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Eco-evolutionary dynamics across
levels of organization

-
®e’ o 2
® 00
oo ®
¢ o
® oo
-
»
- C.
individuals

populations

particles collectives



Plan of the lectures

Microbial diversity: how is it quantified, species-symmetric models
for community assembly

. General dynamical properties of species-symmetric models,
ecology of non-equivalent species

. Community evolution under collective-level selection
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Microbial communities

They are the object of extensive exploration by high-throughput genomic techniques
They are essential for health, for ecosystem services and for maintaining biotic homeostasis

They can be (to a certain extent) maintained in the lab

~ 1027 cells on Earth, millions of ‘species’, many different kinds of interactions...

Is there anything general to be said about them?

What ecological processes matter in establishing their collective functions?



Microbial communities

water

A7\
<
>

4
Loi0io:

T 2]

o I | Qvayav.

Host-associated



Microbes are ‘unknown unknowns’
despite being vital to all life, says study

Understanding these tiny organisms could be crucial to tackling
threats such as coronavirus, but new research shows how little we
know
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Common features of microbial communities

Diversity
Microbial communities pervasively harbour a high genetic diversity
. Commonness of rarity

Most taxa are rare, few dominate the community

. Turnover

Species composition changes in time and in space



Relative abundance (%)

1. Diversity: the microbial ‘dark matter’
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2. Rarity and dominance
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Van Nes et al.
A tiny fraction of all species forms most of nature: Rarity as a sticky state
PNAS 2024



3. Temporal dynamics
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Van Nes et al.
A tiny fraction of all species forms most of nature: Rarity as a sticky state
PNAS 2024

Caporaso et al.

Moving pictures of the human microbiome
Genome Biol. (2011)



Marine plankton

~ 1% of photosynthetic biomass NASA (Chl, false colours)

~ 50% of primary production
~ 85% of pelagic biomass is unicellular



The Tara oceans expedition
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Sampling
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Enrico Ser-Giacomi
(CSIC, Mallorca, Spain)

ABUNDANCE
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Ser Giacomi et al.
Nature Ecology and Evolution (2018)
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: , Tara oceans’ protist sequences dataset:
— > ~100.000 different OTUs identified, few thousands per sample
> 388 samplesin 121 locations (4 size classes)

The distribution of rare plankton
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Fraction of species
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A semi-neutral model

{bn:bn—l—x

Birth & death rates do=dn+p

Negative binomial beta distribution:

I'(n+ a)'(1+ ) L~
I'(a)D(n+ B +1)

< Oy >=10

Engen 1978, He 2005
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DENSITY
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Quantifying variation of SADs
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Biogeographical information in 1% abundant OTUs

Beta diversity of dominant communities (Bray—Curtis distances)
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Ubiquitous abundance decay

exponent A
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Abundance decay is dominated by the power-law trend (~ 4 decades)
with exponent A =153 +0.08 (CV < 8%)



Abundance

The seed bank hypothesis

Resuscitation : : .
and growth Immlgratlon'..

Death

and dormancy Extinction

Abundant Rare
Rank

Nature Reviews | Microbiology

Lennon & Jones
Nature Reviews Microbiology (2011)



The seed bank hypothesis

Chloroplast(85%) .
P \ marine cold seep

\
Tenericutes(91%),

Desulfovibrionales(100%), \

Bacteroidales(94%) ™

Actinobacteria(98%)

Firmicutes(100%)

/ neritic epipelagic / mangrove neritic sub-littoral

Gibbons et al.
Evidence for a persistent microbial seed bank throughout the global ocean
PNAS (2011)



Modelling the dynamics of species-rich communities

Generalized Lotka-Volterra equations

interactions _immigration

S =it [ 10— Yyl | W 121,81
()

Same maximal net growth rate
and same intra-specific interactions

Vi:r=1

Emil Mallmin & Arne Traulsen
MPI for Evolutionary Biology, Plon



Modelling the dynamics of species-rich communities

Disordered Generalized Lotka-Volterra equations

interactions _immigration
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Ecological communities with Lotka-Volterra dynamics.
Phys. Rev. E (2017)



Modelling the dynamics of species-rich communities

Disordered Generalized Lotka-Volterra equations

Immigration

dx;(t .
%:r,x, (1x, Za,,x, A, i=1,..,8>1

strong pairwise species interactions

Elaj] = p

Var[a;] = 0

COI’I’[O&,‘/, Ozj,'] =v=0




Strong interactions
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Competition and competitive exclusion

Vol. XCV, No. 882 The American Naturalist May-June, 1961

THE PARADOX OF THE PLANKTON*

G. E. HUTCHINSON

Osborn Zoological Laboratory, New Haven, Connecticut

The problem that I wish to discuss in the present contribution is raised
by the very paradoxical situation of the plankton, particularly the phyto-
plankton, of relatively large bodies of water.

