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Plan of the lectures

1. Microbial diversity: how is it quantified, species-symmetric models 
for community assembly

2. General dynamical properties of species-symmetric models, 
ecology of non-equivalent species

3. Community evolution under collective-level selection 



1. Quantifying and modelling diversity 
of (microbial) communities

©Christian SardetAussois, June 16, 2025



Microbial communities

They are the object of extensive exploration by high-throughput genomic techniques

They are essential for health, for ecosystem services and for maintaining biotic homeostasis

They can be (to a certain extent) maintained in the lab

~ 1029 cells on Earth, millions of ‘species’, many different kinds of interactions... 

Is there anything general to be said about them?

What ecological processes matter in establishing their collective functions?



Microbial communities

soil

water

Host-associated





Common features of microbial communities

1.   Diversity

      Microbial communities pervasively harbour a high genetic diversity

2.   Commonness of rarity

      Most taxa are rare, few dominate the community

3.   Turnover

      Species composition changes in time and in space



1. Diversity: the microbial ‘dark matter’

Lynch & Neufeld
Nature Reviews Microbiology (2015)



2. Rarity and dominance

PNAS  2024  Vol. 121  No. 2  e2221791120 https://doi.org/10.1073/pnas.2221791120   3 of 7

Response Diversity with Neutral Competition as an Explanation. 
The observation that a tiny fraction of the species dominate the 
biosphere, while such hyperdominant positions may occasionally be 
overtaken by previously rare species is puzzling. Could this hint at 
the way in which abundance and rarity are regulated across widely 
different communities including birds, trees, and gut bacteria? 
Thinking about potential explanations inevitably lead us back to 
a central but basically unresolved question in ecology: Does each 
species have a distinctive niche, or are many species functionally 
equivalent (31, 37–39)? The classical idea is that the unequal 
abundances of species reflect the size of the unique niche that they 
have been able to acquire over evolutionary history (40, 41). In 
this view, the explanation for the extraordinary dominance of some 
species is essentially their intrinsic superiority. A complementary 
view is that large groups of species may basically share a single 
niche and within this niche are close to neutral (equivalent) 
in competitive strength (31). Simple random walk- through 
demographic stochasticity may explain dominance in such neutral 
models of competition. However, such models fail to generate the 
pronounced fluctuations in population densities that are found in 
nature (29). This may be explained by the fact that this type of null 
models considers mortality and recruitment to be entirely random 
at the individual level. Such demographic stochasticity neglects the 
fact that, even if there is functional equivalence when it comes to 
resource use, species will tend to differ in their responses to various 
stressors. Such “response diversity” [sensu (42)] should cause the 
effect of environmental fluctuations and natural enemies to be 
more correlated for individuals within species than between species 
(29, 43, 44). Indeed, models with an interplay of environmental 
randomness with competition that is “symmetric” or “time- averaged 

neutral” have been studied extensively, demonstrating that such 
an interplay of forces can generate realistically looking species 
abundance distributions (43, 45–47).

Rarity as a Sticky State. To explore a more mechanistically how 
an interplay between neutral competition and environmental 
fluctuations might cause the vast majority of species to be rare, we 
use a simple model (Material and Methods). To see the forces at play, 
we start with only two species (Fig. 2). The two species are entirely 
neutral competitors, implying that in the deterministic case (σ = 
0), simulations will end up with a neutrally stable mix in which 
their summed abundances match the carrying capacity (a point on 
their identical zero- growth isoclines). The eye- opener comes if we 
add the fluctuating environment (σ > 0). Rather than generating a 
continuous distribution of states, this simple system ends up with 
one species being very rare most of the time (Fig. 2A). Since two 
species share one environment, rarity of one species implies that 
the other is close to carrying capacity. The key to understanding 
why the system dwells most of the time in either of the extreme 
states is that in the vicinity of these two alternative “winner- takes- all” 
situations, rates of change of the rarest species are very slow (Fig. 2B). 
As a result, the system will spend relatively more time in such slow 
places, and the stochastic potential landscape (19) computed from 
the probability density reveals alternative pseudo attractors (19). 
The system behaves as if there were two alternative stable states, 
even though both species are entirely equivalent. Expanding this 
to more species, the behavior remains qualitatively similar, except 
that only one species tends to be dominant at any time while the 
rest is rare. Thus, for each of the (equivalent) species, the chances of 
being dominant shrink and the well in the stochastical potential of 
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Fig. 1. Patterns of dominance across natural communities. (A) The fraction of species needed to account for 50% of the total individuals across communities as 
a function of the total number of species in the community. Each dot represents one community. (B) Frequency distribution (mean 0.039) across communities 
of the fraction accounting for 50% of the counts for communities with more than 20 species. (C) An example of fluctuations in dominance for a community of 
gut bacteria based on data from the male subject reported in ref. 22 (slightly smoothed using a Gaussian filter with a bw of 2/365 year; we excluded Bacteroides 
that was very dominant).
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3. Temporal dynamics

PNAS  2024  Vol. 121  No. 2  e2221791120 https://doi.org/10.1073/pnas.2221791120   3 of 7

Response Diversity with Neutral Competition as an Explanation. 
The observation that a tiny fraction of the species dominate the 
biosphere, while such hyperdominant positions may occasionally be 
overtaken by previously rare species is puzzling. Could this hint at 
the way in which abundance and rarity are regulated across widely 
different communities including birds, trees, and gut bacteria? 
Thinking about potential explanations inevitably lead us back to 
a central but basically unresolved question in ecology: Does each 
species have a distinctive niche, or are many species functionally 
equivalent (31, 37–39)? The classical idea is that the unequal 
abundances of species reflect the size of the unique niche that they 
have been able to acquire over evolutionary history (40, 41). In 
this view, the explanation for the extraordinary dominance of some 
species is essentially their intrinsic superiority. A complementary 
view is that large groups of species may basically share a single 
niche and within this niche are close to neutral (equivalent) 
in competitive strength (31). Simple random walk- through 
demographic stochasticity may explain dominance in such neutral 
models of competition. However, such models fail to generate the 
pronounced fluctuations in population densities that are found in 
nature (29). This may be explained by the fact that this type of null 
models considers mortality and recruitment to be entirely random 
at the individual level. Such demographic stochasticity neglects the 
fact that, even if there is functional equivalence when it comes to 
resource use, species will tend to differ in their responses to various 
stressors. Such “response diversity” [sensu (42)] should cause the 
effect of environmental fluctuations and natural enemies to be 
more correlated for individuals within species than between species 
(29, 43, 44). Indeed, models with an interplay of environmental 
randomness with competition that is “symmetric” or “time- averaged 

neutral” have been studied extensively, demonstrating that such 
an interplay of forces can generate realistically looking species 
abundance distributions (43, 45–47).

Rarity as a Sticky State. To explore a more mechanistically how 
an interplay between neutral competition and environmental 
fluctuations might cause the vast majority of species to be rare, we 
use a simple model (Material and Methods). To see the forces at play, 
we start with only two species (Fig. 2). The two species are entirely 
neutral competitors, implying that in the deterministic case (σ = 
0), simulations will end up with a neutrally stable mix in which 
their summed abundances match the carrying capacity (a point on 
their identical zero- growth isoclines). The eye- opener comes if we 
add the fluctuating environment (σ > 0). Rather than generating a 
continuous distribution of states, this simple system ends up with 
one species being very rare most of the time (Fig. 2A). Since two 
species share one environment, rarity of one species implies that 
the other is close to carrying capacity. The key to understanding 
why the system dwells most of the time in either of the extreme 
states is that in the vicinity of these two alternative “winner- takes- all” 
situations, rates of change of the rarest species are very slow (Fig. 2B). 
As a result, the system will spend relatively more time in such slow 
places, and the stochastic potential landscape (19) computed from 
the probability density reveals alternative pseudo attractors (19). 
The system behaves as if there were two alternative stable states, 
even though both species are entirely equivalent. Expanding this 
to more species, the behavior remains qualitatively similar, except 
that only one species tends to be dominant at any time while the 
rest is rare. Thus, for each of the (equivalent) species, the chances of 
being dominant shrink and the well in the stochastical potential of 

A

32 32.2 32.4 32.6 32.8 33
0

200

400

600

800

Age(yr)

D
en

si
ty

C

B

10 100 1000
0

0.1

0.2

0.3

Number of species

fra
ct

. s
pe

ci
es

 w
ith

 5
0%

 o
f t

ot
al

 

Bacteria
Fish
Fungi
Herbs
Invertebrates
Mammals
Phytoplankton
Trees

0 0.05 0.1 0.15 0.2
0

40

80

120

fract. species with 50% of total

Fr
eq

ue
nc

y

Fig. 1. Patterns of dominance across natural communities. (A) The fraction of species needed to account for 50% of the total individuals across communities as 
a function of the total number of species in the community. Each dot represents one community. (B) Frequency distribution (mean 0.039) across communities 
of the fraction accounting for 50% of the counts for communities with more than 20 species. (C) An example of fluctuations in dominance for a community of 
gut bacteria based on data from the male subject reported in ref. 22 (slightly smoothed using a Gaussian filter with a bw of 2/365 year; we excluded Bacteroides 
that was very dominant).
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Caporaso et al.
Moving pictures of the human microbiome
Genome Biol. (2011)



Marine plankton

NASA (Chl, false colours)~ 1% of photosynthetic biomass
~ 50% of primary production
~ 85% of pelagic biomass is unicellular



The Tara oceans expedition



Sampling



Protist (unicellular eukaryotes) diversity

De Vargas, Audic, Henry, et al.
Eukaryotic plankton diversity in the sunlit global ocean
Science 2015



The distribution of rare plankton
Tara oceans’ protist sequences dataset:
Ø ~100.000 different OTUs identified, few thousands per sample
Ø  388 samples in 121 locations (4 size classes)Enrico Ser-Giacomi

(CSIC, Mallorca, Spain)
Lucie Zinger

(IBENS, Toulouse)

Ser Giacomi et al.
Nature Ecology and Evolution (2018)
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A semi-neutral model

Negative binomial beta distribution:

Birth & death rates

𝛼 =
χ
𝑏 β =

µ
𝑑

Engen 1978, He 2005



𝛼, 𝛽

𝜆 = 1 − 𝛼 +𝛽

𝑟

∼

Quantifying variation of SADs



Biogeographical information in 1% abundant OTUs



Ubiquitous abundance decay

Abundance decay is dominated by the power-law trend (~ 4 decades) 
with exponent             𝜆 = 1.53 ± 0.08  (CV < 8%)



The seed bank hypothesis

Lennon & Jones
Nature Reviews Microbiology (2011)



Gibbons et al.
Evidence for a persistent microbial seed bank throughout the global ocean
PNAS (2011)

were combined and aligned against theGreengenes core setwith PyNAST (27).
All OTUs whose representative sequences failed to align were discarded. Two
different phylogenetic treeswere used in these analyses: one for open-reference
OTU picking, and one for closed-reference OTU picking. The open-reference
out-picking tree is generated by aligning OTU representative sequences (i.e.,
cluster centroids) with PyNAST against the Greengenes core set (version:
February 2011) (27, 28), filtering highly variable positions as defined by posi-
tions with a 1 in the corresponding “lanemask” (29), and building a tree using
FastTree 2.1.3 with default parameters (30). This is the standard workflow
in place in pick_subsampled_reference_otus_through_otu_table.py in QIIME
1.5.0-dev. The closed-reference OTU picking tree is the Greengenes tree,
pruned to contain only tips corresponding to OTU representative sequences
(i.e., cluster centroids) in the 4feb2011 97% OTU reference collection. The
construction of this tree is described in McDonald et al. (26) (see below).
Briefly, the Greengenes tree (February 2011) was built from quality-filtered
(26), full-length 16S rRNA sequences (97%-similar OTUs), using FastTree v2.1.1
with a maximum likelihood method [CAT (short for CATegorization) approxi-
mation, with branch lengths rescaled using a gamma model] (30). Taxonomy
was assigned to each sequence using the Ribosomal Database Project classifier

(31) retrained on Greengenes. All eukaryotic and archaeal OTUs (i.e., those
not classified as k_Bacteria) were filtered out of the OTU table, because the
goal of this study was to focus on the composition of the bacteria community,
leaving 356 ICoMM samples (∼8 million reads total, after quality control) and
the L4-DeepSeq sample (∼10 million reads, after quality control). Singleton
OTUs were filtered out of the L4-DeepSeq sample, as were ICoMM OTUs that
appeared in only a single sample, to reduce further the noise caused by PCR or
sequencing error. Note that a two-study heuristic was applied to the ICoMM
samples, meaning that each OTU must appear in at least two samples to be
included in downstream analysis, but for the L4-DeepSeq sample only a two-
observation heuristic was applied, meaning that each OTU must be observed
at least two times, but both of those observations can be in the same sample
(See Table S2 for overlap values resulting from a two-observation heuristic
applied to all the data). Our reasoning is that we expect to see many more
reads of truly rare organisms in the L4-DeepSeq sample because of the
greater sequencing depth, so imposing a two-sample heuristic against sam-
ples with much lower sequencing depth would result in the filtering of real
OTUs. This approach results in conservative (i.e., low) estimates of the frac-
tions of ICoMM OTUs observed in L4-DeepSeq. See Datasets S1 and S2 for

Fig. 3. Biome-specific community clustering and phylogenetic differences between biomes and the L4-DeepSeq sample. The network in the center of the
figure was constructed in Cytoscape, using the BioLayout format (edge-weighted, force-directed). To reduce the complexity of the network, only OTUs that
appear more than 500 times in the OTU table were included. Nodes and edge colors represent biome type (see Figs. S4 and S5). OTUs are represented as
invisible points at the fringes of the plot (i.e., at the termini of the edges). Each OTU is connected to the samples in which it appears via an edge (colored
according to the biome to which the sample belongs). The white-colored node at the center of the network represents the L4-DeepSeq sample. All edges
connected to the L4-DeepSeq sample also are colored white to allow visualization of overlap with other biomes. The phylogenetic tree in the upper left
corner of the plot shows taxa that are unique to particular environments (i.e., that are not present in the L4-DeepSeq sample; the wedge area is proportional
to abundance). Smaller trees highlight individual biomes (only taxa contributed from that biome are shown in color, and the remaining branches of the tree
are shown in white). The larger tree serves as the key for the smaller identical trees, displaying the names of each lineage. A high-resolution version of this
figure is available in Fig. S3 (see Figs. S4 and S5 for keys).

4654 | www.pnas.org/cgi/doi/10.1073/pnas.1217767110 Gibbons et al.
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The seed bank hypothesis



Modelling the dynamics of species-rich communities

Generalized Lotka-Volterra equations

immigration

Same maximal net growth rate
and same intra-specific interactions

interactions

Emil Mallmin & Arne Traulsen
MPI for Evolutionary Biology, Plön



Modelling the dynamics of species-rich communities

Disordered Generalized Lotka-Volterra equations

immigration

G Bunin
Ecological communities with Lotka-Volterra dynamics. 
Phys. Rev. E (2017)

interactions



Modelling the dynamics of species-rich communities

Disordered Generalized Lotka-Volterra equations

immigration

strong pairwise species interactions



Strong interactions

100% competition

27% competition
50% exploitation
23% mutualism

70% competition
27% exploitation

3% mutualism



Competition and competitive exclusion



Competition and diversity drive species turnover
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Competition and diversity drive species turnover

simulation time

ab
un

da
nc

e
is a realization of a random variable ⇠ N (0, 1). A finite net
competition in the limit of a large species pool requires:

� =
�̃
S
, �2 =

�̃2

S
, [5]

where �̃, �̃ do not grow with S. Under this scaling, methods from
statistical physics [dynamical mean-field theory (34, 39–41),
random matrix theory (32, 42), and replica theory (43, 44)]
allow exact analytical results in the limit of S ! 1, although
in practice S ⇠ 100 is sufficient for good agreement between
theory and simulations. Sharp boundaries were shown to separate
a region where species coexist at a unique equilibrium and
one with multiple attractors, including chaotic steady states
(34, 39–41).

Since we are here interested in the scenario of large differences
in species abundance (rare biosphere pattern) and rapid turnover
dynamics, we instead consider the strong-interaction regime
where the statistics of the interaction matrix do not scale with
species richness S according to Eq. 5. For S� � 1, the
overall competitive pressure makes it impossible for all species
to simultaneously attain abundances close to their carrying
capacities. Abundant species tend to exclude one another,
resulting in instability and complex community dynamics.
Arguably, strong interactions are more plausible than weak ones
for microbial communities, where metabolic cross-feeding, toxin
release, phagotrophy, and competition over limited nutrients
lead species to depend substantially on one another’s presence
(45, 46).

2. Results
In the strong-interaction regime, numerical simulations of the
disordered Lotka–Volterra model show that the community can
display several different classes of dynamics, from equilibrium
coexistence of a small subset of species, to different kinds of
oscillations, including chaos. In Sections 2.1–2.4, we focus on
the reference value of the interaction statistics (� = 0.5, � = 0.3)
representative of chaotic dynamics, and describe its salient
features. In Subsections 2.5–2.6, we describe how the dynamics
depends qualitatively on the statistical parameters� and�. Unless
otherwise stated, simulations use S = 500 and � = 10�8.
Further details on the numerical implementation are presented
in section 4.1.

2.1. A Chaotic Turnover of Rare and Abundant Species. For a
broad range of parameters in the strong-interaction regime, the
community undergoes a chaotic turnover of dominant species.
As illustrated by the time series of stacked abundances in Fig. 1A,
the overwhelming share of the total abundance at any given time
is due to just a few species. Which species are abundant and
which are rare changes on a characteristic timescale, ⌧dom ⇡ 30
time units, comparable to the time it would take an isolated
species to attain an abundance on the order of its carrying
capacity starting from the lowest abundance set by immigration.
While the total abundance fluctuates moderately around a well-
defined time average, individual species follow a “boom-bust”
dynamics. If this simulation represented a natural microbial
community, only the most abundant species—that we call the
dominant component of the community—would be detectable
by morphological inspection or shallow sequencing.

We wish to characterize the dominant component and
understand how it relates to the pool of rarer species. In order to

A

B

Fig. 1. Turnover of the dominant component. (A) The stacked abundances
of all species under steady-state conditions: There is a turnover of species
such that only the dominant component is visible at any given time (each
species has a distinct random color). (B) Bray–Curtis index of community
composition similarity between the dominant component of the community
at time t, and the composition if it were isolated from the rare species
and allowed to reach equilibrium: The community appears to approach the
composition of few-species equilibria before being destabilized by invasion
from the pool of rare species.

quantify the notion of dominance, we define the effective size of
the community as Simpson’s (reciprocal) diversity index (47),

Seff(t) :=
1

P
i p

2
i (t)

, [6]

where pi = xi/
P

j xj denote relative abundances. Seff approaches
its lowest possible value of 1 when a single species is responsible
for most of the total abundance, and its maximum S when
all species have similar abundances. Its integer approximation
provides the richness, i.e. , number of distinct species, of the
dominant component.

The effective size Seff of the community in our reference
simulation fluctuates around an average of nine dominant
species, which make up 90% of the total abundance. The
relative abundance threshold for a species to be in the dominant
component fluctuates around 3%, which is comparable to
the arbitrary 1%-threshold used in empirical studies (48). In
SI Appendix, Fig. S4, we show that the number of dominant
species grows slowly (but super-logarithmically) with S, up to
about 15 for S = 104. Thus, strong interactions limit the size
of the dominant component, and the vast majority of species are
rare at any point in time.

