan et al (2021 Plos Gen)



Constant 

Fluctuating

Effect of environmental variance on mean selection
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• Environmental variance reduces the mean selection coefficient
• Consistent with concave selection coefficient against environment (Jensen’s 

inequality), suggesting strain difference in plasticity/tolerance breadth

Rescan et al (2021 Plos Gen)



Effect of environmental autocorrelation
• Autocorrelation treatment influences expected trajectory
• Significantly higher selection coefficient in highly autocorrelated environment
 Points again to genetic differences in plasticity/tolerance breadth

LM Chevin - MMB 2025 - Fluct Env

𝜌𝜌2 = 0

𝜌𝜌2 = 0,81

𝜌𝜌2 = 0,25

constant

Rescan et al (2021 Plos Gen)



Variance in frequency change
• Faster increase in variance over time in stochastic than constant environments
• But no detectable influence of the autocorrelation treatment on freq. variance

However precision of variance estimate decreases over time because of extinctions 

LM Chevin - MMB 2025 - Fluct Env

Constant
salinity

Fluctuating 
salinity

Rescan et al (2021 Plos Gen)



• Size (FSC)
• Complexity/Granularity (SSC)
• Chlorophyll content

(red fluorescence)

High-throughput morphological phenotyping:

Experimental evolution of plasticity

LM Chevin - MMB 2025 - Fluct Env Leung et al (2020 Ecol Lett)



• Plastic responses to salinity

LM Chevin - MMB 2025 - Fluct Env Leung et al (2020 Ecol Lett)

Low salinity

High salinity

Experimental evolution of plasticity



1: Leung et al (2020 Ecol Lett)
2: Levins (1963 Am Nat); Moran (1992 Am Nat); 

Scheiner & Gavrilets (1993 JEB)

• Reduced plasticity evolved in lines that experienced less predictable environments1, 
consistent with classical theoretical predictions2

Experimental evolution of plasticity

LM Chevin - MMB 2025 - Fluct Env



• Gene expression & DNA methylation are also plastic wrt salinity1

• Consistent evolution of plasticity in response to environmental predictability2

LM Chevin - MMB 2025 - Fluct Env
1: Leung et al (2022 Mol Ecol)
2: Leung et al (2023 PLoS Biol)

Experimental evolution of plasticity



Rescan et al (2022 Evol Lett)

• Growth rate against current and previous salinity in assays after ~500 gen

Experimental evolution of tolerance curves

LM Chevin - MMB 2025 - Fluct Env



Rescan et al (2022 Evol Lett)

• Broader tolerance to current and past salinity evolved in fluctuating salinity. 
Little (but significant) effect of predictability

ρ = 

Fluctuating env

Constant env with same mean

Experimental evolution of tolerance curves

LM Chevin - MMB 2025 - Fluct Env



Conclusion
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• Models of fluctuating optimum phenotypes are reasonably consistent with nature, 
and yield analytical insights about different levels of population biology: 
- Gene frequency changes
- Evolution of quantitative traits
- (Evolution of) phenotypic plasticity
- Population dynamics and extinction risk…

• These predictions can be compared to the results of experiments with controled
fluctuation patterns, as a bridge between theory and nature.

• Can help understand adaptation, but only a starting point: reality is more complex!
Multiple peaks, species interactions, frequency dependence (flattening fitness 
peaks…), spatial variation, etc…



Epigenetics
Transcripts

Environment

Phenotype Fitness Population sizeGenotype

Thanks!
Questions?

LM Chevin - MMB 2025 - Fluct Env



Plasticity and environmental predictability

LM Chevin - MMB 2025 - Fluct Env

• In complex environments, phenotypes 
respond to multivariate cues. 

• Equilibrium plasticity wrt specific 
environmental variables can be in excess, 
or opposite, to changes of optimum1.
Seems maladaptive, but plastic response
to full multivariate cue is still adaptive.

1: Chevin & Lande (2015 Evolution)

Plasticity wrt env1

Plasticity
wrt env2

Expected from univariate cue



Plasticity and environmental predictability

LM Chevin - MMB 2025 - Fluct Env

• In complex environments, phenotypes 
respond to multivariate cues. 

• Equilibrium plasticity wrt specific 
environmental variables can be in excess, 
or opposite, to changes of optimum1.
Seems maladaptive, but plastic response
to full multivariate cue is still adaptive.

• Multivariate costs of plasticity can make 
plasticity closer to slope of optimum 
wrt single cues

1: Chevin & Lande (2015 Evolution)

Plasticity wrt env1

Plasticity
wrt env2

Expected from univariate cue

Same with multivariate cost of plasticity



Selection at QTL for plasticity

LM Chevin - MMB 2025 - Fluct Env

• Plasticity QTL, with environment-dependent effect on trait: 𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜀𝜀
• Mutations with different effects on plasticity can have the same expected selection

coefficient, but different stochastic variances.

Hyper-optimal plasticity
(overshoots optimum) 

Sub-optimal plasticity
(undershoots optimum)  

Chevin (2019 Genetics)
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