We know from laboratory experiments conducted by many workers over a
long period of time (summary in Provasoli and Pintner, 1960) that most mem-
bers of the phytoplankton are phototrophs, able to reproduce and build up
populations in inorganic media containing a source of CO,, inorganic nitro-
gen, sulphur, and phosphorus compounds and a considerable number of other
elements (Na, K, Mg, Ca, Si, Fe, Mn, B, Cl, Cu, Zn, Mo, Co and V) most of
which are required in small concentrations and not all of which are known to
be required by all groups. In addition, a number of species are known which
require one or more vitamins, namely thiamin, the cobalamines (B,, or re-
lated compounds), or biotin.

The problem that is presented by the phytoplankton is essentially how it
is possible for a number of species to coexist in a relatively isotropic or
unstructured environment all competing for the same sorts of materials. The
problem is particularly acute because there is adequate evidence from en-
richment experiments that natural waters, at least in the summer, present an
environment of striking nutrient deficiency, so that competition is likely to
be extremely severe.

According to the principle of competitive exclusion (Hardin, 1960) known
by many names and developed over a long period of time by many investi-
gators (see Rand, 1952; Udvardy, 1959; and Hardin, 1960, for historic re-
views), we should expect that one species alone would outcompete all the
others so that in a final equilibrium situation the assemblage would reduce
to a population of a single species.



Competition and diversity drive species turnover
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Competition and diversity drive species turnover

abundance
N
|
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At any time, the dominant community is ‘effectively’ low dimensional
Dominant guilds turn over unpredictably



Chaos is prevalent for intermediate
interaction strength and heterogeneity
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1.4

Species abundance distributions
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In the equilibrium phases, species abundance
distributions are either trivial (in the exclusion phases),
or resemble a truncated Gaussian distribution (in the
high-diversity, unique fixed point phase).

Akijui et al.

Complex systems in Ecology: A guided tour with large
Lotka-Volterra models and random matrices

arXiv

Barbier et al.

Generic assembly patterns in complex ecological communities
PNAS (2018)



nature

Chaos in a long-term experiment with a plankton

community

Elisa Beninca'?*, Jef Huisman'*, Reinhard Heerkloss®, Klaus D. J6hnk'+, Pedro Branco’, Egbert H. Van Nes?,

Out-of-equilibrium dynamics and biodiversity

Marten Scheffer” & Stephen P. Ellner*
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Biodiversity has both fascinated and puzzled biologists'. In aqua-
tic ecosystems, the biodiversity puzzle is particularly trouble-
some, and known as the ‘paradox of the plankton™. Competition
theory predicts that, at equilibrium, the number of coexisting
species cannot exceed the number of limiting resources® . For
phytoplankton, only a few resources are potentially limiting:
nitrogen, phosphorus, silicon, iron, light, inorganic carbon, and
sometimes a few trace metals or vitamins. However, in natural
waters dozens of phytoplankton species coexist’. Here we offer a
solution to the plankton paradox. First, we show that resource
competition models® '’ can generate oscillations and chaos when
species compete for three or more resources. Second, we show that
these oscillations and chaotic fluctuations in species abundances
allow the coexistence of many species on a handful of resources.
This model of planktonic biodiversity may be broadly applicable
to the biodiversity of many ecosystems.

A



Out-of-equilibrium (chaotic) dynamics in nature

Coastal plankton time-series*

C os6
mammals (16%) o 49,637 OTUs
birds (18%) §
bony fishes (29%) s
Insects (43%) ©
zooplankton (77%) E
phytoplankton (81%) i

210 220 230 240 250 260 270 280 290

Day
Rogers et al. Martin-Platero et al.
Chaos is not rare in natural ecosystems High resolution time series reveals cohesive but short-lived
Nature Ecology and Evolution (2022) communities in coastal plankton

Nature Communications (2018)



Single species have an intermittent dynamics
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Distributions ot species abundances

species

SAD: species abundance distribution (snapshot)

FAD: frequency abundance distribution
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Differences between species
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Effective "typical’ dynamics

'Focal species’ model

x(2) = x(2) (g(#) — x(2)) + 4

density

’
g(#) = —k+un(7) (M) =0, (O)n(t"))=e =0/
107 -
103 -
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Effective neutrality of the species’ dynamics



Community-level parameters and observables
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Power-law exponent
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Other single-species effective models

Other single-species models have been proposed to explain the behaviour of many-species
GLV equations or to fit observational data

1. Dynamical Mean Field Theory (DMFT)/cavity method

Guy Bunin, Giulio Biroli, Ada Altieri, Tobias Galla, Heyjin Park,
Matthieu Barbier

2. Stochastic Logistic Model (SLM)

Jacopo Grilli

Macroecological laws describe variation and diversity in microbial
dx. x; X; 0; o
— =11 —-—-—"2)+ —x-f.(t) communities
dt T; Ki T; P Nature Communications (2020)

(&()&;(t')) = 6;0(t — 1)

here, growth rate fluctuations are uncorrelated and the equations are solved close to the
equilibrium.



Dimensionality of the chaotic attractor

Kaplan-Yorke dimension

The chaotic attractor has generally small
dimension and a small effective community size

1
) = a0

that increases as interactions weaken

A small number of effective variables are
important to describe the community dynamics



Conclusions on unstructured communities

Strong competitive interactions drive
exclusion on a short time scale.