The turnover of dominant species is not periodic; indeed,
even over a large time-window, where every species is found on
multiple occasions to be part of the dominant component, its
composition never closely repeats (SI Appendix, Fig. S3). This
aperiodicity suggests the presence of chaotic dynamics. We give
numerical evidence for sensitive dependence on initial condition
and positive maximal Lyapunov exponent in SI Appendix, Figs.
S1 and S2. The turnover dynamics has the character of moving,
chaotically, between different quasi-equilibria corresponding to
different compositions of the dominant community [cf. “chaotic
itinerancy” (49)]. To reveal this pattern, we measure a “closeness-
to-equilibrium,” defined as the similarity in composition between
the observed dominant component at a given time, and the
equilibrium that this dominant component would converge to
if it were isolated from the rare component and allowed to

PNAS 2024 Vol. 121 No. 11 e2312822121 https://doi.org/10.1073/pnas.2312822121 3 of 12
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Chaos is prevalent for intermediate 
interaction strength and heterogeneity

Fig. 5. Dynamical phases of the disordered Lotka–Volterra model as a
function of the interaction mean and SD. Color indicates the probability
of persistent chaos in long-time simulations: For each � and � (with 0.01
increment), 30 simulations were made, each with a di�erent random initial
condition xi ⇠ U(�,2/S) and realization of the interaction matrix. Parameters
yielding divergence every time are marked with gray. The boundary separat-
ing the chaotic phase from the rest of the multiple-attractor phase (in which
cycles and multi-stable fixed point are common in addition to chaos) is not
sharp, unless probed adiabatically in the way explained in SI Appendix, Fig.
S8. The unique fixed point phase has been studied analytically in the weak-
interaction regime (� ⇠ 1/S). When inter-specific competition is in general
stronger than intra-specific competition, a single species (identity depending
on initial condition) dominates, in line with the classical competitive exclusion
principle (59).

regime (whether in the equilibrium or chaotic phase) allows for
high diversity, so X and Seff are of order S; strong interactions, on
the other hand, imply lowdiversity, with Seff andX of order unity.
An explicit expression for how these community-level observables
depend on the ecological parameters (S,�, �, �) is intractable
although implicit formulas exist in the weak-interaction regime
(34). Nonetheless, an approximate formula that we derive in
section 4.3 allows to relate community-level observables to one
another and to � and �:

X ⇡

� +

1 � �
Seff

� �⇢
��1

, [11]

in which we introduce the collective correlation

⇢ := �
X

ij
zijpipj, [12]

involving the time-averaged product of relative abundances
weighted by their normalized interaction coefficient Eq. 4. By
construction, the collective correlation is close to zero when all
species abundances are uncorrelated over long times, as would
follow from weak interactions. On the contrary, it is positive
when pairs of species with interactions less competitive than the
average tend to co-occur, and/or those with more competitive
interactions tend to exclude one another.

Eq. 11 is particularly useful in understanding the role of
correlations in the chaotic phase. As we observed in Subsection
2.3, the effective parameter k = �X �1 is positive in the chaotic
phase, implying that the growth rate of a species is typically
negative, and abundances are therefore typically on the order of

the small immigration rate rather than near carrying capacity.
The existence of these two “poles” of abundance values is key
to boom-bust dynamics. By combining k > 0 with Eq. 11, we
estimate a minimum, critical value of the collective correlation
required for boom-bust dynamics:

⇢c =
1 � �
�

1
Seff

. [13]

Numerical simulations demonstrate that ⇢ ¿ ⇢c in the chaotic
phase, where the critical value is approached at the boundary
with the unique-equilibrium phase (SI Appendix, Fig. S11). With
this result in hand, Eqs. 11 and 13 establish that X ¿ 1/�
in the chaotic phase. For strong interactions, total abundances
are predicted to be of order one, and for weak interactions
X ⇡ S/�̃ (recall Eq. 5), which recovers the observed scalings
of these observables. As one moves deeper into the chaotic phase,
the collective correlation increases continuously, as the effective
community size drops, suggesting a seamless transition from a
weak-interaction, chaotic regime amenable to exact treatment
(41, 60), to the strongly correlated regime that we have analyzed
by simulations and the approximate focal-species model.

2.6. Self-Organization between Community-Level Observables
Constrains Abundance Power-LawVariation. In Subsection 2.3,
we established a focal-species model depending on the effective
parameters k, u, and ⌧, that were related to the ecological
parameters S,�, �, � indirectly via community-level observables
X , Seff, ⌧dom. Furthermore, in the previous section, we studied
how the latter vary in the chaotic phase. Putting these results
together, we here examine the corresponding variation of the
effective parameters and of the focal-species model’s predictions.

Because the trio k, u, ⌧ ultimately derives from only two
independent variables, �, � (considering fixed S, �), they must be
dependent. Fig. 6A demonstrates that, across the chaotic phase,
an approximate linear relationship holds between k and u, as well
as between u and ⌧. Because k and u are related to the mean
and the variance of abundances via Eq. 9, their proportionality is
reminiscent of the empirical Taylor’s law which posits a power-
law relation between abundance mean and variance as they vary
across samples (61). The slope of the relationship of u to k is close
to one (and varying little with S and �; SI Appendix, Fig. S10),
which implies with Eq. 9 that:

X ⇡
"

� � �
p
Se

#�1

. [14]

Comparison to Eq. 11 then yields that ⇢ � ⇢c ⇡ Seff�1/2.
This empirical relationship thus supports the aforementioned
convergence—in the limit where Seff is large, as for weak
interactions—of the collective correlation to its critical value.

We find in Fig. 6 that the slope ⌫foc of the power-law trend
obtained from simulation of the focal-species model finds good
agreement with the value ⌫ from the full dLV model. There
is a narrow overall variation of the exponent, a consequence
of the interdependency of the effective parameters. As can be
intuited by the approximate expression Eq. 10 for the focal-
species model, the exponent is strictly larger than 1, a value it
approaches if the turnover time scale diverges, as indeed it does
on the boundary to the unique equilibrium phase. The exponent
increases as interactions become more competitive, up to about
1.4 at (�, �) = (1, 0). However, the exponent also depends on
S and �, showing a constant slope against log S or �1/ log �
(SI Appendix, Fig. S7).
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SI: Chaotic turnover ... in a strongly interacting model community 6 S1 SUPPLEMENTARY FIGURES

Figure S8: Phase diagram form adiabatic simulations. Adiabatic simulations allow to track, in a numerically e�cient fashion, the
attractors of the dynamics as model parameters are changed slowly and continuously. To make the interaction statistics � and � continuous
parameters of themodel, we use as interactionmatrix ���(�,�) = �+���� where � is a single, �xed realization of a standard Gaussian random
matrix. A For each value of �, we initialized separate simulation runs starting at � = 1.4, and let their abundances evolve until an attractor
was found. For each run, we then changed� by small increments �� = �0.1, allowing enough time between each change for the abundances
to relax from their previous state. This relaxation would either result in a small perturbation of the previous attractor, or instigate a jump
to a di�erent attractor. If a state diverged, the initial abundances for the next value of � were set as the most recent non-divergent attractor.
Thus, each simulation traced a sequence of attractors from � = 1.4 � �0.1, corresponding to a horizontal line in the phase diagram. The
colour quality re�ects the class of the attractor, and the colour gradation indicates the e�ective community size, revealing the following
features: First, we �nd mostly �xed points in the multiple attractor region. This is because, once a �xed point is converged to, it is “hold on
to” until it vanishes or changes stability. If, instead, every simulation at given �,� would start from newly sampled initial abundances and
interactionmatrix, we would �nd di�erent attractors every time, and the diagram becomes more heterogeneous (compareMain Text Figure
5). Second, clear lines radiate from (�,�) = (1, 0) and delineate sectors characterized by the number of high-abundance species coexisting
at a �xed-point. In section S4 we show that an invasion analysis predicts such sectors, but not the right scaling of the lines’ slope with �e�.
Third, the jump from �xed-point to chaotic attractors occurs along a sharply de�ned line. B Stacked abundances of the attractor found in
an adiabatic sequence � = 1.4 � 0.6 (top panel, right to left) and the reverse 0.6 � 1.4 (bottom panel, left to right) at � = 0.3. One can
see sudden jumps to new equilibria involving more (or less) species. In the upper panel, reading right to left, a three-species equilibrium is
found at � = 1.15, which jumps to a 6-species equilibrium by the invasion of three more species at � = 1.11; another two species displace
one of the previous at � = 0.9; and at � = 0.72 a sudden jump onto a chaotic attractor occurs. Reversing the adiabatic protocol, the transition
from chaos to �xed point occurs only at � = 0.81, and the sequence of equilibria is not identical to the forward direction (hysteresis). A
systematic investigation of the multiple attractor phase and the transition to the chaotic phase is left for future work.
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Species abundance distributions

In the equilibrium phases, species abundance 
distributions are either trivial (in the exclusion phases), 
or resemble a truncated Gaussian distribution (in the 
high-diversity, unique fixed point phase). 

𝜇 18 AKJOUJ ET AL.

(a) Gaussian entries. (b) Uniform entries.

Figure 5. Distribution of surviving species. The solid line rep-
resents the theoretical distribution f

⇤ as given by Heuristics 3.2.
The histogram is built by solving the LCP problem with an in-
teraction matrix of size n = 2000. In plot (A), the entries are
Gaussian N (0, 1) and the interaction strength is fixed to ↵ = 2. In
plot (B), the entries are uniform U([�

p
3,
p
3]) which implies that

the entries are centered with variance one, and the parameter is
set to ↵ =

p
3.

3.5.2. Single species distribution. The previous heuristics provides an estimation of
the proportion of surviving species p⇤(↵). We go here one step further and describe
the distribution of a given abundance x

⇤
i where index i corresponds to a surviving

species.

Heuristics 3.2. Let ↵ 2

⇣p
2,
p

2 log(N)
⌘
and let i 2 S, i.e. i corresponds to a

surviving species. Let p⇤,m⇤ be the solutions of (19) and (20) and Z ⇠ N (0, 1) a
Gaussian random variable. Then the distribution of x⇤

i is a truncated Gaussian:

L(x⇤
i ) = L

✓
1 +

m
⇤p

p⇤

↵
Z

���� Z > �
↵

m⇤pp⇤

◆
.

Otherwise stated, x⇤
i admits the following density:

f
⇤(v) =

1(v>0)

�(��)

�
p
2⇡

exp

✓
�
�
2(v � 1)2

2

◆
where � =

↵

m⇤pp⇤

and � stands for the cumulative Gaussian distribution.

The matching between the theoretical density f
⇤ given in Heuristics 3.2 and a

histogram of a given equilibrium x⇤ is illustrated in Figure 5. In particular, the
theoretical distribution matches, even with non-Gaussian entries (see Fig. 5b).

3.5.3. Interactions between survivors. When only a fraction of species survive in
the unique LCP equilibrium, one can also ask how the interactions restricted to the
survivors are modified. Mathematically, this boils down to consider the submatrix
(�ij)i,j2S . Of course, the lines and columns that are selected depend on the initial
realisation of the matrix � and it is not an easy task to predict the new statistical
features of the entries. Nevertheless, heuristics for these quantities have been given
in [Bun16], using the cavity method. These authors have obtained general formulas
for the model (9) that can be found in [Bun16], but for the sake of simplicity, we
present it here in the case ⇠ = 0.
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Distributions of species abundances

SAD: species abundance distribution (snapshot)

FAD: frequency abundance distribution

[short title] [draft]

Figure 5: Variation in the shape of abundance distributions across simulated communities with varying base parameters. A An example
times series (top) with the corresponding data matrix (middle). Di�erent abundance distributions (bottom) can be constructed from this data: the
‘snapshot’ species abundance distribution (SAD, blue histogram); the frequency abundance distribution (FAD, pink symbols) for one arbitrary species.
The black line denotes the predicted stationary distribution Eq. (54a) of the focal species model, parameterized with ��e�, ��e� as per the statistics of� in the simulation. Three key features of the distributions are highlighted in dark blue: the number of decades� spanned by the SAD; the modal
abundance class ��; and the downward slope of the power-law section, as de�ned by the formula Eq. (20). B Variation of the highlighted features along
the Exclusion–Stabilization and Exclusion–Bu�ering axes. Each point represents one simulation. Parameters are sampled (log-)uniformly to vary over
orders of magnitude: � � [100, 1000], log10 � � [�4, 2], log10 � � [�2, 2], log10 � � [�2, 2], log10 � � [�10, 4]. Units are adapted so that � = 1 and
�� = 1. E�ective parameters appear to capture most of the shape variation, which is also reproduced by the focal species stochastic model. The goodness
of �t of �(�) with the species-averaged FAD (from 0 (no match) to 1 (perfect match)) is measured by (one minus) the Kolmogorov-Smirnov distance
of the distributions: 1 � sup� ���(�) � �FAD(�)�. The predicted exponent is shown in colour only for simulations where the �t was � 85% accurate
and the distribution with was at least two decades (� � 2). Note that colour scale for the exponent is capped in the range [0, 2], so that all negative
values appear in the same color (dark purple). C Examples of typical shapes of the abundance distributions. The species-averaged FAD is plotted for
the 10 simulations whose parameters put them closest in the EB/ES plane to the four points labelled EE, ES, BE, BS in B (the two letters signifying the
dominant end of the two axes). Di�erences in line colour are only a guide for the eye.

with cut-o�s at low and high abundance set by immigra-
tion and self-suppression, respectively (abundances cannot
be smaller than� � and larger than� 1��); seeAppendixH.
There, we also give an approximate solution for �nite �e�,
Eq. (54a), which has modi�ed cut-o�s but the same power
law section compared to Eq. (19). Note that � can be both
larger and smaller than one, depending on the sign of ��e�.
How the shape of the distribution depends on the base pa-

rameters (i.e.�, ��,� = ����, �, �, �, �) is not fully clear from
the focal-species model, as they enter indirectly in the e�ec-
tive rates ��e�, �e� and the three relevant parameter combi-
nations ��e���e�, ���e�, ���e� that appear in Eq. (19). Going
back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
binations, that capture the relative proportions of exclusion
rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):

�� = �
�� , �� = ��

�� ,
��tot =

��
��� . (21)

We compare these by two log-ratios (that fully determine the
third one): log( ��� ��) and log( ��tot� ��), that we call Exclusion–
Stabilization (ES), and Exclusion–Bu�ering (EB), respec-
tively.
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with cut-o�s at low and high abundance set by immigra-
tion and self-suppression, respectively (abundances cannot
be smaller than� � and larger than� 1��); seeAppendixH.
There, we also give an approximate solution for �nite �e�,
Eq. (54a), which has modi�ed cut-o�s but the same power
law section compared to Eq. (19). Note that � can be both
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How the shape of the distribution depends on the base pa-

rameters (i.e.�, ��,� = ����, �, �, �, �) is not fully clear from
the focal-species model, as they enter indirectly in the e�ec-
tive rates ��e�, �e� and the three relevant parameter combi-
nations ��e���e�, ���e�, ���e� that appear in Eq. (19). Going
back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
binations, that capture the relative proportions of exclusion
rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):
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��� . (21)

We compare these by two log-ratios (that fully determine the
third one): log( ��� ��) and log( ��tot� ��), that we call Exclusion–
Stabilization (ES), and Exclusion–Bu�ering (EB), respec-
tively.
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Power-law abundance distributions

Chaotic turnover ... in a strongly interacting model community Mallmin, Traulsen, De Monte (2023)

Figure 2: Statistical features of abundance variations across species
and in time. A Snapshot rank-abundance plot for the relative abundances
in the reference simulation: most species have orders ofmagnitude smaller
abundances than the top ranks. Di�erent lines represent observations at
well-separated time points. B Species abundance distribution (SAD, blue
histogram) corresponding to the blue rank-abundance plot; overlaid, abun-
dance �uctuation distribution (AFD), averaged over all species (black line)
with ± one standard deviation across species shaded in grey: the snapshot
SAD appears to be a subsampling of the average AFD, indicating an equiv-
alence, but de-synchronization, of species in their abundance �uctuations.
The one bar missing from the SAD is the e�ect of �nite species richness,
as high-abundance bins only ever contain a couple of species for � = 500.
The vertical dashed line indicates the immigration level which determines
a lower limit to abundances.

placement of single species from one bin to another. Sec-
ond, every species �uctuates in time between extreme rar-
ity (� � � = 10�8) and high abundance (� � 10�1). This
variation is comparable to that observed, at any given time,
between the most abundant and the rarest species. Third,
species are largely equivalent with respect to the spectrum
of�uctuations in time, as indicated by the small variation in
AFDs across species. We will evaluate the regularities and
di�erences of single-species dynamics more thoroughly in
Section 3.4.
Themost striking feature of these distributions, however,

is the power-law ��� traced for intermediate abundances.
This range is bounded at low abundances by the immigra-
tion rate and at high abundances by the single-species car-
rying capacity. The power-law exponent is � � 1.18 for the
simulation analysed, but it varies in general with the eco-
logical parameters, as we discuss further in the following
sections.
The regularity of the abundance distributions across

species suggests that it may be possible to describe the dy-
namics of a ‘typical’ species in a compact way—this is the
goal of the next section.

3.3 A stochastic focal-speciesmodel reproduces boom-bust
dynamics

Fluctuating abundance time series are often �tted by one-
dimensional stochastic models [6]; for example, stochas-
tic logistic growth has been found to capture the statis-

Figure 3: Comparison of the stochastic focal-species model and the
chaotic dLV model. A Time series of one arbitrary species in the dis-
ordered Lotka-Volterra (dLV) model (blue), and one realization of the
stochastic focal-species model (Eq. (7)) with parameters as in Eq. (9): the
time series are statistically similar. B Comparison of the average abun-
dance�uctuation distribution (AFD) fromFigure 2 (black), and theAFDof
the focal-speciesmodel (pink): excellent agreement is found for the power-
law section. The ‘uni�ed coloured noise approximation’ solution for the
focal-species model’s AFD (dashed, pink line) predicts the correct overall
shape of the distribution, but not a quantitatively accurate value for the
power-law exponent.

tics of �uctuations in a variety of data sets on microbial
abundances [54, 55]. The noise term encapsulates varia-
tions in a species’ growth rate whose origin may not be
known explicitly. In our virtual Lotka-Volterra community,
once the interaction matrix and initial abundances have
been�xed, there is no uncertainty; nonetheless, the chaotic,
high-dimensional dynamics results in species’ growth rates
�uctuating in a seemingly random fashion. We are there-
fore led to formulate a model for a single, focal species, for
which explicit interactions are replaced by stochastic noise.
Because we have found species to be statistically similar, its
parameters do not depend on any particular species, but re-
�ect thee e�ective dynamics of any species in the commu-
nity.
Following dynamical mean-�eld-like arguments and ap-

proximations informed by our simulations (Appendix E),
we derive the focal-species model

��(�) = �(�) (�(�) � �(�)) + �, (7a)
�(�) = �� + � �(�), (7b)

where �(�) is a stochastic growth rate with mean ��, and
�uctuations of magnitude � and correlation time �. The
process �(�) is a coloured Gaussian noise with zero mean
and an autocorrelation that decays exponentially;

��� = 0, ��(�) �(��)� = ����������, (8)

where brackets denote averages over noise realizations. The
connection between the ecological parameters �,�,�, � and
the resulting dynamics of the disordered Lotka-Volterra
model in the chaotic phase is then broken down into two
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Differences between species
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Fig. 4. Species di�erences in dominance. (A) Example of a long abundance time series for the three species who are ranked first, median, and last, with respect
to the “dominance bias” (fraction of time spent in the dominant component relative to the species median). Some species “boom” more often than others. (B)
The scaling of median fraction of time spent in the dominant component against reciprocal species pool size: Increasing S results in a proportional decrease
in median dominance time. (C) Distribution of dominance biases against relative dominance rank for a range of S: there appears to be convergence toward a
nonconstant limiting distribution, implying that net species di�erences are not due to small-S e�ects. Note that, by definition, the dominance bias is 1 for the
middle rank, indicated by the dashed line separating positively from negatively biased species. (D) Scatter of dominance bias against the net interaction bias, zi
Eq. 4: Lower net competition correlates with higher dominance bias. Species in the tails of the zi distribution are also less “typical,” with typicality quantified by
the index ✓i , Eq. 16, representing the similarity of a species AFD to the species-averaged AFD. Panel A and D are both for S = 500.

a characteristic, nonlinearly decreasing shape, where the most
frequent species occur more than four times as often as the
median, and the last-ranked species almost zero.

The persistence of inter-species differences with large S may
seem to contradict the central limit theorem, as species’ sets
of interaction coefficients converge toward statistics that are
identical for every species. In the chaotic regime, however, even
the smallest differences in growth rates get amplified during
a boom. As we show in section 4.4, if Eq. 1 is rewritten in
terms of the proportions pi, the relative advantage of species i is
quantified by a selection coefficient whose time average scales as
�S�1/2�zi. Correspondingly, the relative, time-averaged growth
rate is proportional to the net interaction bias zi defined in Eq. 4,
resulting in species with larger zi to have positive dominance
bias (Fig. 4D). Outliers of the scatter plot, i.e. species that have
particularly high or low dominance ranks, are also the species
whose AFD is furthest from the average AFD of the community,
as quantified by the typicality index ✓i 2 [0, 1], defined in
section 4.2.

In conclusion, the relative species-to-species variation in the
total interaction strength drives the long-term differences in
the dynamics of single species in the community. While the
focal-species model emphasizes the similarity of species, species
differences can also be taken into account by employing species-
specific effective parameters. In particular, replacing k with a
distribution of ki’s would create a dominance bias, and is in fact
motivated upon closer examination of our focal-species model
derivation (Fig. 7D in section 4.5).

2.5. Interaction Statistics Control Di�erent Dynamical Phases.
Hitherto, we have focused on reference values of the interaction
statistics � and � that produce chaotic turnover of species
abundances. We now broaden our investigation to determine the
extent of validity of our previous analysis when the interaction
statistics are varied. For every pair of (�, �) values, we run
30 independent simulations, each with a different sampling of

the interaction matrix and uniformly sampled abundance initial
condition. After a transient has elapsed, we classify the trajectory
as belonging to one of four different classes: equilibrium, cycle,
chaos, or divergence. Fig. 5 displays the probability of observing
chaos, demonstrating that it does not require fine tuning of
parameters, but rather occurs across a broad parameter range.

The parameter region where chaos is prevalent, the “chaotic
phase,” borders on regions of qualitatively different community
dynamics. For small variation in interaction strengths (below
the line connecting (0,

p
2/S) to (1, 0)), the community has

a unique, global equilibrium that is fully characterized for
weak interactions (cf. Fig. 2 of ref. 34). The transition from
equilibrium to chaos has been investigated with dynamical mean-
field theory (41). For low interaction variance, but with mean
exceeding the unitary strength of intra-specific competition, a
single species comes to dominate, as expected by the competitive
exclusion principle (59). Adiabatic simulations, implemented
by continuously rescaling a single realization of the interaction
matrix (details in SI Appendix, Fig. S8), reveal that lines radiating
from the point (�, �) = (1, 0) separate sectors where stable fixed
points have different numbers of coexisting species. Traversing
these sectors anti-clockwise, Seff increases by near-integer steps
from one (full exclusion) up to about 8. From thence, a sudden
transition to chaos occurs at the dashed line in Fig. 5. We
note, however, that the parameter region between chaos and
competitive exclusion contains attractors of different types: cycles
and chaos, coexisting with multiple fixed points, resulting in
hysteresis (SI Appendix, Fig. S8B). This “multiple attractor phase”
(34, 41) is a complicated and mostly uncharted territory whose
detailed exploration goes beyond the scope of this study. Finally,
for large variation in interactions, some abundances diverge due
to the positive feedback loop induced by strongly mutualistic
interactions, and the model is biologically unsound.

Across the phase diagram, community-level observables such as
the average total abundance X and effective community size Seff
vary considerably (SI Appendix, Fig. S9). The weak-interaction
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Species-species differences reflect relative rather than absolute interaction strengths



Effective ‘typical’ dynamics

‘Focal species’ model 

equilibrate. As a similarity metric, we use the classical Bray–
Curtis index (section 4.2), which has also been used to measure
variations in community composition in plankton time series
(13). In Fig. 1B, we see that the similarity at times slowly
approaches 100%, followed by faster drops, toward about 50%,
indicating the subversion of a coherent dominant community by
previously rare invaders.

The fact that the community composition is not observed to
closely repeat is arguably due to the vast number of possible quasi-
equilibria that the chaotic dynamics can explore. In the weak-
interaction regime, a number of unstable equilibria exponential in
S has been confirmed (50, 51). It is therefore conceivable that the
number of quasi-equilibria in our case is also exponentially large.
The LV equations for � = 0 admit up to one coexistence fixed
point (not necessarily stable) for every chosen subset of species
(38). Hence, we expect on the order of ⇠ SSeff quasi-equilibria,
which for S = 500 and Seff ⇡ 9 evaluates to 1024. If the
dynamics explores the astronomical diversity of such equilibria
on trajectories which depend sensitively on the initial conditions,
the dominant component may look as if having been assembled
“by chance” at different points in time.

The composition of the dominant community is not entirely
arbitrary, though. While the abundance time series of most pairs
of species have negligible correlations, every species tends to
have a few other species with a moderate degree of correlation.
In particular, if (↵ij + ↵ij)/2 is significantly smaller than the
expectation �, and hence species i and j are close to a commensal
or mutualistic relationship, these species tend to “boom” one
after the other (SI Appendix, Fig. S6).

2.2. Species’ Abundance Fluctuations Follow a Power-Law. In a
common representation of empirical observations, where relative
abundances are ranked in descending order a rank–abundance
plot (52), microbial communities display an overwhelming ma-
jority of low-abundance species (10). Our simulated community
reproduces this feature; Fig. 2A. The exact shape of the plot
changes in time, as does the rank of any particular species, but the
overall statistical structure of the community is highly conserved.
An alternative way to display the same data is to bin abundances
and count the frequency of species occurring within each bin,
producing a species abundance distribution (SAD) (52). The
histogram in Fig. 2B illustrates the “snapshot” SAD for the rank-
abundance plot in Fig. 2A of abundances sampled at a single
time point.Whenever observations are available formultiple time
points, it is also possible to plot, for a given species, the histogram
of its abundance in time. As time gets large (practically, we
considered 100’000 time units after the transient), the histogram
converges to a smooth distribution, that we call the abundance
fluctuation distribution (AFD) (53). Its average shape across all
species is also displayed in Fig. 2B.

Several conclusions can be drawn by comparing SADs and
AFDs. First, a snapshot SAD appears to be a subsampling of
the average AFD. Therefore, SADs maintain the same statistical
structure despite the continuous displacement of single species
from one bin to another. Second, every species fluctuates in time
between extreme rarity (x ⇡ � = 10�8) and high abundance
(x ¿ 10�1). This variation is comparable to that observed,
at any given time, between the most abundant and the rarest
species. Third, species are largely equivalent with respect to
the spectrum of fluctuations in time, as indicated by the small
variation in AFDs across species. We evaluate the regularities
and differences of single-species dynamics more thoroughly in
Subsection 2.4.

A

B

Fig. 2. Statistical features of abundance variations across species and in
time. (A) Snapshot rank-abundance plot for the relative abundances in
the reference simulation: Most species have orders of magnitude smaller
abundances than the top ranks. Di�erent lines represent observations
at well-separated time points. (B) Species abundance distribution (SAD,
blue histogram) corresponding to the blue rank-abundance plot; overlaid,
abundance fluctuation distribution (AFD), averaged over all species (black
line) with± one SD across species shaded in gray: The snapshot SAD appears
to be a subsampling of the average AFD, indicating an equivalence, but
de-synchronization, of species in their abundance fluctuations. The one
bar missing from the SAD is the e�ect of finite species richness, as high-
abundance bins only ever contain a couple of species for S = 500. The vertical
dashed line indicates the immigration level which determines a lower limit to
abundances.

Themost striking feature of these distributions, however, is the
power-law x�⌫ traced for intermediate abundances. This range is
bounded at low abundances by the immigration rate and at high
abundances by the single-species carrying capacity. The power-
law exponent is ⌫ ⇡ 1.18 for the reference simulation, but it
varies in general with the ecological parameters, as we discuss
further in the following sections.

The regularity of the abundance distributions across species
suggests that it may be possible to describe the dynamics of a “typ-
ical” species in a compact way—this is the goal of the next section.

2.3. A Stochastic Focal-Species Model Reproduces Boom-Bust
Dynamics. Fluctuating abundance time series are often fitted by
one-dimensional stochastic models (7); for example, stochastic
logistic growth has been found to capture the statistics of
fluctuations in a variety of datasets on microbial abundances
(53, 54). The noise term encapsulates variations in a species’
growth rate whose origin may not be known explicitly. In our
virtual Lotka–Volterra community, once the interaction matrix
and initial abundances have been fixed, there is no uncertainty;
nonetheless, the chaotic, high-dimensional dynamics results in
species’ growth rates fluctuating in a seemingly random fashion.
We are therefore led to formulate a model for a single, focal
species, for which explicit interactions are replaced by stochastic
noise. Because we have found species to be statistically similar, its
parameters do not depend on any particular species, but reflect
the effective dynamics of any species in the community.

Following dynamical mean-field-like arguments and approxi-
mations informed by our simulations (section 4.5), we derive the
focal-species model:

ẋ(t) = x(t) (g(t) � x(t)) + �, [7a]
g(t) = �k + u ⌘(t), [7b]
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where g(t) is a stochastic growth rate with mean �k, and
fluctuations of magnitude u and correlation time ⌧. The process
⌘(t) is a colored Gaussian noise with zero mean and an
autocorrelation that decays exponentially;

h⌘i = 0, h⌘(t) ⌘(t 0)i = e�|t�t 0|/⌧ , [8]

where brackets denote averages over noise realizations. The
connection between the ecological parameters S,�, �, � and the
resulting dynamics of the disordered Lotka–Volterra model in
the chaotic phase is then broken down into two steps: how the
effective parameters k, u, ⌧ relate to the ecological parameters
and how the behavior of the focal-species model depends on the
effective parameters.

For the first step, we find

k = �X � 1 and u = �
X

p
Seff

, [9]

where X is the total community abundance of the original
dynamics Eq. 1, the effective community size Seff is as in Eq. 6,
and an overline denotes a long-time average. Eq. 9 relates the
focal species’ growth rate to the time-averaged net competition
(⇡ �X ) from all other species. We find in simulations of Eq. 1
in the chaotic phase that competition is strong enough to make
k > 0. The second relation captures the variation in the net
competition that a species experiences because of turnover of the
dominant community component. Due to sampling statistics,
this variation is larger when the dominant component tends to
have fewer species; hence, the dependence on (Seff)�1/2. The
third effective parameter, the timescale ⌧, controls how long the
focal species stays dominant, once a fluctuation has brought it
to high abundance. This timescale is essentially equal to the
turnover timescale ⌧dom of the dominant component (defined
more precisely by autocorrelation functions in section 4.5). In
the weak-interaction regime, where any pair of species can be
treated as effectively independent at all times, self-consistency
relations such as Shxi = X allow to implicitly express the
focal-species model in terms of the ecological parameters. For
strong interactions, however, the disproportionate effect of the
few dominant species on the whole community invalidates this
approach; we therefore relate the effective parameters to the
community-level observables X , Seff, ⌧dom which are obtained
from simulation of Eq. 1 at given values of the ecological
parameters.

For the second step, we would like to solve Eq. 7 for general
values of the effective parameters. While this is intractable due
to the finite correlation time of the noise, the equations can be
simulated and treated by approximate analytical techniques. In
Fig. 3A, we compare the time series of an arbitrary species in the
dLV model with a simulation of the focal-species model. By eye,
the time series appear statistically similar. The typical abundance
of a species can be estimated by replacing the fluctuating growth
rate in Eq. 7 with its typical value (i.e. ⌘ = 0), yielding
the equilibrium �/k if k > 0, as indeed confirmed by the
simulation. Thus the typical abundance value is on the order of
the immigration threshold. Fig. 3B shows that the average AFD
of the dLV agrees remarkably well with the stationary distribution
of the focal-speciesmodel, in particular for the power-law section.
Using the unified colored noise approximation (55) (section 4.6),
one predicts that the stationary distribution, for � ⌧ x ⌧ 1,
takes the power-law form x�⌫ , where the exponent

⌫ = 1 +
k
u2⌧

[10]

A

B

Fig. 3. Comparison of the stochastic focal-species model and the chaotic
dLV model. (A) Time series of one arbitrary species in the disordered Lotka–
Volterra (dLV)model (blue), and one realization of the stochastic focal-species
model Eq. 7 with parameters as in Eq. 9: The time series are statistically
similar. (B) Comparison of the average abundance fluctuation distribution
(AFD) from Fig. 2 (black), and the AFD of the focal-species model (pink):
Excellent agreement is found for the power-law section. The “unified colored
noise approximation” solution for the focal-species model’s AFD (dashed,
pink line) predicts the correct overall shape of the distribution, but not a
quantitatively accurate value for the power-law exponent.

is strictly larger than one—the value predicted for weak inter-
actions (41) and for neutral models (56). Even if Eq. 10 is not
quantitatively precise (Fig. 3B), this formula suggests a scaling
with the effective parameters that we will discuss later on.

2.4. Species with Lower Net Competition Are More Often
Dominant. The similarity of all species’ abundance fluctuation
distributions in Fig. 2 is reflected in the focal-species model’s
dependence on collective properties like the total abundance.
However, the logarithmic scale downplays the variance between
species’ AFDs, particularly at higher abundances. Indeed, while
all abundances fluctuate over orders of magnitude, some species
are observed to be more often dominant (or rare). Such differ-
ences are reminiscent of the distinction between “frequent” and
“occasional” species observed in empirical time series (57, 58).

In order to assess the nature of species differences in simulations
of chaotic dLV, we rank species by the fraction of time spent as
part of the dominant component. Observing the community
dynamics on a very long timescale of tens of thousands of
generations (400 times longer than in Fig. 1), the first-ranked
species appears to boommuch more often than the last (Fig. 4A).
The frequency of a species is chiefly determined by the number
of booms rather than their duration, which is comparable for
all species. The median dominance time decreases with the total
species richness (Fig. 4B): A doubling of S leads to each species
halving its dominance time fraction. As the community gets
crowded—while its effective size hardly increases, as remarked in
Subsection 2.1—all species become temporally more constrained
in their capacity to boom. Yet some significant fraction of species
is biased toward booming much more often or rarely than the
median, regardless of community richness.Wequantify this trend
by plotting in Fig. 4C the dominance bias—the dominance
time fraction normalized by the median across all species—
against the relative rank (i.e., rank divided by S). For high
richness (S ⇠ 103), the distribution of bias converges toward

PNAS 2024 Vol. 121 No. 11 e2312822121 https://doi.org/10.1073/pnas.2312822121 5 of 12

D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

89
.2

07
.1

71
.1

59
 o

n 
M

ar
ch

 1
0,

 2
02

4 
fro

m
 IP

 a
dd

re
ss

 8
9.

20
7.

17
1.

15
9.

Effective neutrality of the species’ dynamics

Chaotic turnover ... in a strongly interacting model community Mallmin, Traulsen, De Monte (2023)

Figure 2: Statistical features of abundance variations across species
and in time. A Snapshot rank-abundance plot for the relative abundances
in the reference simulation: most species have orders ofmagnitude smaller
abundances than the top ranks. Di�erent lines represent observations at
well-separated time points. B Species abundance distribution (SAD, blue
histogram) corresponding to the blue rank-abundance plot; overlaid, abun-
dance �uctuation distribution (AFD), averaged over all species (black line)
with ± one standard deviation across species shaded in grey: the snapshot
SAD appears to be a subsampling of the average AFD, indicating an equiv-
alence, but de-synchronization, of species in their abundance �uctuations.
The one bar missing from the SAD is the e�ect of �nite species richness,
as high-abundance bins only ever contain a couple of species for � = 500.
The vertical dashed line indicates the immigration level which determines
a lower limit to abundances.

placement of single species from one bin to another. Sec-
ond, every species �uctuates in time between extreme rar-
ity (� � � = 10�8) and high abundance (� � 10�1). This
variation is comparable to that observed, at any given time,
between the most abundant and the rarest species. Third,
species are largely equivalent with respect to the spectrum
of�uctuations in time, as indicated by the small variation in
AFDs across species. We will evaluate the regularities and
di�erences of single-species dynamics more thoroughly in
Section 3.4.
Themost striking feature of these distributions, however,

is the power-law ��� traced for intermediate abundances.
This range is bounded at low abundances by the immigra-
tion rate and at high abundances by the single-species car-
rying capacity. The power-law exponent is � � 1.18 for the
simulation analysed, but it varies in general with the eco-
logical parameters, as we discuss further in the following
sections.
The regularity of the abundance distributions across

species suggests that it may be possible to describe the dy-
namics of a ‘typical’ species in a compact way—this is the
goal of the next section.

3.3 A stochastic focal-speciesmodel reproduces boom-bust
dynamics

Fluctuating abundance time series are often �tted by one-
dimensional stochastic models [6]; for example, stochas-
tic logistic growth has been found to capture the statis-

Figure 3: Comparison of the stochastic focal-species model and the
chaotic dLV model. A Time series of one arbitrary species in the dis-
ordered Lotka-Volterra (dLV) model (blue), and one realization of the
stochastic focal-species model (Eq. (7)) with parameters as in Eq. (9): the
time series are statistically similar. B Comparison of the average abun-
dance�uctuation distribution (AFD) fromFigure 2 (black), and theAFDof
the focal-speciesmodel (pink): excellent agreement is found for the power-
law section. The ‘uni�ed coloured noise approximation’ solution for the
focal-species model’s AFD (dashed, pink line) predicts the correct overall
shape of the distribution, but not a quantitatively accurate value for the
power-law exponent.

tics of �uctuations in a variety of data sets on microbial
abundances [54, 55]. The noise term encapsulates varia-
tions in a species’ growth rate whose origin may not be
known explicitly. In our virtual Lotka-Volterra community,
once the interaction matrix and initial abundances have
been�xed, there is no uncertainty; nonetheless, the chaotic,
high-dimensional dynamics results in species’ growth rates
�uctuating in a seemingly random fashion. We are there-
fore led to formulate a model for a single, focal species, for
which explicit interactions are replaced by stochastic noise.
Because we have found species to be statistically similar, its
parameters do not depend on any particular species, but re-
�ect thee e�ective dynamics of any species in the commu-
nity.
Following dynamical mean-�eld-like arguments and ap-

proximations informed by our simulations (Appendix E),
we derive the focal-species model

��(�) = �(�) (�(�) � �(�)) + �, (7a)
�(�) = �� + � �(�), (7b)

where �(�) is a stochastic growth rate with mean ��, and
�uctuations of magnitude � and correlation time �. The
process �(�) is a coloured Gaussian noise with zero mean
and an autocorrelation that decays exponentially;

��� = 0, ��(�) �(��)� = ����������, (8)

where brackets denote averages over noise realizations. The
connection between the ecological parameters �,�,�, � and
the resulting dynamics of the disordered Lotka-Volterra
model in the chaotic phase is then broken down into two

5



Community-level parameters and observables

where g(t) is a stochastic growth rate with mean �k, and
fluctuations of magnitude u and correlation time ⌧. The process
⌘(t) is a colored Gaussian noise with zero mean and an
autocorrelation that decays exponentially;

h⌘i = 0, h⌘(t) ⌘(t 0)i = e�|t�t 0|/⌧ , [8]

where brackets denote averages over noise realizations. The
connection between the ecological parameters S,�, �, � and the
resulting dynamics of the disordered Lotka–Volterra model in
the chaotic phase is then broken down into two steps: how the
effective parameters k, u, ⌧ relate to the ecological parameters
and how the behavior of the focal-species model depends on the
effective parameters.

For the first step, we find

k = �X � 1 and u = �
X

p
Seff

, [9]

where X is the total community abundance of the original
dynamics Eq. 1, the effective community size Seff is as in Eq. 6,
and an overline denotes a long-time average. Eq. 9 relates the
focal species’ growth rate to the time-averaged net competition
(⇡ �X ) from all other species. We find in simulations of Eq. 1
in the chaotic phase that competition is strong enough to make
k > 0. The second relation captures the variation in the net
competition that a species experiences because of turnover of the
dominant community component. Due to sampling statistics,
this variation is larger when the dominant component tends to
have fewer species; hence, the dependence on (Seff)�1/2. The
third effective parameter, the timescale ⌧, controls how long the
focal species stays dominant, once a fluctuation has brought it
to high abundance. This timescale is essentially equal to the
turnover timescale ⌧dom of the dominant component (defined
more precisely by autocorrelation functions in section 4.5). In
the weak-interaction regime, where any pair of species can be
treated as effectively independent at all times, self-consistency
relations such as Shxi = X allow to implicitly express the
focal-species model in terms of the ecological parameters. For
strong interactions, however, the disproportionate effect of the
few dominant species on the whole community invalidates this
approach; we therefore relate the effective parameters to the
community-level observables X , Seff, ⌧dom which are obtained
from simulation of Eq. 1 at given values of the ecological
parameters.