In the presence of weak immigration, the
community composition wanders between
low-dimensional ‘cliques’, and abundant and
rare species turn over.

This effectively neutral (species-symmetric)
behaviour underpins a power-law trend in the
rare species’ distribution

The effective dynamics of any species is well
approximated by a ‘focal species’ model with
a decay trend and correlated effective
fluctuations.

E. Mallmin, A. Traulsen, SDM
Chaotic turnover of rare and abundant species in a
strongly interacting model community

PNAS (2024)

© Adrienne Nowak

https://iscpif.fr/artex23-prize/



Kaplan-Yorke dimension

Scaling of attractor dimension
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The microbiome
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Microbial ‘species’ in the human gut

Phylum _ _ North ) South
B Actinobacteria CAfrica Asia B Europe M America [Oceania M America
[ Bacteroidetes
[ ] Cyanobacteria
B Firmicutes
[] Fusobacteria o
[ Proteobacteria -og ,,,,,,
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o e > 500] | 3@ 200
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i - zZ
® o non-North American samples 1 10 20 30
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Almeida et al.
A new genomic blueprint of the human gut microbiota
Nature 2019



Dominant species
|diosyncratic abundances

ABUNDANCE
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For every sample: Species Abundance Distribution
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Adaptive fit: distinguish rare and abundant
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A semi-neutral model

bp=bn+yx

Birth & death rates {dn: dn+u

Negative binomial beta distribution:

['(n+ a)l'(1+ ) L~

< fn >= QF(a)F(n +B+1)

Engen 1978, He 2005
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Fitting the distribution
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Fit the three parameters r «



Power-law exponent
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Negati.ve .binc.>mia| < by >= Qr(n + a)I'(1 + B) T o e
beta distribution: C(a)l'(n+ B +1)

Engen 1978, He 2005



How much do parameters differ?

372 out of 388 samples fitted by the negative binomial
beta distribution

® PICO
® NANO
® MICRO 7 The ‘rare’ component comprises more than 99% of OTUs
® MESO 9L
75 ‘Demographic’ parameters are different from site to site
24 Linear per capita birth comparable to death everywhere
.’“..::J L]
. u/d=0.39 + 1.1 x/b , , .
¥ 1/d = 059 + 1.12 y/b Density-dependent birth and death rates mostly positive
alk u/d = 0.61 +1.21 x/b
Vs u/d = 0.67 + 1.25 x/b o - L
Small but significant variation with size class: abundance
. 1' , ; decay is slower in smaller organisms

No systematic correlation with environmental variables



The role of transport in abundance distributions
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Villa-Martini et al.
Ocean currents promote rare species diversity in protists

Science Advances 2020
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Species abundance distributions
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In the chaotic phase, rank-
abundance plots change slightly in
time

Species abundance distributions at
any time largely overlap with the
frequency in time of abundance of
any single species (Abundance
Frequency Distribution).

= effective species equivalence



Focal-species model

An approximate, one-species model accounts for this "typical’ behaviour

x(t) = x(t) (g(t) — x()) + A
g(t) = —k +un(t)

provided fluctuations in growth rate are chosen as a coloured noise:
n) =0, HO)n(t))=elt=t'l/

and the parameters k, u, and t depend on the system’s parameters.



Estimating community-level parameters

Changing the interaction statistics 4 and ¢ therefore affects the features of the effective noise.

It is not possible to solve the equations self-consistently (as in DMFT), but the effective noise
parameters can be estimated starting from community-level observables derived from the time

series: the time-average of the total abundance and of the effective community size:

k=puX—1 Uu=0o X
Seff

T fit dist

i l

101 I

I 1 I

1 1 [

II 1 ) I

30 40

—e e

The time scale t corresponds to the
autocorrelation of total abundance, which also
sets the time scale of ecological turnover



Focal-species vs dGLV models

Compare the full system (deterministic, S-dimensional) and of the focal species model (stochastic,
one-dimensional)

! 103 == Disordered LV

% 5 == Stochastic model

= 10~ .

S5 . The focal species model can be
% 10

, : : : : solved in the limit where turnover

0 500 1000 1500 2000 time is small or large (unified
colours noise approximation), which
yields an analytical expression for

density

7 4
w0 _y the slope of the power-law trend
~ X
103 -
10-1 - I = Species avg. in disordered L ~— k
1 Stochastic focal-species model VY = 1 + _2
10-5 - i —-- coloured noise approximation U-T
1 l : : |
107° 1077 105 103 10~}

abundance
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Other single-species effective models

Other single-species models have been proposed to explain the behaviour of many-species
GLV equations or to fit observational data

1. Dynamical Mean Field Theory (DMFT)

2. Stochastic Logistic Model (SLM)

Jacopo Grilli

Macroecological laws describe variation and diversity in microbial
dx. x; X; 0; o
— =11 —-—-—"2)+ —x-f.(t) communities
dt T, Ki T; P Nature Communications (2020)

(&()&;(t')) = 6;0(t — 1)

here, growth rate fluctuations are uncorrelated and the equations are solved close to the
equilibrium.