For the second step, we would like to solve Eq. 7 for general
values of the effective parameters. While this is intractable due
to the finite correlation time of the noise, the equations can be
simulated and treated by approximate analytical techniques. In
Fig. 3A, we compare the time series of an arbitrary species in the
dLV model with a simulation of the focal-species model. By eye,
the time series appear statistically similar. The typical abundance
of a species can be estimated by replacing the fluctuating growth
rate in Eq. 7 with its typical value (i.e. ⌘ = 0), yielding
the equilibrium �/k if k > 0, as indeed confirmed by the
simulation. Thus the typical abundance value is on the order of
the immigration threshold. Fig. 3B shows that the average AFD
of the dLV agrees remarkably well with the stationary distribution
of the focal-speciesmodel, in particular for the power-law section.
Using the unified colored noise approximation (55) (section 4.6),
one predicts that the stationary distribution, for � ⌧ x ⌧ 1,
takes the power-law form x�⌫ , where the exponent

⌫ = 1 +
k
u2⌧

[10]

A

B

Fig. 3. Comparison of the stochastic focal-species model and the chaotic
dLV model. (A) Time series of one arbitrary species in the disordered Lotka–
Volterra (dLV)model (blue), and one realization of the stochastic focal-species
model Eq. 7 with parameters as in Eq. 9: The time series are statistically
similar. (B) Comparison of the average abundance fluctuation distribution
(AFD) from Fig. 2 (black), and the AFD of the focal-species model (pink):
Excellent agreement is found for the power-law section. The “unified colored
noise approximation” solution for the focal-species model’s AFD (dashed,
pink line) predicts the correct overall shape of the distribution, but not a
quantitatively accurate value for the power-law exponent.

is strictly larger than one—the value predicted for weak inter-
actions (41) and for neutral models (56). Even if Eq. 10 is not
quantitatively precise (Fig. 3B), this formula suggests a scaling
with the effective parameters that we will discuss later on.

2.4. Species with Lower Net Competition Are More Often
Dominant. The similarity of all species’ abundance fluctuation
distributions in Fig. 2 is reflected in the focal-species model’s
dependence on collective properties like the total abundance.
However, the logarithmic scale downplays the variance between
species’ AFDs, particularly at higher abundances. Indeed, while
all abundances fluctuate over orders of magnitude, some species
are observed to be more often dominant (or rare). Such differ-
ences are reminiscent of the distinction between “frequent” and
“occasional” species observed in empirical time series (57, 58).

In order to assess the nature of species differences in simulations
of chaotic dLV, we rank species by the fraction of time spent as
part of the dominant component. Observing the community
dynamics on a very long timescale of tens of thousands of
generations (400 times longer than in Fig. 1), the first-ranked
species appears to boommuch more often than the last (Fig. 4A).
The frequency of a species is chiefly determined by the number
of booms rather than their duration, which is comparable for
all species. The median dominance time decreases with the total
species richness (Fig. 4B): A doubling of S leads to each species
halving its dominance time fraction. As the community gets
crowded—while its effective size hardly increases, as remarked in
Subsection 2.1—all species become temporally more constrained
in their capacity to boom. Yet some significant fraction of species
is biased toward booming much more often or rarely than the
median, regardless of community richness.Wequantify this trend
by plotting in Fig. 4C the dominance bias—the dominance
time fraction normalized by the median across all species—
against the relative rank (i.e., rank divided by S). For high
richness (S ⇠ 103), the distribution of bias converges toward
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where g(t) is a stochastic growth rate with mean �k, and
fluctuations of magnitude u and correlation time ⌧. The process
⌘(t) is a colored Gaussian noise with zero mean and an
autocorrelation that decays exponentially;

h⌘i = 0, h⌘(t) ⌘(t 0)i = e�|t�t 0|/⌧ , [8]

where brackets denote averages over noise realizations. The
connection between the ecological parameters S,�, �, � and the
resulting dynamics of the disordered Lotka–Volterra model in
the chaotic phase is then broken down into two steps: how the
effective parameters k, u, ⌧ relate to the ecological parameters
and how the behavior of the focal-species model depends on the
effective parameters.

For the first step, we find

k = �X � 1 and u = �
X

p
Seff

, [9]

where X is the total community abundance of the original
dynamics Eq. 1, the effective community size Seff is as in Eq. 6,
and an overline denotes a long-time average. Eq. 9 relates the
focal species’ growth rate to the time-averaged net competition
(⇡ �X ) from all other species. We find in simulations of Eq. 1
in the chaotic phase that competition is strong enough to make
k > 0. The second relation captures the variation in the net
competition that a species experiences because of turnover of the
dominant community component. Due to sampling statistics,
this variation is larger when the dominant component tends to
have fewer species; hence, the dependence on (Seff)�1/2. The
third effective parameter, the timescale ⌧, controls how long the
focal species stays dominant, once a fluctuation has brought it
to high abundance. This timescale is essentially equal to the
turnover timescale ⌧dom of the dominant component (defined
more precisely by autocorrelation functions in section 4.5). In
the weak-interaction regime, where any pair of species can be
treated as effectively independent at all times, self-consistency
relations such as Shxi = X allow to implicitly express the
focal-species model in terms of the ecological parameters. For
strong interactions, however, the disproportionate effect of the
few dominant species on the whole community invalidates this
approach; we therefore relate the effective parameters to the
community-level observables X , Seff, ⌧dom which are obtained
from simulation of Eq. 1 at given values of the ecological
parameters.

For the second step, we would like to solve Eq. 7 for general
values of the effective parameters. While this is intractable due
to the finite correlation time of the noise, the equations can be
simulated and treated by approximate analytical techniques. In
Fig. 3A, we compare the time series of an arbitrary species in the
dLV model with a simulation of the focal-species model. By eye,
the time series appear statistically similar. The typical abundance
of a species can be estimated by replacing the fluctuating growth
rate in Eq. 7 with its typical value (i.e. ⌘ = 0), yielding
the equilibrium �/k if k > 0, as indeed confirmed by the
simulation. Thus the typical abundance value is on the order of
the immigration threshold. Fig. 3B shows that the average AFD
of the dLV agrees remarkably well with the stationary distribution
of the focal-speciesmodel, in particular for the power-law section.
Using the unified colored noise approximation (55) (section 4.6),
one predicts that the stationary distribution, for � ⌧ x ⌧ 1,
takes the power-law form x�⌫ , where the exponent

⌫ = 1 +
k
u2⌧

[10]

A

B

Fig. 3. Comparison of the stochastic focal-species model and the chaotic
dLV model. (A) Time series of one arbitrary species in the disordered Lotka–
Volterra (dLV)model (blue), and one realization of the stochastic focal-species
model Eq. 7 with parameters as in Eq. 9: The time series are statistically
similar. (B) Comparison of the average abundance fluctuation distribution
(AFD) from Fig. 2 (black), and the AFD of the focal-species model (pink):
Excellent agreement is found for the power-law section. The “unified colored
noise approximation” solution for the focal-species model’s AFD (dashed,
pink line) predicts the correct overall shape of the distribution, but not a
quantitatively accurate value for the power-law exponent.

is strictly larger than one—the value predicted for weak inter-
actions (41) and for neutral models (56). Even if Eq. 10 is not
quantitatively precise (Fig. 3B), this formula suggests a scaling
with the effective parameters that we will discuss later on.

2.4. Species with Lower Net Competition Are More Often
Dominant. The similarity of all species’ abundance fluctuation
distributions in Fig. 2 is reflected in the focal-species model’s
dependence on collective properties like the total abundance.
However, the logarithmic scale downplays the variance between
species’ AFDs, particularly at higher abundances. Indeed, while
all abundances fluctuate over orders of magnitude, some species
are observed to be more often dominant (or rare). Such differ-
ences are reminiscent of the distinction between “frequent” and
“occasional” species observed in empirical time series (57, 58).

In order to assess the nature of species differences in simulations
of chaotic dLV, we rank species by the fraction of time spent as
part of the dominant component. Observing the community
dynamics on a very long timescale of tens of thousands of
generations (400 times longer than in Fig. 1), the first-ranked
species appears to boommuch more often than the last (Fig. 4A).
The frequency of a species is chiefly determined by the number
of booms rather than their duration, which is comparable for
all species. The median dominance time decreases with the total
species richness (Fig. 4B): A doubling of S leads to each species
halving its dominance time fraction. As the community gets
crowded—while its effective size hardly increases, as remarked in
Subsection 2.1—all species become temporally more constrained
in their capacity to boom. Yet some significant fraction of species
is biased toward booming much more often or rarely than the
median, regardless of community richness.Wequantify this trend
by plotting in Fig. 4C the dominance bias—the dominance
time fraction normalized by the median across all species—
against the relative rank (i.e., rank divided by S). For high
richness (S ⇠ 103), the distribution of bias converges toward
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is a realization of a random variable ⇠ N (0, 1). A finite net
competition in the limit of a large species pool requires:

� =
�̃
S
, �2 =

�̃2

S
, [5]

where �̃, �̃ do not grow with S. Under this scaling, methods from
statistical physics [dynamical mean-field theory (34, 39–41),
random matrix theory (32, 42), and replica theory (43, 44)]
allow exact analytical results in the limit of S ! 1, although
in practice S ⇠ 100 is sufficient for good agreement between
theory and simulations. Sharp boundaries were shown to separate
a region where species coexist at a unique equilibrium and
one with multiple attractors, including chaotic steady states
(34, 39–41).

Since we are here interested in the scenario of large differences
in species abundance (rare biosphere pattern) and rapid turnover
dynamics, we instead consider the strong-interaction regime
where the statistics of the interaction matrix do not scale with
species richness S according to Eq. 5. For S� � 1, the
overall competitive pressure makes it impossible for all species
to simultaneously attain abundances close to their carrying
capacities. Abundant species tend to exclude one another,
resulting in instability and complex community dynamics.
Arguably, strong interactions are more plausible than weak ones
for microbial communities, where metabolic cross-feeding, toxin
release, phagotrophy, and competition over limited nutrients
lead species to depend substantially on one another’s presence
(45, 46).

2. Results
In the strong-interaction regime, numerical simulations of the
disordered Lotka–Volterra model show that the community can
display several different classes of dynamics, from equilibrium
coexistence of a small subset of species, to different kinds of
oscillations, including chaos. In Sections 2.1–2.4, we focus on
the reference value of the interaction statistics (� = 0.5, � = 0.3)
representative of chaotic dynamics, and describe its salient
features. In Subsections 2.5–2.6, we describe how the dynamics
depends qualitatively on the statistical parameters� and�. Unless
otherwise stated, simulations use S = 500 and � = 10�8.
Further details on the numerical implementation are presented
in section 4.1.

2.1. A Chaotic Turnover of Rare and Abundant Species. For a
broad range of parameters in the strong-interaction regime, the
community undergoes a chaotic turnover of dominant species.
As illustrated by the time series of stacked abundances in Fig. 1A,
the overwhelming share of the total abundance at any given time
is due to just a few species. Which species are abundant and
which are rare changes on a characteristic timescale, ⌧dom ⇡ 30
time units, comparable to the time it would take an isolated
species to attain an abundance on the order of its carrying
capacity starting from the lowest abundance set by immigration.
While the total abundance fluctuates moderately around a well-
defined time average, individual species follow a “boom-bust”
dynamics. If this simulation represented a natural microbial
community, only the most abundant species—that we call the
dominant component of the community—would be detectable
by morphological inspection or shallow sequencing.

We wish to characterize the dominant component and
understand how it relates to the pool of rarer species. In order to

A

B

Fig. 1. Turnover of the dominant component. (A) The stacked abundances
of all species under steady-state conditions: There is a turnover of species
such that only the dominant component is visible at any given time (each
species has a distinct random color). (B) Bray–Curtis index of community
composition similarity between the dominant component of the community
at time t, and the composition if it were isolated from the rare species
and allowed to reach equilibrium: The community appears to approach the
composition of few-species equilibria before being destabilized by invasion
from the pool of rare species.

quantify the notion of dominance, we define the effective size of
the community as Simpson’s (reciprocal) diversity index (47),

Seff(t) :=
1

P
i p

2
i (t)

, [6]

where pi = xi/
P

j xj denote relative abundances. Seff approaches
its lowest possible value of 1 when a single species is responsible
for most of the total abundance, and its maximum S when
all species have similar abundances. Its integer approximation
provides the richness, i.e. , number of distinct species, of the
dominant component.

The effective size Seff of the community in our reference
simulation fluctuates around an average of nine dominant
species, which make up 90% of the total abundance. The
relative abundance threshold for a species to be in the dominant
component fluctuates around 3%, which is comparable to
the arbitrary 1%-threshold used in empirical studies (48). In
SI Appendix, Fig. S4, we show that the number of dominant
species grows slowly (but super-logarithmically) with S, up to
about 15 for S = 104. Thus, strong interactions limit the size
of the dominant component, and the vast majority of species are
rare at any point in time.

The turnover of dominant species is not periodic; indeed,
even over a large time-window, where every species is found on
multiple occasions to be part of the dominant component, its
composition never closely repeats (SI Appendix, Fig. S3). This
aperiodicity suggests the presence of chaotic dynamics. We give
numerical evidence for sensitive dependence on initial condition
and positive maximal Lyapunov exponent in SI Appendix, Figs.
S1 and S2. The turnover dynamics has the character of moving,
chaotically, between different quasi-equilibria corresponding to
different compositions of the dominant community [cf. “chaotic
itinerancy” (49)]. To reveal this pattern, we measure a “closeness-
to-equilibrium,” defined as the similarity in composition between
the observed dominant component at a given time, and the
equilibrium that this dominant component would converge to
if it were isolated from the rare component and allowed to
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Fig. 6. Relations between e�ective parameters in the chaotic phase. (A) Color legend of the chaotic phase (boundaries from Fig. 5). Each pair of (�, �) has
been mapped to a distinct color. (B) Co-dependence of the e�ective parameters u, k, ⌧: the amplitude u of growth-rate fluctuations approximately equals the
absolute value k of the negative growth rate (only weakly depending on � and S; SI Appendix, Fig. S10); u is roughly proportional to the inverse turnover time,
but the slope of the relationship depends on � and S. (C) The exponent ⌫ of the power-law section of the AFD for the chaotic dLV model plotted against the
analogue ⌫foc obtained for the focal-species model: generally good agreement is found, with more outliers for parameters close to phase boundaries. A few
outliers lie beyond the plotted range. Exponents have been estimated by fitting a power-law in the interval [100�,0.01] of the abundance distribution.

3. Discussion
Following growing empirical evidence for the presence of
ecological chaos in natural and synthetic communities (7, 19),
and increasing interest in the role of the rare biosphere (10, 62),
we have sought a connection between the two through a minimal
model of community dynamics: The disordered Lotka–Volterra
(dLV) model with strong interactions and weak immigration.
Our analysis of this model by extensive simulations, and through
the derivation of an effective focal-species model, showed that
first, persistent chaos arises generically and can drive fast and
extensive turnover of rare and abundant species; second, a
statistical equivalence between species emerges such that a single
focal species’ fluctuation statistics predict the largely invariant
power-law abundance distributions; third, deviations from this
equivalence are associated with species differences in frequency
of occurrence. In the following, we discuss the generality of these
results and their interpretation in the context of plankton ecology.

The chaotic turnover of rare and abundant species occurs
because every subset of species that could stably coexist at high
abundances is invadable by some rare species. This phenomenon
should be robust to generalizations of the model as long as the
dominant component remains exposed to a sufficient diversity
of potential invaders and the niche space that underlies species
interactions contains enough trade-offs that no species can be a
superior competitor across many biotic contexts. Our simplifying
assumptions such as uniform growth rates and carrying capacities,
and uncorrelated interactions can be relaxed (see our limited
explorations in SI Appendix, Fig. S5). Additional sources of
modest noise should not cancel the deterministic contributions to
fluctuations; indeed, the dynamical phases we have indicated are
qualitatively similar to those arising in an individual-based version
of the dLVmodel accounting for demographic stochasticity (23).
On the other hand, if the connectivity of the interaction network
were reduced, lowering the exposure to competitors, one might
expect a loss of persistent chaos at some critical connectance value
(63). Highly structured and hierarchical interactions would also
undermine autonomous turnover on ecological timescales.

On amore technical note, the type of chaos we observe is likely
“chaotic itinerancy” (49, 64). Lotka–Volterra systems without
immigration admit heteroclinic networks (65–67), equilibria
with stable and unstable directions (i.e. saddle points) connected
by orbits. Without immigration, such saddles are found on
the system boundary, corresponding to some subset of species

being extinct—in our case, these are the low-diversity equilibria
reflected in the dominant component. The chaotic attractors
appear when the saddles are “pushed off” the boundary by the
immigration term.Consistent with chaotic itinerancy in the dLV,
characteristics of heteroclinic orbits—dynamical slowdown and
“aging”—appear in the limit of vanishing immigration (60, 68).

While the assumption of disordered interactions may appear
ad hoc, predictions for the onset of instability by the dLV
model qualitatively match experiments in synthetic bacterial
communities (19). In a plankton context, we take the dLV to be
a minimal yet relevant phenomenological representation of the
relationships between species (or “operational taxonomic units”
from sequencing) of marine protists of a similar size class: The
protistan interactome is largely uncharted (69), the ubiquity of
mixoplankton blurs consumer–resource distinctions (70), and
the effects of a diversity of zooplankton and viruses can manifest
as apparent competition between species.

For rare plankton protists, the empirical snapshot SADs show
a clear power-law trend, with an exponent around 1.6, varying
little between different locations in the world oceans, despite
large composition differences across samples (12). The unified
neutral theory of biodiversity, based on the interchangeability
of individuals regardless of species identity, predicts a power-
law tail of the SAD with exponent one (3, 56). To approach
the empirical value, previous studies augmented neutral theory
with nonlinear growth rates (12) or chaotic mixing (71) to find
an exponent dependent on the model parameters. However,
for large census sizes such as that of plankton communities,
neutral theories predict astronomically large turnover timescales
(72, 73), inconsistent with observation. As we have shown, the
dLV exhibits fast turnover when interactions are strong and
sufficiently varied. For this model, ⌫ ! 1 as immigration
tends to zero (SI Appendix, Fig. S7, also shown in the weak-
interaction limit (28, 60)), but, if interactions are not weak,
⌫ is substantially larger than one for small but finite values
of immigration. The approximate solution to the focal-species
model, Eq. 10, shows that the positive deviation from ⌫ = 1
depends on three inter-related effective parameters: the mean,
amplitude, and timescale of fluctuations in each species’ net
competition. As these fluctuations drive the turnover pattern,
boom-bust dynamics comes to be associated with a larger-than-
one exponent. The relatively weak variation of ⌫ across the
space of ecological parameters moreover suggests a reason for
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Fig. 6. Relations between e�ective parameters in the chaotic phase. (A) Color legend of the chaotic phase (boundaries from Fig. 5). Each pair of (�, �) has
been mapped to a distinct color. (B) Co-dependence of the e�ective parameters u, k, ⌧: the amplitude u of growth-rate fluctuations approximately equals the
absolute value k of the negative growth rate (only weakly depending on � and S; SI Appendix, Fig. S10); u is roughly proportional to the inverse turnover time,
but the slope of the relationship depends on � and S. (C) The exponent ⌫ of the power-law section of the AFD for the chaotic dLV model plotted against the
analogue ⌫foc obtained for the focal-species model: generally good agreement is found, with more outliers for parameters close to phase boundaries. A few
outliers lie beyond the plotted range. Exponents have been estimated by fitting a power-law in the interval [100�,0.01] of the abundance distribution.

3. Discussion
Following growing empirical evidence for the presence of
ecological chaos in natural and synthetic communities (7, 19),
and increasing interest in the role of the rare biosphere (10, 62),
we have sought a connection between the two through a minimal
model of community dynamics: The disordered Lotka–Volterra
(dLV) model with strong interactions and weak immigration.
Our analysis of this model by extensive simulations, and through
the derivation of an effective focal-species model, showed that
first, persistent chaos arises generically and can drive fast and
extensive turnover of rare and abundant species; second, a
statistical equivalence between species emerges such that a single
focal species’ fluctuation statistics predict the largely invariant
power-law abundance distributions; third, deviations from this
equivalence are associated with species differences in frequency
of occurrence. In the following, we discuss the generality of these
results and their interpretation in the context of plankton ecology.

The chaotic turnover of rare and abundant species occurs
because every subset of species that could stably coexist at high
abundances is invadable by some rare species. This phenomenon
should be robust to generalizations of the model as long as the
dominant component remains exposed to a sufficient diversity
of potential invaders and the niche space that underlies species
interactions contains enough trade-offs that no species can be a
superior competitor across many biotic contexts. Our simplifying
assumptions such as uniform growth rates and carrying capacities,
and uncorrelated interactions can be relaxed (see our limited
explorations in SI Appendix, Fig. S5). Additional sources of
modest noise should not cancel the deterministic contributions to
fluctuations; indeed, the dynamical phases we have indicated are
qualitatively similar to those arising in an individual-based version
of the dLVmodel accounting for demographic stochasticity (23).
On the other hand, if the connectivity of the interaction network
were reduced, lowering the exposure to competitors, one might
expect a loss of persistent chaos at some critical connectance value
(63). Highly structured and hierarchical interactions would also
undermine autonomous turnover on ecological timescales.

On amore technical note, the type of chaos we observe is likely
“chaotic itinerancy” (49, 64). Lotka–Volterra systems without
immigration admit heteroclinic networks (65–67), equilibria
with stable and unstable directions (i.e. saddle points) connected
by orbits. Without immigration, such saddles are found on
the system boundary, corresponding to some subset of species

being extinct—in our case, these are the low-diversity equilibria
reflected in the dominant component. The chaotic attractors
appear when the saddles are “pushed off” the boundary by the
immigration term.Consistent with chaotic itinerancy in the dLV,
characteristics of heteroclinic orbits—dynamical slowdown and
“aging”—appear in the limit of vanishing immigration (60, 68).

While the assumption of disordered interactions may appear
ad hoc, predictions for the onset of instability by the dLV
model qualitatively match experiments in synthetic bacterial
communities (19). In a plankton context, we take the dLV to be
a minimal yet relevant phenomenological representation of the
relationships between species (or “operational taxonomic units”
from sequencing) of marine protists of a similar size class: The
protistan interactome is largely uncharted (69), the ubiquity of
mixoplankton blurs consumer–resource distinctions (70), and
the effects of a diversity of zooplankton and viruses can manifest
as apparent competition between species.

For rare plankton protists, the empirical snapshot SADs show
a clear power-law trend, with an exponent around 1.6, varying
little between different locations in the world oceans, despite
large composition differences across samples (12). The unified
neutral theory of biodiversity, based on the interchangeability
of individuals regardless of species identity, predicts a power-
law tail of the SAD with exponent one (3, 56). To approach
the empirical value, previous studies augmented neutral theory
with nonlinear growth rates (12) or chaotic mixing (71) to find
an exponent dependent on the model parameters. However,
for large census sizes such as that of plankton communities,
neutral theories predict astronomically large turnover timescales
(72, 73), inconsistent with observation. As we have shown, the
dLV exhibits fast turnover when interactions are strong and
sufficiently varied. For this model, ⌫ ! 1 as immigration
tends to zero (SI Appendix, Fig. S7, also shown in the weak-
interaction limit (28, 60)), but, if interactions are not weak,
⌫ is substantially larger than one for small but finite values
of immigration. The approximate solution to the focal-species
model, Eq. 10, shows that the positive deviation from ⌫ = 1
depends on three inter-related effective parameters: the mean,
amplitude, and timescale of fluctuations in each species’ net
competition. As these fluctuations drive the turnover pattern,
boom-bust dynamics comes to be associated with a larger-than-
one exponent. The relatively weak variation of ⌫ across the
space of ecological parameters moreover suggests a reason for
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Power-law exponent

where g(t) is a stochastic growth rate with mean �k, and
fluctuations of magnitude u and correlation time ⌧. The process
⌘(t) is a colored Gaussian noise with zero mean and an
autocorrelation that decays exponentially;

h⌘i = 0, h⌘(t) ⌘(t 0)i = e�|t�t 0|/⌧ , [8]

where brackets denote averages over noise realizations. The
connection between the ecological parameters S,�, �, � and the
resulting dynamics of the disordered Lotka–Volterra model in
the chaotic phase is then broken down into two steps: how the
effective parameters k, u, ⌧ relate to the ecological parameters
and how the behavior of the focal-species model depends on the
effective parameters.

For the first step, we find

k = �X � 1 and u = �
X

p
Seff

, [9]

where X is the total community abundance of the original
dynamics Eq. 1, the effective community size Seff is as in Eq. 6,
and an overline denotes a long-time average. Eq. 9 relates the
focal species’ growth rate to the time-averaged net competition
(⇡ �X ) from all other species. We find in simulations of Eq. 1
in the chaotic phase that competition is strong enough to make
k > 0. The second relation captures the variation in the net
competition that a species experiences because of turnover of the
dominant community component. Due to sampling statistics,
this variation is larger when the dominant component tends to
have fewer species; hence, the dependence on (Seff)�1/2. The
third effective parameter, the timescale ⌧, controls how long the
focal species stays dominant, once a fluctuation has brought it
to high abundance. This timescale is essentially equal to the
turnover timescale ⌧dom of the dominant component (defined
more precisely by autocorrelation functions in section 4.5). In
the weak-interaction regime, where any pair of species can be
treated as effectively independent at all times, self-consistency
relations such as Shxi = X allow to implicitly express the
focal-species model in terms of the ecological parameters. For
strong interactions, however, the disproportionate effect of the
few dominant species on the whole community invalidates this
approach; we therefore relate the effective parameters to the
community-level observables X , Seff, ⌧dom which are obtained
from simulation of Eq. 1 at given values of the ecological
parameters.

For the second step, we would like to solve Eq. 7 for general
values of the effective parameters. While this is intractable due
to the finite correlation time of the noise, the equations can be
simulated and treated by approximate analytical techniques. In
Fig. 3A, we compare the time series of an arbitrary species in the
dLV model with a simulation of the focal-species model. By eye,
the time series appear statistically similar. The typical abundance
of a species can be estimated by replacing the fluctuating growth
rate in Eq. 7 with its typical value (i.e. ⌘ = 0), yielding
the equilibrium �/k if k > 0, as indeed confirmed by the
simulation. Thus the typical abundance value is on the order of
the immigration threshold. Fig. 3B shows that the average AFD
of the dLV agrees remarkably well with the stationary distribution
of the focal-speciesmodel, in particular for the power-law section.
Using the unified colored noise approximation (55) (section 4.6),
one predicts that the stationary distribution, for � ⌧ x ⌧ 1,
takes the power-law form x�⌫ , where the exponent

⌫ = 1 +
k
u2⌧

[10]

A

B

Fig. 3. Comparison of the stochastic focal-species model and the chaotic
dLV model. (A) Time series of one arbitrary species in the disordered Lotka–
Volterra (dLV)model (blue), and one realization of the stochastic focal-species
model Eq. 7 with parameters as in Eq. 9: The time series are statistically
similar. (B) Comparison of the average abundance fluctuation distribution
(AFD) from Fig. 2 (black), and the AFD of the focal-species model (pink):
Excellent agreement is found for the power-law section. The “unified colored
noise approximation” solution for the focal-species model’s AFD (dashed,
pink line) predicts the correct overall shape of the distribution, but not a
quantitatively accurate value for the power-law exponent.

is strictly larger than one—the value predicted for weak inter-
actions (41) and for neutral models (56). Even if Eq. 10 is not
quantitatively precise (Fig. 3B), this formula suggests a scaling
with the effective parameters that we will discuss later on.

2.4. Species with Lower Net Competition Are More Often
Dominant. The similarity of all species’ abundance fluctuation
distributions in Fig. 2 is reflected in the focal-species model’s
dependence on collective properties like the total abundance.
However, the logarithmic scale downplays the variance between
species’ AFDs, particularly at higher abundances. Indeed, while
all abundances fluctuate over orders of magnitude, some species
are observed to be more often dominant (or rare). Such differ-
ences are reminiscent of the distinction between “frequent” and
“occasional” species observed in empirical time series (57, 58).

In order to assess the nature of species differences in simulations
of chaotic dLV, we rank species by the fraction of time spent as
part of the dominant component. Observing the community
dynamics on a very long timescale of tens of thousands of
generations (400 times longer than in Fig. 1), the first-ranked
species appears to boommuch more often than the last (Fig. 4A).
The frequency of a species is chiefly determined by the number
of booms rather than their duration, which is comparable for
all species. The median dominance time decreases with the total
species richness (Fig. 4B): A doubling of S leads to each species
halving its dominance time fraction. As the community gets
crowded—while its effective size hardly increases, as remarked in
Subsection 2.1—all species become temporally more constrained
in their capacity to boom. Yet some significant fraction of species
is biased toward booming much more often or rarely than the
median, regardless of community richness.Wequantify this trend
by plotting in Fig. 4C the dominance bias—the dominance
time fraction normalized by the median across all species—
against the relative rank (i.e., rank divided by S). For high
richness (S ⇠ 103), the distribution of bias converges toward
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Fig. 6. Relations between e�ective parameters in the chaotic phase. (A) Color legend of the chaotic phase (boundaries from Fig. 5). Each pair of (�, �) has
been mapped to a distinct color. (B) Co-dependence of the e�ective parameters u, k, ⌧: the amplitude u of growth-rate fluctuations approximately equals the
absolute value k of the negative growth rate (only weakly depending on � and S; SI Appendix, Fig. S10); u is roughly proportional to the inverse turnover time,
but the slope of the relationship depends on � and S. (C) The exponent ⌫ of the power-law section of the AFD for the chaotic dLV model plotted against the
analogue ⌫foc obtained for the focal-species model: generally good agreement is found, with more outliers for parameters close to phase boundaries. A few
outliers lie beyond the plotted range. Exponents have been estimated by fitting a power-law in the interval [100�,0.01] of the abundance distribution.

3. Discussion
Following growing empirical evidence for the presence of
ecological chaos in natural and synthetic communities (7, 19),
and increasing interest in the role of the rare biosphere (10, 62),
we have sought a connection between the two through a minimal
model of community dynamics: The disordered Lotka–Volterra
(dLV) model with strong interactions and weak immigration.
Our analysis of this model by extensive simulations, and through
the derivation of an effective focal-species model, showed that
first, persistent chaos arises generically and can drive fast and
extensive turnover of rare and abundant species; second, a
statistical equivalence between species emerges such that a single
focal species’ fluctuation statistics predict the largely invariant
power-law abundance distributions; third, deviations from this
equivalence are associated with species differences in frequency
of occurrence. In the following, we discuss the generality of these
results and their interpretation in the context of plankton ecology.

The chaotic turnover of rare and abundant species occurs
because every subset of species that could stably coexist at high
abundances is invadable by some rare species. This phenomenon
should be robust to generalizations of the model as long as the
dominant component remains exposed to a sufficient diversity
of potential invaders and the niche space that underlies species
interactions contains enough trade-offs that no species can be a
superior competitor across many biotic contexts. Our simplifying
assumptions such as uniform growth rates and carrying capacities,
and uncorrelated interactions can be relaxed (see our limited
explorations in SI Appendix, Fig. S5). Additional sources of
modest noise should not cancel the deterministic contributions to
fluctuations; indeed, the dynamical phases we have indicated are
qualitatively similar to those arising in an individual-based version
of the dLVmodel accounting for demographic stochasticity (23).
On the other hand, if the connectivity of the interaction network
were reduced, lowering the exposure to competitors, one might
expect a loss of persistent chaos at some critical connectance value
(63). Highly structured and hierarchical interactions would also
undermine autonomous turnover on ecological timescales.

On amore technical note, the type of chaos we observe is likely
“chaotic itinerancy” (49, 64). Lotka–Volterra systems without
immigration admit heteroclinic networks (65–67), equilibria
with stable and unstable directions (i.e. saddle points) connected
by orbits. Without immigration, such saddles are found on
the system boundary, corresponding to some subset of species

being extinct—in our case, these are the low-diversity equilibria
reflected in the dominant component. The chaotic attractors
appear when the saddles are “pushed off” the boundary by the
immigration term.Consistent with chaotic itinerancy in the dLV,
characteristics of heteroclinic orbits—dynamical slowdown and
“aging”—appear in the limit of vanishing immigration (60, 68).

While the assumption of disordered interactions may appear
ad hoc, predictions for the onset of instability by the dLV
model qualitatively match experiments in synthetic bacterial
communities (19). In a plankton context, we take the dLV to be
a minimal yet relevant phenomenological representation of the
relationships between species (or “operational taxonomic units”
from sequencing) of marine protists of a similar size class: The
protistan interactome is largely uncharted (69), the ubiquity of
mixoplankton blurs consumer–resource distinctions (70), and
the effects of a diversity of zooplankton and viruses can manifest
as apparent competition between species.

For rare plankton protists, the empirical snapshot SADs show
a clear power-law trend, with an exponent around 1.6, varying
little between different locations in the world oceans, despite
large composition differences across samples (12). The unified
neutral theory of biodiversity, based on the interchangeability
of individuals regardless of species identity, predicts a power-
law tail of the SAD with exponent one (3, 56). To approach
the empirical value, previous studies augmented neutral theory
with nonlinear growth rates (12) or chaotic mixing (71) to find
an exponent dependent on the model parameters. However,
for large census sizes such as that of plankton communities,
neutral theories predict astronomically large turnover timescales
(72, 73), inconsistent with observation. As we have shown, the
dLV exhibits fast turnover when interactions are strong and
sufficiently varied. For this model, ⌫ ! 1 as immigration
tends to zero (SI Appendix, Fig. S7, also shown in the weak-
interaction limit (28, 60)), but, if interactions are not weak,
⌫ is substantially larger than one for small but finite values
of immigration. The approximate solution to the focal-species
model, Eq. 10, shows that the positive deviation from ⌫ = 1
depends on three inter-related effective parameters: the mean,
amplitude, and timescale of fluctuations in each species’ net
competition. As these fluctuations drive the turnover pattern,
boom-bust dynamics comes to be associated with a larger-than-
one exponent. The relatively weak variation of ⌫ across the
space of ecological parameters moreover suggests a reason for
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Fig. 6. Relations between e�ective parameters in the chaotic phase. (A) Color legend of the chaotic phase (boundaries from Fig. 5). Each pair of (�, �) has
been mapped to a distinct color. (B) Co-dependence of the e�ective parameters u, k, ⌧: the amplitude u of growth-rate fluctuations approximately equals the
absolute value k of the negative growth rate (only weakly depending on � and S; SI Appendix, Fig. S10); u is roughly proportional to the inverse turnover time,
but the slope of the relationship depends on � and S. (C) The exponent ⌫ of the power-law section of the AFD for the chaotic dLV model plotted against the
analogue ⌫foc obtained for the focal-species model: generally good agreement is found, with more outliers for parameters close to phase boundaries. A few
outliers lie beyond the plotted range. Exponents have been estimated by fitting a power-law in the interval [100�,0.01] of the abundance distribution.

3. Discussion
Following growing empirical evidence for the presence of
ecological chaos in natural and synthetic communities (7, 19),
and increasing interest in the role of the rare biosphere (10, 62),
we have sought a connection between the two through a minimal
model of community dynamics: The disordered Lotka–Volterra
(dLV) model with strong interactions and weak immigration.
Our analysis of this model by extensive simulations, and through
the derivation of an effective focal-species model, showed that
first, persistent chaos arises generically and can drive fast and
extensive turnover of rare and abundant species; second, a
statistical equivalence between species emerges such that a single
focal species’ fluctuation statistics predict the largely invariant
power-law abundance distributions; third, deviations from this
equivalence are associated with species differences in frequency
of occurrence. In the following, we discuss the generality of these
results and their interpretation in the context of plankton ecology.

The chaotic turnover of rare and abundant species occurs
because every subset of species that could stably coexist at high
abundances is invadable by some rare species. This phenomenon
should be robust to generalizations of the model as long as the
dominant component remains exposed to a sufficient diversity
of potential invaders and the niche space that underlies species
interactions contains enough trade-offs that no species can be a
superior competitor across many biotic contexts. Our simplifying
assumptions such as uniform growth rates and carrying capacities,
and uncorrelated interactions can be relaxed (see our limited
explorations in SI Appendix, Fig. S5). Additional sources of
modest noise should not cancel the deterministic contributions to
fluctuations; indeed, the dynamical phases we have indicated are
qualitatively similar to those arising in an individual-based version
of the dLVmodel accounting for demographic stochasticity (23).
On the other hand, if the connectivity of the interaction network
were reduced, lowering the exposure to competitors, one might
expect a loss of persistent chaos at some critical connectance value
(63). Highly structured and hierarchical interactions would also
undermine autonomous turnover on ecological timescales.

On amore technical note, the type of chaos we observe is likely
“chaotic itinerancy” (49, 64). Lotka–Volterra systems without
immigration admit heteroclinic networks (65–67), equilibria
with stable and unstable directions (i.e. saddle points) connected
by orbits. Without immigration, such saddles are found on
the system boundary, corresponding to some subset of species

being extinct—in our case, these are the low-diversity equilibria
reflected in the dominant component. The chaotic attractors
appear when the saddles are “pushed off” the boundary by the
immigration term.Consistent with chaotic itinerancy in the dLV,
characteristics of heteroclinic orbits—dynamical slowdown and
“aging”—appear in the limit of vanishing immigration (60, 68).

While the assumption of disordered interactions may appear
ad hoc, predictions for the onset of instability by the dLV
model qualitatively match experiments in synthetic bacterial
communities (19). In a plankton context, we take the dLV to be
a minimal yet relevant phenomenological representation of the
relationships between species (or “operational taxonomic units”
from sequencing) of marine protists of a similar size class: The
protistan interactome is largely uncharted (69), the ubiquity of
mixoplankton blurs consumer–resource distinctions (70), and
the effects of a diversity of zooplankton and viruses can manifest
as apparent competition between species.

For rare plankton protists, the empirical snapshot SADs show
a clear power-law trend, with an exponent around 1.6, varying
little between different locations in the world oceans, despite
large composition differences across samples (12). The unified
neutral theory of biodiversity, based on the interchangeability
of individuals regardless of species identity, predicts a power-
law tail of the SAD with exponent one (3, 56). To approach
the empirical value, previous studies augmented neutral theory
with nonlinear growth rates (12) or chaotic mixing (71) to find
an exponent dependent on the model parameters. However,
for large census sizes such as that of plankton communities,
neutral theories predict astronomically large turnover timescales
(72, 73), inconsistent with observation. As we have shown, the
dLV exhibits fast turnover when interactions are strong and
sufficiently varied. For this model, ⌫ ! 1 as immigration
tends to zero (SI Appendix, Fig. S7, also shown in the weak-
interaction limit (28, 60)), but, if interactions are not weak,
⌫ is substantially larger than one for small but finite values
of immigration. The approximate solution to the focal-species
model, Eq. 10, shows that the positive deviation from ⌫ = 1
depends on three inter-related effective parameters: the mean,
amplitude, and timescale of fluctuations in each species’ net
competition. As these fluctuations drive the turnover pattern,
boom-bust dynamics comes to be associated with a larger-than-
one exponent. The relatively weak variation of ⌫ across the
space of ecological parameters moreover suggests a reason for

8 of 12 https://doi.org/10.1073/pnas.2312822121 pnas.org
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Other single-species effective models

Other single-species models have been proposed to explain the behaviour of many-species 
GLV equations or to fit observational data

1. Dynamical Mean Field Theory (DMFT)/cavity method

2. Stochastic Logistic Model (SLM)

here, growth rate fluctuations are uncorrelated and the equations are solved close to the 
equilibrium. 

Jacopo Grilli
Macroecological laws describe variation and diversity  in microbial 
communities
Nature Communications (2020)

Guy Bunin, Giulio Biroli, Ada Altieri, Tobias Galla, Heyjin Park, 
Matthieu Barbier 



Dimensionality of the chaotic attractor

The chaotic attractor has generally small 
dimension and a small effective community size

that increases as interactions weaken 

Attractor dimension

We follow the Kaplan-Yorke conjecture in calculating the dimension of

the attractor from the LEs. This appears to be ⇠ 2 times larger than the

number of positive LEs.

A small number of effective variables are 
important to describe the community dynamics

is a realization of a random variable ⇠ N (0, 1). A finite net
competition in the limit of a large species pool requires:

� =
�̃
S
, �2 =

�̃2

S
, [5]

where �̃, �̃ do not grow with S. Under this scaling, methods from
statistical physics [dynamical mean-field theory (34, 39–41),
random matrix theory (32, 42), and replica theory (43, 44)]
allow exact analytical results in the limit of S ! 1, although
in practice S ⇠ 100 is sufficient for good agreement between
theory and simulations. Sharp boundaries were shown to separate
a region where species coexist at a unique equilibrium and
one with multiple attractors, including chaotic steady states
(34, 39–41).

Since we are here interested in the scenario of large differences
in species abundance (rare biosphere pattern) and rapid turnover
dynamics, we instead consider the strong-interaction regime
where the statistics of the interaction matrix do not scale with
species richness S according to Eq. 5. For S� � 1, the
overall competitive pressure makes it impossible for all species
to simultaneously attain abundances close to their carrying
capacities. Abundant species tend to exclude one another,
resulting in instability and complex community dynamics.
Arguably, strong interactions are more plausible than weak ones
for microbial communities, where metabolic cross-feeding, toxin
release, phagotrophy, and competition over limited nutrients
lead species to depend substantially on one another’s presence
(45, 46).

2. Results
In the strong-interaction regime, numerical simulations of the
disordered Lotka–Volterra model show that the community can
display several different classes of dynamics, from equilibrium
coexistence of a small subset of species, to different kinds of
oscillations, including chaos. In Sections 2.1–2.4, we focus on
the reference value of the interaction statistics (� = 0.5, � = 0.3)
representative of chaotic dynamics, and describe its salient
features. In Subsections 2.5–2.6, we describe how the dynamics
depends qualitatively on the statistical parameters� and�. Unless
otherwise stated, simulations use S = 500 and � = 10�8.
Further details on the numerical implementation are presented
in section 4.1.

2.1. A Chaotic Turnover of Rare and Abundant Species. For a
broad range of parameters in the strong-interaction regime, the
community undergoes a chaotic turnover of dominant species.
As illustrated by the time series of stacked abundances in Fig. 1A,
the overwhelming share of the total abundance at any given time
is due to just a few species. Which species are abundant and
which are rare changes on a characteristic timescale, ⌧dom ⇡ 30
time units, comparable to the time it would take an isolated
species to attain an abundance on the order of its carrying
capacity starting from the lowest abundance set by immigration.
While the total abundance fluctuates moderately around a well-
defined time average, individual species follow a “boom-bust”
dynamics. If this simulation represented a natural microbial
community, only the most abundant species—that we call the
dominant component of the community—would be detectable
by morphological inspection or shallow sequencing.

We wish to characterize the dominant component and
understand how it relates to the pool of rarer species. In order to

A

B

Fig. 1. Turnover of the dominant component. (A) The stacked abundances
of all species under steady-state conditions: There is a turnover of species
such that only the dominant component is visible at any given time (each
species has a distinct random color). (B) Bray–Curtis index of community
composition similarity between the dominant component of the community
at time t, and the composition if it were isolated from the rare species
and allowed to reach equilibrium: The community appears to approach the
composition of few-species equilibria before being destabilized by invasion
from the pool of rare species.

quantify the notion of dominance, we define the effective size of
the community as Simpson’s (reciprocal) diversity index (47),

Seff(t) :=
1

P
i p

2
i (t)

, [6]

where pi = xi/
P

j xj denote relative abundances. Seff approaches
its lowest possible value of 1 when a single species is responsible
for most of the total abundance, and its maximum S when
all species have similar abundances. Its integer approximation
provides the richness, i.e. , number of distinct species, of the
dominant component.

The effective size Seff of the community in our reference
simulation fluctuates around an average of nine dominant
species, which make up 90% of the total abundance. The
relative abundance threshold for a species to be in the dominant
component fluctuates around 3%, which is comparable to
the arbitrary 1%-threshold used in empirical studies (48). In
SI Appendix, Fig. S4, we show that the number of dominant
species grows slowly (but super-logarithmically) with S, up to
about 15 for S = 104. Thus, strong interactions limit the size
of the dominant component, and the vast majority of species are
rare at any point in time.

The turnover of dominant species is not periodic; indeed,
even over a large time-window, where every species is found on
multiple occasions to be part of the dominant component, its
composition never closely repeats (SI Appendix, Fig. S3). This
aperiodicity suggests the presence of chaotic dynamics. We give
numerical evidence for sensitive dependence on initial condition
and positive maximal Lyapunov exponent in SI Appendix, Figs.
S1 and S2. The turnover dynamics has the character of moving,
chaotically, between different quasi-equilibria corresponding to
different compositions of the dominant community [cf. “chaotic
itinerancy” (49)]. To reveal this pattern, we measure a “closeness-
to-equilibrium,” defined as the similarity in composition between
the observed dominant component at a given time, and the
equilibrium that this dominant component would converge to
if it were isolated from the rare component and allowed to

PNAS 2024 Vol. 121 No. 11 e2312822121 https://doi.org/10.1073/pnas.2312822121 3 of 12
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Conclusions on unstructured communities

Strong competitive interactions drive 
exclusion on a short time scale. 

In the presence of weak immigration, the 
community composition wanders between 
low-dimensional ‘cliques’, and abundant and 
rare species turn over.

This effectively neutral (species-symmetric) 
behaviour underpins a power-law trend in the 
rare species’ distribution

The effective dynamics of any species is well 
approximated by a ‘focal species’ model with 
a decay trend and correlated effective 
fluctuations.

E. Mallmin, A. Traulsen, SDM
Chaotic turnover of rare and abundant species in a 
strongly interacting model community
PNAS (2024)

© Adrienne Nowak

https://iscpif.fr/artex23-prize/



Scaling of attractor dimension



SI: Chaotic turnover ... in a strongly interacting model community 6 S1 SUPPLEMENTARY FIGURES

Figure S8: Phase diagram form adiabatic simulations. Adiabatic simulations allow to track, in a numerically e�cient fashion, the
attractors of the dynamics as model parameters are changed slowly and continuously. To make the interaction statistics � and � continuous
parameters of themodel, we use as interactionmatrix ���(�,�) = �+���� where � is a single, �xed realization of a standard Gaussian random
matrix. A For each value of �, we initialized separate simulation runs starting at � = 1.4, and let their abundances evolve until an attractor
was found. For each run, we then changed� by small increments �� = �0.1, allowing enough time between each change for the abundances
to relax from their previous state. This relaxation would either result in a small perturbation of the previous attractor, or instigate a jump
to a di�erent attractor. If a state diverged, the initial abundances for the next value of � were set as the most recent non-divergent attractor.
Thus, each simulation traced a sequence of attractors from � = 1.4 � �0.1, corresponding to a horizontal line in the phase diagram. The
colour quality re�ects the class of the attractor, and the colour gradation indicates the e�ective community size, revealing the following
features: First, we �nd mostly �xed points in the multiple attractor region. This is because, once a �xed point is converged to, it is “hold on
to” until it vanishes or changes stability. If, instead, every simulation at given �,� would start from newly sampled initial abundances and
interactionmatrix, we would �nd di�erent attractors every time, and the diagram becomes more heterogeneous (compareMain Text Figure
5). Second, clear lines radiate from (�,�) = (1, 0) and delineate sectors characterized by the number of high-abundance species coexisting
at a �xed-point. In section S4 we show that an invasion analysis predicts such sectors, but not the right scaling of the lines’ slope with �e�.
Third, the jump from �xed-point to chaotic attractors occurs along a sharply de�ned line. B Stacked abundances of the attractor found in
an adiabatic sequence � = 1.4 � 0.6 (top panel, right to left) and the reverse 0.6 � 1.4 (bottom panel, left to right) at � = 0.3. One can
see sudden jumps to new equilibria involving more (or less) species. In the upper panel, reading right to left, a three-species equilibrium is
found at � = 1.15, which jumps to a 6-species equilibrium by the invasion of three more species at � = 1.11; another two species displace
one of the previous at � = 0.9; and at � = 0.72 a sudden jump onto a chaotic attractor occurs. Reversing the adiabatic protocol, the transition
from chaos to �xed point occurs only at � = 0.81, and the sequence of equilibria is not identical to the forward direction (hysteresis). A
systematic investigation of the multiple attractor phase and the transition to the chaotic phase is left for future work.
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of the 1,952 UMGS and the 553 HGR genomes was built on the basis 
of the 40 marker genes extracted with specI32 (Fig. 3a). Phylogenetic 
analysis showed that the UMGS genomes expand the known diver-
sity of the human gut bacterial lineages by 281%, on the basis of total 
branch lengths, with the largest increase within the Firmicutes phylum  
(Fig. 3b). Several uncultured genomes showing high phylogenetic 

similarity were retrieved belonging to Actinobacteria, particularly the 
Collinsella genus. This suggests that the genome-based boundaries 
between species and genus within this group are more tenuous com-
pared to other human gut bacterial clades. Of note is that the UMGS 
included genomes belonging to Cyanobacteria (Gastranaerophilales), 
Saccharibacteria, Spirochaetes and Verrucomicrobia. These are likely 
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Fig. 2 | Taxonomy of the most prevalent uncultured gut bacterial 
species. a, Taxonomic composition of the 1,952 UMGS, with ranks 
ordered from top to bottom by their increasing proportion among the 
UMGS collection. Only the five most frequently observed taxa are shown 
in the legend, with the remaining lineages grouped as ‘other classified taxa’. 

b, Top 20 most prevalent UMGS genomes across the 13,133 metagenomic 
datasets, inferred from the level of genome coverage, read depth and 
evenness. Each species is coloured according to class, with the predicted 
taxon indicated in brackets.

Tree scale: 1

a

b

Firmicutes (326/931)

Bacteroidetes (68/280)
Tenericutes (21/138)

Proteobacteria (63/84)
Actinobacteria (60/423)

Spirochaetes (0/11)
Verrucomicrobia (0/15)
Fusobacteria (13/14)
Cyanobacteria (0/3)

Saccharibacteria (0/7)
Synergistetes (2/2)

Genome

UMGS (medium quality)
UMGS (near complete)
HGR

Phylum
Actinobacteria
Bacteroidetes
Cyanobacteria
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Proteobacteria
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Verrucomicrobia

Exclusive to non-European 
and non-North American samples
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provided by the UMGS (total branch length)
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Fig. 3 | Phylogeny of reference and uncultured human gut bacterial 
genomes. a, Maximum-likelihood phylogenetic tree comprising the 553 
genomes belonging to the HGR, and 1,952 to UMGS. Clades are labelled 
according to genome type (HGR, near-complete or medium-quality 
UMGS) and the corresponding phylum is depicted in the first outer layer. 
Blue and red dots in the second layer denote genomes that were found in 
at least one sample from all six continents analysed (Africa, Asia, Europe, 
North America, South America and Oceania), or exclusively detected in 

non-European, non-North American samples, respectively. Green bars 
in the outermost layer represent the prevalence of the genome among the 
13,133 metagenomic datasets. b, Level of increase in phylogenetic diversity 
provided by the UMGS, relative to the complete diversity per phylum (left) 
and represented as absolute total branch lengths (right). The number of 
HGR and UMGS genomes assigned to each phylum is depicted in brackets 
(HGR/UMGS).
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Microbial ‘species’ in the human gut

Almeida et al.
A new genomic blueprint of the human gut microbiota
Nature 2019
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to correspond to rarer or more difficult-to-culture clades from the  
human gut, as none had a representative isolate genome in the HGR 
database.

Subsequently, we correlated the prevalence and abundance of each 
UMGS and HGR genome with the geographical origin of the sample 
to infer any associations (Fig. 4). We investigated how many samples 
from the different continents each species was found at a relative abun-
dance of more than 0.01% (Fig. 4a). In the majority of the sampled 
populations, the UMGS were less prevalent than the HGR genomes, 
a possible indication of why they have not been detected in previous 
genomic studies. However, the UMGS were more frequent, compared 
to the HGR genomes, among understudied samples from Africa and 
South America with non-Western lifestyles (Fig. 4a). This was par-
ticularly evident for a subset of 75 and 120 UMGS that were present 
at an abundance of more than 0.01% in more than 20% of the samples 
from Africa and South America, respectively (Fig. 4b). This was only 
the case for 6 and 16 HGR genomes, respectively, suggesting that some 
of our newly identified UMGS better represent the gut diversity pres-
ent in the small number of samples from these two underrepresented 
populations.

To further evaluate the improvements provided by the UMGS for 
classification of the full metagenomic datasets, we assessed the percent-
age of reads that we were able to assign to HR, RefSeq and our UMGS 
dataset. With all the available genomes (HR, RefSeq, plus all UMGS), 
we observed a median classification of 72.8% (IQR = 65–81.1%). This 
represents an improvement of 23% over the use of a database compris-
ing just HR, and of 17% over a combined set with HR and RefSeq. As 
the UMGS collection comprises over three times the number of gut 

species present in the HR database, this modest increase again suggests 
that the majority of these uncultured organisms are present at a lower 
abundance in most samples, compared to the gut isolate genomes.

After partitioning the data according to geographical origin, the 
small number of datasets from Africa (n = 21) and South America 
(n = 36) saw an improvement in read assignment of 215% and 278%, 
respectively (Fig. 4c). This confirms that some UMGS are much more 
abundant in these specific gut communities. In order to deduce how 
much diversity might remain undetected, we built an accumulation 
curve based on the number of UMGS retrieved as a function of the 
number of samples obtained from each continent (Fig. 4d). European 
and North American populations showed the greatest coverage, trend-
ing towards a saturation point. Conversely, in samples outside North 
America and Europe, new uncultured species are still detected at a 
consistent rate. These results underscore the importance of sampling 
underrepresented regions to continue to uncover the global diversity 
of the human gut microbiota.

A distinctive functional repertoire
With access to 2,505 human gut species (1,952 UMGS and 553 HGR), we 
performed a comprehensive and in-depth functional characterization  
of the collective gut bacterial population. Using antiSMASH35, we screened  
for the presence of secondary metabolite biosynthetic gene clusters 
(BGCs) encoded within both the UMGS and HGR (Supplementary 
Table 5). We detected over 200 BGCs coding for sactipeptides,  
nonribosomal peptide synthetases (NRPSs) and bacteriocins (Extended 
Data Fig. 8a). Notably, 85% and 70% of the total BGCs detected in 
the UMGS and the HGR, respectively, represented novel clusters (that 
is, without a positive match in the Minimum Information about a 
Biosynthetic Gene (MIBiG) cluster database; Extended Data Fig. 8b). 
This suggests the potential presence of many undiscovered natural 
compounds produced by the intestinal microbiota with possible anti-
microbial and/or biotechnological applications for future study.

We next applied complementary approaches to identify the most 
distinguishing traits between the UMGS and HGR genomes. First, from 
the predicted protein-coding sequences, we used InterProScan36 to gen-
erate annotations that were translated to 1,199 Genome Properties37,38 
(GPs) and 115 metagenomics Gene Ontology39,40 (GO) slim terms—a 
summarized classification of GO annotations from metagenomic 
data41. Each GP—a functional attribute predicted to be encoded in a 
genome—was determined to be present, partially present or absent, 
depending on the number of proteins that were detected to be involved 
in that property. In parallel, we used GhostKOALA42 to generate KEGG 
Orthology (KO) annotations to track the differential abundance of spe-
cific functional categories across the UMGS and HGR sets. Globally, by 
analysing the repertoire of GPs according to the taxonomic composi-
tion, we observed a good separation by phylum (ANOSIM R = 0.42, 
P < 0.001), with the Bacteroidetes and Proteobacteria taxa in particu-
lar displaying very distinctive functional profiles (Fig. 5a). We further 
investigated the separation between the UMGS and HGR genomes 
within each phylum, which revealed a strong differentiation among 
Actinobacteria, Firmicutes, Proteobacteria and Tenericutes (ANOSIM 
R ≥ 0.30, Extended Data Fig. 9a). In particular, we detected 182, 207, 
115 and 68 GPs particularly enriched in the UMGS genomes from 
Actinobacteria, Firmicutes, Proteobacteria and Tenericutes, respec-
tively (χ2 test, adjusted P < 0.05), with only eight functions enriched 
within the Bacteroidetes group. Properties involved in iron metabolism 
and transport were among the 21 functions consistently enriched in 
the UMGS across these four most distinctive phyla (Extended Data 
Table 1).

Subsequently, by assessing the frequency of the GO and KO anno-
tations, we were able to apply a quantitative approach to compare the 
HGR and UMGS functional repertoires. In general, KEGG pathways 
involved in carbohydrate metabolism were the most differentially 
abundant between the UMGS and HGR genomes, indicating distinct 
metabolic affinities between the cultured and uncultured species 
(Extended Data Fig. 9b). In the case of GO terms, less abundant genes 
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Fig. 4 | Geographical distribution of the samples and uncultured 
species. a, Distribution of the number of samples (log-transformed) that 
each HGR or UMGS present in at least one sample was found at a relative 
abundance above 0.01%. HGR genomes: n = 31 (Africa), n = 340 (Asia), 
n = 351 (Europe), n = 362 (North America), n = 86 (South America) and 
n = 129 (Oceania). UMGS genomes: n = 230 (Africa), n = 1,157 (Asia), 
n = 1,410 (Europe), n = 1,238 (North America), n = 482 (South America) 
and n = 287 (Oceania). b, Number of species found (abundance > 0.01%) 
in more than 20% of the samples from each geographical region.  
c, Percentage increase of the proportion of reads, partitioned by sample 
geographical location (Africa, n = 21; Asia, n = 1,447; Europe, n = 4,716; 
North America, n = 6,869; South America, n = 36; Oceania, n = 24), that 
were assigned to the HR, RefSeq and UMGS, in relation to HR and RefSeq 
alone. d, Accumulation curve depicting the number of UMGS detected 
as a function of the number of metagenomic samples per continent. Data 
points represent the average of ten bootstrap replicates. The curve of 
best fit generated from an asymptotic regression is represented for each 
geographical region. In a and c, box lengths represent the IQR of the data, 
and the whiskers the lowest and highest values within 1.5 times the IQR 
from the first and third quartiles, respectively.
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OTUs’ rank abundance plots
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RESULTS
Coalescence model predicts the effect of chaotic advection 
by oceanic currents on SADs
We introduce a computational model to assess the effect of chaotic 
advection on the protist species distribution of a water sample. In 
this model, we assign a Lagrangian tracer (hereafter “tracer”) to 
each individual in the sample (see Fig. 1). Tracers are initially placed 
in a local area, representing the portion of water where the sample 
was collected. The spatial coordinates x and y of each tracer move 
backward in time, following the spatial trajectory of the ancestors of 
each individual (see Fig. 1). If two tracers are at a sufficiently close 
distance, then they coalesce into a single tracer with a given proba-
bility. This new tracer represents the common ancestor of the two 
individuals. Last, tracers are assigned at a fixed rate m to one species. 
These events represent immigration due to other causes than ocean 
currents. Assigned tracers are eliminated from the system. At the 
end of a run, individuals in the original sample are considered con-
specific if their corresponding tracers have coalesced to a common 
ancestor before being eliminated (see Materials and Methods, 
Fig. 1, and movie S1). This coalescence model can be interpreted as 
the backward version of an individual-based community model, 
which includes advection by currents (see fig. S1) (38, 41). The 
coalescent formulation has the advantage of describing the dynamics 
of one sample embedded in a larger ecosystem (42, 43).

We simulate the coalescence model with and without oceanic 
currents. In the latter case, movements of tracers are modeled as a 
simple diffusion process, taking into account individual movements 
and small-scale turbulence. In the former case, we superimpose to 
this diffusion process the effect of large-scale oceanic currents. We 
model transport by these currents with a kinematic model of a 
meandering jet, which is a common large-scale structure characterizing 
oceanic flows (44, 45). Population sizes and parameters characterizing 

the flow are sampled in a physically realistic range (see Materials 
and Methods) (45). All other parameters characterizing population 
dynamics are chosen identically in the two cases (see Materials 
and Methods).

SADs predicted by the model present a considerable variability 
depending on parameters and demographic stochasticity, both in 
the presence and absence of currents (see Fig. 2, A and B). To 
characterize individual SAD curves, we fit them with a power law 
function P(n) ∝ 1/na using maximum likelihood in an optimal 
range of abundances (see Materials and Methods). For comparison, 
we also fit an exponential distribution P(n) ∝ e−c n and a Fisher log 
series P(n) ∝ e−c n/n in the same range. In most cases, the power law 
provides a better fit than the exponential distribution (74 and 77% 
of samples with and without currents, respectively) and than the 
Fisher log series (75 and 62% of samples with and without currents, 
respectively).

Introducing oceanic currents in the model increases, on average, 
the steepness of SADs (see Fig. 2, A and B). We investigate the phys-
ical mechanisms causing this effect. One property of transport by 
currents is to enhance the effective diffusivity (46). We test whether 
effective diffusivity is responsible for the steepening of SADs by 
running our model with the effective diffusivity of the kinematic 
model but without currents. In this case, we find that the distribution 
of SAD exponent has lower average than in the case with smaller 
diffusion constant (see fig. S2). This implies that the increase of 
SAD exponents caused by currents is due to structures created by 
the flow that cannot be simplified into a diffusion process. We 
further run our model with a parameter choice yielding currents 
constant in time (see fig. S3). Neither in this case do we observe the 
steep SADs as that found in the presence of time-dependent currents.

These results suggest that the time-varying, chaotic nature of 
oceanic transport is responsible for the steepening of SAD curves. 

Fig. 1. Genealogy in oceanic currents. (Left) The coalescence model predicts the protist species composition in a sample of oceanic water taken from an area of size 
L0 × L0. Different colors represent different species. Arrows represent the velocity field induced by ocean currents. (Right) Trajectories of the coalescence model with 
ocean currents. Individuals are represented by tracers that are transported backward in time and can coalesce with other tracers if they reach a close distance. 
Coalescence events are marked by open circles; trajectories of individuals that have coalesced are shown in the same color. Tracers are removed from the population at 
an immigration rate m (marked by crosses). See also movie S1.
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In particular, chaotic transport is often characterized by the presence 
of barriers limiting diffusion among certain regions of the flow. The 
presence of these barriers can be detected by finite-size Lyapunov 
exponents (FSLEs) (47). FSLEs quantify the growth rate of a finite 
separation among two particles advected by a flow. We measure 
local FLSEs for our model and find that they are significantly correlated 
with the spatial dependence of the exponent a (see fig. S4). This result 
supports the view that the long-lived barriers characterizing fluid 
flows prevent formation of large operational taxonomic units (OTUs) 
in the model and are thus responsible for the steepening of SAD curves.

Protist SADs are steeper in oceans than in freshwater
To test our predictions, we analyze DNA metabarcoding datasets 
from two studies of aquatic protists. The first dataset includes 
oceanic protist DNA sequences of 157 water samples from the TARA 
ocean expedition (29). The second dataset includes protist DNA 
sequences of 206 freshwater samples taken from lakes (40). We 
calculate SAD for each sample of both datasets using OTUs as proxies 
for species (see Materials and Methods). Here and in the following, if 
not stated otherwise, OTUs are built by clustering protist sequences 
at 97% sequence identity threshold. From now on, we discard 
“abundant species,” defined as those in abundance classes P(n) 
including less than four species. The remaining “rare species” are 
the subject of our study. They constitute 93% of all species in ocean 
samples and 78% of all species in lake samples.

As for the model, empirical SAD curves display considerable 
sample-to-sample variability, both in ocean and in freshwater sam-
ples (see Fig. 3). This variability is possibly caused by differences in 
ecological conditions among sampling sites. Empirical SAD curves 
are better fitted by a power law than by exponential or Fisher log 
series in most cases. The exponential distribution provides a better 
fit than the power law in 13% of lake samples and 13% of oceanic 
samples, whereas the Fisher log series provides better fits than the 
power law in 39% of lake samples and 18% of oceanic samples. We 
obtain similar results with different OTU definitions (95 and 99% 
instead of 97% similarity) and different thresholds separating abun-
dant from rare species (see fig. S5). Notably, the power law decay of 
SADs is, on average, steeper in oceans than in lakes (see Fig. 3), as 
predicted by our coalescence model.

Distribution of the SAD exponent is quantitatively predicted 
by the coalescence model.
We quantify the agreement between our model and the data by 
analyzing the distribution of the power law exponent a in Eq. 1. In 
the presence of currents, the model predicts a value of the exponent 
significantly larger than one (average a = 1.70, SD s = 0.68). In the 
absence of oceanic currents, the model predicts an average a = 1.26, 
(s = 0.46), a value compatible with the neutral prediction a = 1 in 
well-mixed systems (31) and spatially explicit neutral models 
(43). To verify whether the results are robust to oceanic current 
models, we also implement a kinematic model of the Adriatic 
sea and a chaotic Taylor-Green vortex (see fig. S6). In both cases, 
we obtain qualitatively similar results to that obtained for the 
meandering jet (see fig. S6), supporting that the observed mechanism 
is general.

Observations in both oceans and lakes are in excellent agree-
ment with the distributions of exponents predicted by our model 
(see Fig. 4A). Our analysis confirms that the average exponent a is 
significantly larger than 1 in the oceans [average a = 1.79, s = 0.52; 
see Fig. 4A and (29)]. In the lakes, the average exponent is a = 1.37 
(s = 0.44; see Fig. 4A). Adopting a different definition of OTUs 
(95 and 99% instead of 97%), different thresholds separating abundant 
from rare species and rarefying oceanic and lake data to the same 
sample size lead to qualitatively similar results (see fig. S5). In 
particular, the average exponent a in the oceans is between 4 and 
23% larger than that in the lakes, depending on the threshold and 
the definition of OTUs (P values of Games-Howell test <0.002 in 
all cases).

The ocean (29) and lake (40) datasets we analyzed used different 
polymerase chain reaction (PCR) primers. To verify that this differ-
ence does not affect our results, we analyze two further metage-
nomic datasets, one from oceans (48) and one from lakes (49), that 
used the same primer. Also in this case, we find higher average 
exponent a in the oceans, confirming the robustness of our results 
(see fig. S7).

In the case of the meandering jet, we find that four parameters 
characterizing the shape and the mixing level of the jet mostly affect 
a. The value of the exponent is significantly correlated with the pa-
rameters w, ڙ, and c (see Fig. 4B and fig. S8). In particular, the strong 
correlation with the forcing frequency w driving the chaotic motion 
is a further evidence that the steepening of SAD exponents is caused 
by chaotic advection.

Chaotic advection by oceanic currents leads to a steeper 
increase in number of species as a function of sample size
By simulating our model at varying sample size N with and without 
currents, we predict that currents should significantly increase the 
number of expected species in each sample (see Fig. 5A). This effect 
is consistent with the increase of a in the presence of currents: 
Increasing a suppresses very abundant species and therefore increases 
the species diversity of the samples. This effect becomes more and 
more pronounced as N is increased. In the data, we find that 
samples from oceans contain more species than samples from lakes 
at similar sample size, which is consistent with our predictions (see 
Fig. 5A). The observed enrichment is even stronger than predicted 
by our model.

We now study the increase of number of species with sample size 
in oceanic and lake water samples individually. In the case of well-
mixed populations, the species composition of a given sample is 

A B

Fig. 2. Coalescence model predicts effect of chaotic advection by oceanic 
currents on SAD. The two panels show SADs (A) in the presence (orange lines) and 
(B) absence (green lines) of oceanic currents for the coalescence model. Here and 
below, SAD curves are rescaled so that P(1) = 1 to ease visualization. Model details 
and parameters are presented in Materials and Methods. Dashed lines are power 
laws to guide the eye (see also Fig. 3).
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described by the Ewens sampling formula (50), which predicts that 
the expected number of species in the sample is

  S =   ∑ 
j=0

  
N

      q ─ q + j − 1    (2)

where q = 2Neffm is the fundamental biodiversity number (31) and 
Neff is the effective population size. Alternatively, sample species 
composition can be empirically described using a power law (51).

  S ∝  N   z   (3)

Our model predicts an increase in number of species with 
sample size, as predicted by the Ewens sampling formula (see 
Fig. 5, A and B). Both for ocean and freshwater samples, the power 
law model provides a better fit (see Fig. 5, A and B) with a higher 

exponent for oceanic samples (z = 0.73) compared to lake samples 
(z = 0.65). This result is qualitatively robust with respect to changing 
the OTU similarity threshold (see fig. 5C). Understanding why the 
observed number of species seems to depend on the sample size as 
a power law is an interesting question for future studies.

DISCUSSION
Oceanic currents are known to largely affect plankton distribution 
at large scale (15–17). Here, we show that chaotic advection by 
oceanic currents profoundly affects diversity of rare protist species 
even at the level of single metagenomic samples. Our coalescence 
model bridges the gap between large-scale oceanic dynamics and 
ecological dynamics at the individual level and provides a versatile 
and powerful tool to validate individual-based ecological models 
using DNA metabarcoding data. Although we focus on neutral 
dynamics of rare protists, our approach can be extended to more 
general ecological settings and to other plankton communities, in-
cluding animals and prokaryotes. These generalizations, combined 
with high-throughput sequencing data, will permit to test whether 
the mechanism described here affects other kingdoms characterized 
by different population sizes, dispersal, and spatial turnover rates 
(52). These tests can shed light on the main ecological forces deter-
mining plankton dynamics and help understanding the difference 
in empirically observed patterns between abundant and rare species 
(24, 25).

The coalescence model predicts that the chaotic advection is 
responsible for steeper decay of SAD curves and steeper increase in 
the number of observed rare species with sample size. Both these 
predictions are in quantitative agreement with observations, although 
the exponent of the ocean and lake SADs largely overlap, suggesting 
that the trend is true globally but not necessarily so locally. The 
steep decay of SAD distributions in the oceans has been previously 
explained in terms of density-dependent effects (29). Although our 
study does not preclude this possibility, the comparison with freshwater 

A B

Fig. 3. Rare SADs present a steeper decay with abundance in oceans than in 
lakes. Continuous lines represent SADs of protist communities from (A) 157 oce-
anic samples (29) and (B) 206 freshwater samples (40). Total numbers of individuals 
in each sample are in the ranges of (A) (103, 105) and (B) (104, 106). In both panels, 
power laws (dashed lines) are shown to guide the eye.

Fig. 4. Power law exponents of SADs. We run our models for different population sizes and different values of flux parameters for ocean samples (see Materials and 
Methods). We select 157 oceanic samples and 206 freshwater samples as in Fig. 3. We fit the power law exponent a of the SADs to the model and to the data using maximum 
likelihood. (A) Continuous distributions of the exponent obtained by kernel density estimation. (B) Dependence of the exponent on four main parameters of the oceanic 
flow: forcing frequency w, wave perturbation amplitude ڙ, mean wave amplitude B0, and phase speed c. In each subpanel, other parameters are kept constant 
(see Materials and Methods). Correlation tests of w, ڙ, B0, and c with the exponent a yield Pearson coefficients rP = 0.72, 0.48, −0.04, and −0.58 and P values P = 3 × 10−9, 
6 × 10−4, 0.77, 10−5, respectively.
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Species abundance distributions

Chaotic turnover ... in a strongly interacting model community Mallmin, Traulsen, De Monte (2023)

Figure 2: Statistical features of abundance variations across species
and in time. A Snapshot rank-abundance plot for the relative abundances
in the reference simulation: most species have orders ofmagnitude smaller
abundances than the top ranks. Di�erent lines represent observations at
well-separated time points. B Species abundance distribution (SAD, blue
histogram) corresponding to the blue rank-abundance plot; overlaid, abun-
dance �uctuation distribution (AFD), averaged over all species (black line)
with ± one standard deviation across species shaded in grey: the snapshot
SAD appears to be a subsampling of the average AFD, indicating an equiv-
alence, but de-synchronization, of species in their abundance �uctuations.
The one bar missing from the SAD is the e�ect of �nite species richness,
as high-abundance bins only ever contain a couple of species for � = 500.
The vertical dashed line indicates the immigration level which determines
a lower limit to abundances.

placement of single species from one bin to another. Sec-
ond, every species �uctuates in time between extreme rar-
ity (� � � = 10�8) and high abundance (� � 10�1). This
variation is comparable to that observed, at any given time,
between the most abundant and the rarest species. Third,
species are largely equivalent with respect to the spectrum
of�uctuations in time, as indicated by the small variation in
AFDs across species. We will evaluate the regularities and
di�erences of single-species dynamics more thoroughly in
Section 3.4.
Themost striking feature of these distributions, however,

is the power-law ��� traced for intermediate abundances.
This range is bounded at low abundances by the immigra-
tion rate and at high abundances by the single-species car-
rying capacity. The power-law exponent is � � 1.18 for the
simulation analysed, but it varies in general with the eco-
logical parameters, as we discuss further in the following
sections.
The regularity of the abundance distributions across

species suggests that it may be possible to describe the dy-
namics of a ‘typical’ species in a compact way—this is the
goal of the next section.

3.3 A stochastic focal-speciesmodel reproduces boom-bust
dynamics

Fluctuating abundance time series are often �tted by one-
dimensional stochastic models [6]; for example, stochas-
tic logistic growth has been found to capture the statis-

Figure 3: Comparison of the stochastic focal-species model and the
chaotic dLV model. A Time series of one arbitrary species in the dis-
ordered Lotka-Volterra (dLV) model (blue), and one realization of the
stochastic focal-species model (Eq. (7)) with parameters as in Eq. (9): the
time series are statistically similar. B Comparison of the average abun-
dance�uctuation distribution (AFD) fromFigure 2 (black), and theAFDof
the focal-speciesmodel (pink): excellent agreement is found for the power-
law section. The ‘uni�ed coloured noise approximation’ solution for the
focal-species model’s AFD (dashed, pink line) predicts the correct overall
shape of the distribution, but not a quantitatively accurate value for the
power-law exponent.

tics of �uctuations in a variety of data sets on microbial
abundances [54, 55]. The noise term encapsulates varia-
tions in a species’ growth rate whose origin may not be
known explicitly. In our virtual Lotka-Volterra community,
once the interaction matrix and initial abundances have
been�xed, there is no uncertainty; nonetheless, the chaotic,
high-dimensional dynamics results in species’ growth rates
�uctuating in a seemingly random fashion. We are there-
fore led to formulate a model for a single, focal species, for
which explicit interactions are replaced by stochastic noise.
Because we have found species to be statistically similar, its
parameters do not depend on any particular species, but re-
�ect thee e�ective dynamics of any species in the commu-
nity.
Following dynamical mean-�eld-like arguments and ap-

proximations informed by our simulations (Appendix E),
we derive the focal-species model

��(�) = �(�) (�(�) � �(�)) + �, (7a)
�(�) = �� + � �(�), (7b)

where �(�) is a stochastic growth rate with mean ��, and
�uctuations of magnitude � and correlation time �. The
process �(�) is a coloured Gaussian noise with zero mean
and an autocorrelation that decays exponentially;

��� = 0, ��(�) �(��)� = ����������, (8)

where brackets denote averages over noise realizations. The
connection between the ecological parameters �,�,�, � and
the resulting dynamics of the disordered Lotka-Volterra
model in the chaotic phase is then broken down into two
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�ect thee e�ective dynamics of any species in the commu-
nity.
Following dynamical mean-�eld-like arguments and ap-

proximations informed by our simulations (Appendix E),
we derive the focal-species model

��(�) = �(�) (�(�) � �(�)) + �, (7a)
�(�) = �� + � �(�), (7b)

where �(�) is a stochastic growth rate with mean ��, and
�uctuations of magnitude � and correlation time �. The
process �(�) is a coloured Gaussian noise with zero mean
and an autocorrelation that decays exponentially;

��� = 0, ��(�) �(��)� = ����������, (8)

where brackets denote averages over noise realizations. The
connection between the ecological parameters �,�,�, � and
the resulting dynamics of the disordered Lotka-Volterra
model in the chaotic phase is then broken down into two
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Figure 2: Statistical features of abundance variations across species
and in time. A Snapshot rank-abundance plot for the relative abundances
in the reference simulation: most species have orders ofmagnitude smaller
abundances than the top ranks. Di�erent lines represent observations at
well-separated time points. B Species abundance distribution (SAD, blue
histogram) corresponding to the blue rank-abundance plot; overlaid, abun-
dance �uctuation distribution (AFD), averaged over all species (black line)
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placement of single species from one bin to another. Sec-
ond, every species �uctuates in time between extreme rar-
ity (� � � = 10�8) and high abundance (� � 10�1). This
variation is comparable to that observed, at any given time,
between the most abundant and the rarest species. Third,
species are largely equivalent with respect to the spectrum
of�uctuations in time, as indicated by the small variation in
AFDs across species. We will evaluate the regularities and
di�erences of single-species dynamics more thoroughly in
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Themost striking feature of these distributions, however,

is the power-law ��� traced for intermediate abundances.
This range is bounded at low abundances by the immigra-
tion rate and at high abundances by the single-species car-
rying capacity. The power-law exponent is � � 1.18 for the
simulation analysed, but it varies in general with the eco-
logical parameters, as we discuss further in the following
sections.
The regularity of the abundance distributions across

species suggests that it may be possible to describe the dy-
namics of a ‘typical’ species in a compact way—this is the
goal of the next section.

3.3 A stochastic focal-speciesmodel reproduces boom-bust
dynamics

Fluctuating abundance time series are often �tted by one-
dimensional stochastic models [6]; for example, stochas-
tic logistic growth has been found to capture the statis-
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shape of the distribution, but not a quantitatively accurate value for the
power-law exponent.
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once the interaction matrix and initial abundances have
been�xed, there is no uncertainty; nonetheless, the chaotic,
high-dimensional dynamics results in species’ growth rates
�uctuating in a seemingly random fashion. We are there-
fore led to formulate a model for a single, focal species, for
which explicit interactions are replaced by stochastic noise.
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where brackets denote averages over noise realizations. The
connection between the ecological parameters �,�,�, � and
the resulting dynamics of the disordered Lotka-Volterra
model in the chaotic phase is then broken down into two
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Estimating community-level parameters

Changing the interaction statistics 𝜇 and 𝜎 therefore affects the features of the effective noise.

It is not possible to solve the equations self-consistently (as in DMFT), but the effective noise 
parameters can be estimated starting from community-level observables derived from the time 
series: the time-average of the total abundance and of the effective community size: 
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Figure 4: Species di�erences in dominance. A Example of a long abundance time series for the three species who are ranked �rst, median, and
last, with respect to the ‘dominance bias’ (fraction of time spent in the dominant component relative to the species median). Some species ‘boom’ more
often than others. B The scaling of median fraction of time spent in the dominant component against reciprocal species pool size: increasing � results
in a proportional decrease in median dominance time. C Distribution of dominance biases against relative dominance rank for a range of �: there
appears to be convergence towards a non-constant limiting distribution, implying that net species di�erences are not due to small-� e�ects. Note that,
by de�nition, the dominance bias is 1 for the middle rank, indicated by the dashed line separating positively from negatively biased species. D Scatter of
dominance bias against the normalized sum of interaction coe�cients, �� Eq. (4): lower net competition correlates with higher dominance bias. Species
in the tails of the �� distribution are also less ‘typical’, with typicality quanti�ed by the index �� , Eq. (16), representing the similarity of a species AFD to
the species-averaged AFD. Panel A and D are both for � = 500.

steps: how the e�ective parameters �,�, � relate to the eco-
logical parameters; and how the behaviour of the focal-
species model depends on the e�ective parameters.
For the �rst step we �nd

� = �� � 1 and � = � ��
�e�

, (9)

where � is the total community abundance of the original
dynamics Eq. (1), the e�ective community size �e� is as in
Eq. (6), and an overline denotes a long-time average. Equa-
tion (9) relates the focal species’ growth rate to the time-
averaged net competition (� ��) from all other species.
We �nd in simulations of Eq. (1) in the chaotic phase that
competition is strong enough to make � > 0. The sec-
ond relation captures the variation in the net competition
that a species experiences because of turnover of the dom-
inant community component. Due to sampling statistics,
this variation is largerwhen the dominant component tends
to have fewer species; hence the dependence on (�e�)�1�2.
The third e�ective parameter, the timescale �, controls how
long the focal species stays dominant, once a�uctuation has
brought it to high abundance. This timescale is essentially
equal to the turnover timescale �dom of the dominant com-
ponent (de�ned more precisely by autocorrelation func-
tions inAppendix E). In theweak-interaction regime, where
any pair of species can be treated as e�ectively independent
at all times, self-consistency relations such as ���� = � al-
low to implicitly express the focal-species model in terms of
the ecological parameters. For strong interactions, however,
the disproportionate e�ect of the few dominant species on
the whole community invalidates this approach; we there-
fore relate the e�ective parameters to the community-level

observables �, �e�, �dom which are obtained from simula-
tion of Eq. (1) at given values of the ecological parameters.
For the second step, we would like to solve Eqs. (7) for

general values of the e�ective parameters. While this is in-
tractable due to the �nite correlation time of the noise, the
equations can be simulated and treated by approximate ana-
lytical techniques. In Figure 3A we compare the time series
of an arbitrary species in the dLV model with a simulation
of the focal-species model. By eye, the time series appear
statistically similar. The typical abundance of a species can
be estimated by replacing the �uctuating growth rate in in
Eq. (7) with its typical value (i.e. � = 0), yielding the equi-
librium ��� if � > 0, as indeed con�rmed by the simula-
tion. Thus the typical abundance value is on the order of
the immigration threshold. Figure 3B shows that the av-
erage AFD of the dLV agrees remarkably well with the sta-
tionary distribution of the focal-species model, in particular
for the power-law section. Using the uni�ed coloured noise
approximation [56] (Appendix F), one predicts that the sta-
tionary distribution, for � � � � 1, takes the power-law
form ���, where the exponent

� = 1 + �
�2� . (10)

is strictly larger than one—the value predicted for weak in-
teractions [41] and for neutral models [57]. Even if Eq. (10)
is not quantitatively precise (Figure 3B), this formula sug-
gests a scalingwith the e�ective parameters that wewill dis-
cuss later on.

3.4 Species with lower net competition are more often
dominant

The similarity of all species’ abundance�uctuation distribu-
tions in Figure 2 is re�ected in the focal-species model’s de-
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E Derivation of the stochastic focal-speciesmodel fromdy-
namical mean-�eld arguments

We write Eq. (1) as

��� = ��(�� � ��) + �, �� = 1 �
�

�(��)
����� . (23)

If we suppose that the abundances {��(�)} (or, rather, their
statistical properties) are independent of the particular re-
alization [���] of the interaction matrix, then, for a given re-
alization of {��(�)},

��(�) ��
�
�
�
1 � �

�

�(��)
��(�), �2

�

�(��)
�2� (�)

�
�
�
, (24)

based on the properties of sums of Gaussian variables. The
time-varying mean and variance of �� means that, averaged
over time, �� does not necessarily follow a Gaussian distri-
bution. We introduce

�(�) �= 1 � �
�

�
��(�), �(�) �= �

��

�
�2� (�), (25)

which are found to exhibit signi�cant relative �uctuations,
with skeweddistributions (Figure 7AandB).However, once
we shift and scale ��(�) into the “e�ective noise”

��(�) �=
��(�) � �(�)

�(�) , (26)

we recover (closely) a�(0, 1) distribution, for both the set
{��(�)}1,…,� at any given time �, or for the stationary distri-
bution of ��(�), at least for typical species (Figure 7C and
D). The empirical distribution of the �� across all species
and times is closely approximated by the stationary distri-
bution�(�, �) (Figure 7E). Therefore, we suppose that, de-
spite their �uctuations, we can replace �(�) and �(�) with
their time-averages and model �� as a stochastic process

�(�) = � + ��(�), (27)

where �(�) is a process with stationary distribution�(0, 1).
The parameter correspondence inEq. (9) follows by � = ��,
� = � � ��

�
�e�, and � = ��, the correlation time of �.

Note that, up to neglecting a diagonal term of the sum,
the e�ective noise can be written

��(�) = �
�

�(��)
�����(�), (28)

with ��� � �(0, 1), and �(�) = �(�)����(�)��2. Given the
chaotic turnover pattern, the latter is expected to perform
something like a random walk on the �-sphere, with a de-
correlation time corresponding to the turnover of domi-
nant species. This timescale is inherited by the e�ective
noise. More precisely, we compare autocorrelation func-
tions (ACF). The ACF of a function � is de�ned as

��(�lag) �=
��[��(�) � ��(� + �lag)]

Var� , (29)

Figure 7: Statistical properties of the e�ective noise. A, B Time series
and distribution of �rel = ��� � 1, etc. C, D Histograms of ��(�) across all
species and time (grey), over just species for one random time (green), over
all time for the �rst/mid/last-ranked species with respect to average abun-
dance (blue/pink/yellow), with �(0, 1) (black, dashed) for reference. E
The empirical distribution of � in Eq. (23) over all species and times, com-
pared to the distribution�(�, �) assumed for � in the focal-species model.
F Autocorrelation functions: for every species (grey), �rst/mid/last-rank
species (blue/pink/yellow)), and the average over all species (black). The
left inset compares the ACFs of � (green), � (black), and the exponential �t
to the latter (red); the right inset shows the distribution of the � parameter
in exponential �ts to each species ACF.

with �� = � � � and using the notation Eq. (18). By de�-
nition ��(0) = 1. For each species’ e�ective noise we com-
pute numerically ��� (�lag), as shown in Figure 7F. Due to the
small number of ‘booms’ per species, even over a large sim-
ulation time, ACFs are slightly irregular. In order to make
estimations more accurate, we consider the averaged ACF

�� �=
1
�
�

�
��� . (30)

The decay of correlation is well-approximated by the ex-
ponential exp(��lag���), where the parameter �� (�tted by
least squares) represents the noise correlation timescale for
a ‘typical’ species.
The approximately �(0, 1) distribution and exponential
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Focal-species vs dGLV models

Compare the full system (deterministic, S-dimensional) and of the focal species model (stochastic, 
one-dimensional)
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Figure 2: Statistical features of abundance variations across species
and in time. A Snapshot rank-abundance plot for the relative abundances
in the reference simulation: most species have orders ofmagnitude smaller
abundances than the top ranks. Di�erent lines represent observations at
well-separated time points. B Species abundance distribution (SAD, blue
histogram) corresponding to the blue rank-abundance plot; overlaid, abun-
dance �uctuation distribution (AFD), averaged over all species (black line)
with ± one standard deviation across species shaded in grey: the snapshot
SAD appears to be a subsampling of the average AFD, indicating an equiv-
alence, but de-synchronization, of species in their abundance �uctuations.
The one bar missing from the SAD is the e�ect of �nite species richness,
as high-abundance bins only ever contain a couple of species for � = 500.
The vertical dashed line indicates the immigration level which determines
a lower limit to abundances.

placement of single species from one bin to another. Sec-
ond, every species �uctuates in time between extreme rar-
ity (� � � = 10�8) and high abundance (� � 10�1). This
variation is comparable to that observed, at any given time,
between the most abundant and the rarest species. Third,
species are largely equivalent with respect to the spectrum
of�uctuations in time, as indicated by the small variation in
AFDs across species. We will evaluate the regularities and
di�erences of single-species dynamics more thoroughly in
Section 3.4.
Themost striking feature of these distributions, however,

is the power-law ��� traced for intermediate abundances.
This range is bounded at low abundances by the immigra-
tion rate and at high abundances by the single-species car-
rying capacity. The power-law exponent is � � 1.18 for the
simulation analysed, but it varies in general with the eco-
logical parameters, as we discuss further in the following
sections.
The regularity of the abundance distributions across

species suggests that it may be possible to describe the dy-
namics of a ‘typical’ species in a compact way—this is the
goal of the next section.

3.3 A stochastic focal-speciesmodel reproduces boom-bust
dynamics

Fluctuating abundance time series are often �tted by one-
dimensional stochastic models [6]; for example, stochas-
tic logistic growth has been found to capture the statis-

Figure 3: Comparison of the stochastic focal-species model and the
chaotic dLV model. A Time series of one arbitrary species in the dis-
ordered Lotka-Volterra (dLV) model (blue), and one realization of the
stochastic focal-species model (Eq. (7)) with parameters as in Eq. (9): the
time series are statistically similar. B Comparison of the average abun-
dance�uctuation distribution (AFD) fromFigure 2 (black), and theAFDof
the focal-speciesmodel (pink): excellent agreement is found for the power-
law section. The ‘uni�ed coloured noise approximation’ solution for the
focal-species model’s AFD (dashed, pink line) predicts the correct overall
shape of the distribution, but not a quantitatively accurate value for the
power-law exponent.

tics of �uctuations in a variety of data sets on microbial
abundances [54, 55]. The noise term encapsulates varia-
tions in a species’ growth rate whose origin may not be
known explicitly. In our virtual Lotka-Volterra community,
once the interaction matrix and initial abundances have
been�xed, there is no uncertainty; nonetheless, the chaotic,
high-dimensional dynamics results in species’ growth rates
�uctuating in a seemingly random fashion. We are there-
fore led to formulate a model for a single, focal species, for
which explicit interactions are replaced by stochastic noise.
Because we have found species to be statistically similar, its
parameters do not depend on any particular species, but re-
�ect thee e�ective dynamics of any species in the commu-
nity.
Following dynamical mean-�eld-like arguments and ap-

proximations informed by our simulations (Appendix E),
we derive the focal-species model

��(�) = �(�) (�(�) � �(�)) + �, (7a)
�(�) = �� + � �(�), (7b)

where �(�) is a stochastic growth rate with mean ��, and
�uctuations of magnitude � and correlation time �. The
process �(�) is a coloured Gaussian noise with zero mean
and an autocorrelation that decays exponentially;

��� = 0, ��(�) �(��)� = ����������, (8)

where brackets denote averages over noise realizations. The
connection between the ecological parameters �,�,�, � and
the resulting dynamics of the disordered Lotka-Volterra
model in the chaotic phase is then broken down into two
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The focal species model can be 
solved in the limit where turnover 
time is small or large (unified 
colours noise approximation), which 
yields an analytical expression for 
the slope of the power-law trend
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tions in a species’ growth rate whose origin may not be
known explicitly. In our virtual Lotka-Volterra community,
once the interaction matrix and initial abundances have
been�xed, there is no uncertainty; nonetheless, the chaotic,
high-dimensional dynamics results in species’ growth rates
�uctuating in a seemingly random fashion. We are there-
fore led to formulate a model for a single, focal species, for
which explicit interactions are replaced by stochastic noise.
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Figure 4: Species di�erences in dominance. A Example of a long abundance time series for the three species who are ranked �rst, median, and
last, with respect to the ‘dominance bias’ (fraction of time spent in the dominant component relative to the species median). Some species ‘boom’ more
often than others. B The scaling of median fraction of time spent in the dominant component against reciprocal species pool size: increasing � results
in a proportional decrease in median dominance time. C Distribution of dominance biases against relative dominance rank for a range of �: there
appears to be convergence towards a non-constant limiting distribution, implying that net species di�erences are not due to small-� e�ects. Note that,
by de�nition, the dominance bias is 1 for the middle rank, indicated by the dashed line separating positively from negatively biased species. D Scatter of
dominance bias against the normalized sum of interaction coe�cients, �� Eq. (4): lower net competition correlates with higher dominance bias. Species
in the tails of the �� distribution are also less ‘typical’, with typicality quanti�ed by the index �� , Eq. (16), representing the similarity of a species AFD to
the species-averaged AFD. Panel A and D are both for � = 500.

steps: how the e�ective parameters �,�, � relate to the eco-
logical parameters; and how the behaviour of the focal-
species model depends on the e�ective parameters.
For the �rst step we �nd

� = �� � 1 and � = � ��
�e�

, (9)

where � is the total community abundance of the original
dynamics Eq. (1), the e�ective community size �e� is as in
Eq. (6), and an overline denotes a long-time average. Equa-
tion (9) relates the focal species’ growth rate to the time-
averaged net competition (� ��) from all other species.
We �nd in simulations of Eq. (1) in the chaotic phase that
competition is strong enough to make � > 0. The sec-
ond relation captures the variation in the net competition
that a species experiences because of turnover of the dom-
inant community component. Due to sampling statistics,
this variation is largerwhen the dominant component tends
to have fewer species; hence the dependence on (�e�)�1�2.
The third e�ective parameter, the timescale �, controls how
long the focal species stays dominant, once a�uctuation has
brought it to high abundance. This timescale is essentially
equal to the turnover timescale �dom of the dominant com-
ponent (de�ned more precisely by autocorrelation func-
tions inAppendix E). In theweak-interaction regime, where
any pair of species can be treated as e�ectively independent
at all times, self-consistency relations such as ���� = � al-
low to implicitly express the focal-species model in terms of
the ecological parameters. For strong interactions, however,
the disproportionate e�ect of the few dominant species on
the whole community invalidates this approach; we there-
fore relate the e�ective parameters to the community-level

observables �, �e�, �dom which are obtained from simula-
tion of Eq. (1) at given values of the ecological parameters.
For the second step, we would like to solve Eqs. (7) for

general values of the e�ective parameters. While this is in-
tractable due to the �nite correlation time of the noise, the
equations can be simulated and treated by approximate ana-
lytical techniques. In Figure 3A we compare the time series
of an arbitrary species in the dLV model with a simulation
of the focal-species model. By eye, the time series appear
statistically similar. The typical abundance of a species can
be estimated by replacing the �uctuating growth rate in in
Eq. (7) with its typical value (i.e. � = 0), yielding the equi-
librium ��� if � > 0, as indeed con�rmed by the simula-
tion. Thus the typical abundance value is on the order of
the immigration threshold. Figure 3B shows that the av-
erage AFD of the dLV agrees remarkably well with the sta-
tionary distribution of the focal-species model, in particular
for the power-law section. Using the uni�ed coloured noise
approximation [56] (Appendix F), one predicts that the sta-
tionary distribution, for � � � � 1, takes the power-law
form ���, where the exponent

� = 1 + �
�2� . (10)

is strictly larger than one—the value predicted for weak in-
teractions [41] and for neutral models [57]. Even if Eq. (10)
is not quantitatively precise (Figure 3B), this formula sug-
gests a scalingwith the e�ective parameters that wewill dis-
cuss later on.

3.4 Species with lower net competition are more often
dominant

The similarity of all species’ abundance�uctuation distribu-
tions in Figure 2 is re�ected in the focal-species model’s de-
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Variation of community-level parameters

Emergent relationships between 
community-level parameters result in a 
small variation of the power-law exponent 
in the whole chaotic region.
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Figure 6: Relations between e�ective parameters in the chaotic phase. A Colour legend of the chaotic phase (boundaries from Figure 5). Each
pair of (�,�) has been mapped to a distinct colour. B Co-dependence of the e�ective parameters �, �, �: the amplitude � of growth-rate �uctuations
approximately equals the absolute value � of the negative growth rate (only weakly depending on � and �; Supplementary Figure S10); � is roughly
proportional to the inverse turnover time, but the slope of the relationship depends on � and �. C The exponent � of the power-law section of the AFD
for the chaotic dLV model plotted against the analogue �foc obtained for the focal-species model: generally good agreement is found, with more outliers
for parameters close to phase boundaries. A few outliers lie beyond the plotted range. Exponents have been estimated by �tting a power-law in the
interval [100�, 0.01] of the abundance distribution.

become more competitive, up to about 1.4 at (�,�) = (1, 0).
However, the exponent also depends on � and �, showing
a constant slope against log � or �1� log � (Supplementary
Figure S7).

4 Discussion

• Short summary of goal and what we achieved. State-
ment of main conclusions and summary of following
discussion points.

• Prevalence of chaos

• Idividual dynamics; similarities and di�erences

• Abundance distributions;

• Mechanism of chaos

• E�ective model, relation

• Model assumptions, generalizations

Following growing epirical evidence for the presence of
ecological chaos in natural and synthetic communities [6,
19], and in the plankton in particular, we have sought to
assess how readily chaos occurs in a species-rich commu-
nitymodel underminimal assumptions, where our goal has
been to link the per-species abundance time series perspec-
tive with that of static comunity-level distributions.
========OLD==============
We have sought a possible theoretical underpinning

for macroecological patterns of dominance and rarity in
species-rich communities. To this end, we studied a Lotka-
Volterra model with strong interactions and weak immigra-
tion using numerical simulations and approximate analyti-
cal techniques. We characterized a parameter regimewhere
species generically turn over between a small dominant
component, and a large pool of temporarily rare species. In
this process, each species’ abundance undergoes a chaotic
boom-bust dynamics, asynchronous with respect to most
other species. The resulting distribution of abundances—of

a single species over long times, or of the whole community
at a single time—has a prominent power-law trend.
The phenomenology of themodel—chaos, boom-bust dy-

namics, and a power-law shaped SAD with exponent larger
than one—is consistent with observations of marine plank-
ton communities [8, 12, 14, 16, 17]. While the evidence for
chaos in ecological time series has been generally ambigu-
ous, a recent systematic assessment concludes that chaos
is commonplace, especially for plankton [8]. Experiments
with closed plankton microcosms have revealed chaotic,
high-amplitude �uctuations sustained over many years [16,
17]. Abundance �uctuations indicative of chaos were also
seen in non-planktonic synthetic microbial communities
[18, 19], but of lower amplitude. That planktonic popula-
tion sizes �uctuate over many orders of magnitude in abun-
dance is made especially poignant by algal blooms, which
can become visible even from space. The timing of blooms,
and the succession of functional groups within a season, are
coupled to environmental factors such as nutrient concen-
trations. Yet, for the non-dominant taxa, the large di�er-
ences in a species’ abundance between ocean samples show
little environmental signature [12]. This suggests that the
turnover of abundances might rather be driven by complex
interactions or mixing dynamics. Empirical snapshot SADs
of marine protists show a clear power-law trend for non-
dominant species within the same size class, with an expo-
nent around 1.6 [12], varying little between samples, as in
our model.
The value of the exponent � of the SAD’s power-law trend

is important as a plausibility test of di�erent models in re-
lation to plankton communities. Neutral theory predicts a
power-law tail of the SAD with exponent one [3, 57]. To
approach the empirical value, previous studies augmented
neutral theory with nonlinear growth rates or chaotic mix-
ing [12, 63] to �nd an exponent dependent on themodel pa-
rameters. In the chaotic phase of the Lotka-Volterra model,
seemingly � � 1 as immigration tends to zero (Supple-
mentary Figure S7; also shown for weak-interaction limit
[26, 61]). However, for small but �nite values of immigra-
tion, � is substantially larger than one if interactions are
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for parameters close to phase boundaries. A few outliers lie beyond the plotted range. Exponents have been estimated by �tting a power-law in the
interval [100�, 0.01] of the abundance distribution.
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this process, each species’ abundance undergoes a chaotic
boom-bust dynamics, asynchronous with respect to most
other species. The resulting distribution of abundances—of

a single species over long times, or of the whole community
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namics, and a power-law shaped SAD with exponent larger
than one—is consistent with observations of marine plank-
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chaos in ecological time series has been generally ambigu-
ous, a recent systematic assessment concludes that chaos
is commonplace, especially for plankton [8]. Experiments
with closed plankton microcosms have revealed chaotic,
high-amplitude �uctuations sustained over many years [16,
17]. Abundance �uctuations indicative of chaos were also
seen in non-planktonic synthetic microbial communities
[18, 19], but of lower amplitude. That planktonic popula-
tion sizes �uctuate over many orders of magnitude in abun-
dance is made especially poignant by algal blooms, which
can become visible even from space. The timing of blooms,
and the succession of functional groups within a season, are
coupled to environmental factors such as nutrient concen-
trations. Yet, for the non-dominant taxa, the large di�er-
ences in a species’ abundance between ocean samples show
little environmental signature [12]. This suggests that the
turnover of abundances might rather be driven by complex
interactions or mixing dynamics. Empirical snapshot SADs
of marine protists show a clear power-law trend for non-
dominant species within the same size class, with an expo-
nent around 1.6 [12], varying little between samples, as in
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is important as a plausibility test of di�erent models in re-
lation to plankton communities. Neutral theory predicts a
power-law tail of the SAD with exponent one [3, 57]. To
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Other single-species effective models

Other single-species models have been proposed to explain the behaviour of many-species 
GLV equations or to fit observational data

1. Dynamical Mean Field Theory (DMFT)

2. Stochastic Logistic Model (SLM)

here, growth rate fluctuations are uncorrelated and the equations are solved close to the 
equilibrium. 
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