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Abundance distributions

Diversity is best studied by looking at the identity and abundance of species

Statistical properties of abundance distributions reflect demographic processes

The hope is therefore to be able to tell processes apart by looking at the
corresponding distributions

A large number of models exist, based on different hypotheses on, for instance,
species symmetry, degree of competition, importance of finite-size
fluctuations/drift, dispersal.
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Sampling blurs things further.



Observed abundance

Observed dominance

Observed evenness

Observed rareness

Universal law of abundance decay
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The powerbend distribution provides a unified model for the
species abundance distribution across animals, plants and microbes
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Distributions of microbial abundance fluctuations
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What are the key features of species abundance distributions?

What ecological factors shape them?

Emil Mallmin & Arne Traulsen
MPI for Evolutionary Biology, Plon



A general model with fluctuating growth rates and regulation

Species growth rate can fluctuate due to (effective) environmental fluctuations, and abundances
are capped by interactions within the same species and with the rest of the community

_ _Self_ Immigration
limitation
Abundance n;(t) = n;(O)|r(t) — uN(t) —eni(t)] + 4
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‘Neutral’ case

A (t) = ny(O]r(t) — uN(0)]

Same community-level
regulation and time
average of fluctuations
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n;(t)

‘Neutral’ case: transient and asymptotic dynamics

r*=r*

Community diversity rapidly
increases and species turn over

Van Nes et al.
A tiny fraction of all species forms most of nature: Rarity as a sticky state

PNAS 2024



‘Neutral’ case: transient and asymptotic dynamics

r*=r>k

n;(t)
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Community diversity rapidly
increases and species turn over

but eventually one species
excludes all the others on

the timescale In(S)/y



Mapping into the random energy model
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n;(t)

Time-average neutrality and stabilization

Species-independent average fitness
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Approximation and an effective description

The (nondimensional) stationary solution depends mostly on two ratios of three compound
parameters
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A 'focal-species’ effective model captures the shape of such abundance distributions
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Distributions ot species abundances

species

SAD: species abundance distribution (snapshot)

FAD: frequency abundance distribution
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Exclusion—Stabilization [logi1o(Ke/Y)]

Distributions for time-average neutral communities
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Empirical observations: SADs and AFDs
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FAD (density)

FAD (density)

Distributions for heterogeneous communities
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Single species are still described by the focal species model, but with varying parameters



Empirical observations: frequent and occasional species
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Empirical observations: temporal turnover
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Conclusions

The combination of fitness fluctuations (that yield growing inequalities in integrated fitness),
buffering (that prevents extinction) and limitation (that bounds abundances) generically
constrains abundance distributions.

A number of features of empirical observations (snapshot and time-resolved) are retrieved
with a stylized model that encompasses those features.

In such model, the shape of the abundance distributions mostly depends on just two
parameter combinations, that quantify the relative strength of limitation and of buffering
relative to the exclusion time scale.

This pinpoints the limitations of resolving ecological processes from fitting abundance
distributions, but also to the possible use of quantitative variation to distinguish different
ecological regimes.

Emil Mallmin, Arne Traulsen, SDM
Fluctuating growth rates link turnover and unevenness in species-rich communities
https://arxiv.org/pdf/2505.01376



Random ecosystems with structure

Juan Giral-Martinez Matthieu Barbier
(IBENS et INTP) (INTP, CIRAD, Montpellier)
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Disordered generalized LV equations with structure

ax;(t)
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Types of structure

Group structure Nested structure Competition for one

(e.g. phylogenies) resource
(1)
X1 ‘ & _'- ‘ ZZ.(A) impact traits
o N
s . ) 3 ‘ fa S, sensitivity traits



Examples of structuring interactions

Two functional groups

Consumer-resource



Structured random interaction matrix

functions’ index
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‘Structured’ DMFT

dx i
dt
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Equilibrium SADs
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The combination of structure and disorder can create virtually
any shape of the species abundance distribution.



Trait structure propagates to the SAD
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Power-law distributed response traits give rise to power-law SADs for small
randomness, but for strong randomness the Gaussian shape supersedes.



Group structure and out-of-equilibrium dynamics

Ecosystems with a small number of functional classes (macroscopic degrees of freedom)
are predicted to easily produce oscillations
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Trophic model closure influences ecosystem response to enrichment
Ecological Modelling (2023)
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Diversity and stability
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Intensity of group competition

K =3



Diversity and stability
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Coherent loss of stability of the fixed point

Pseudo-Jacobian

Tij = —x] (035 — Mij) r; = max (0,z; + &)
1 1
® The outlier eigenvalues of the pseudo-Jacobian are
= the same as the Jacobian, but depend on disorder
0 — 0@ —=— S
S only through the equilibrium abundances.
o They shift to the left when disorder increases.
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As the time scales associated with the microscopic variables spread out, the
macroscopic and microscopic oscillations are simultaneously suppressed



Low-dimensional chaos and randomness
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High-dimensional chaos and randomness
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Conclusions on the interplay of structure and randomness

Structure and randomness overlap simply at equilibrium, where the system is described by
mesoscopic variables that combine them.

Equilibria can lose stability through both collective transitions and low-codimension
bifurcations.

When the structured dynamics is out-of-equilibrium, dephasing of species oscillations
within functional groups induces community stabilization for intermediate disorder.

How to evaluate the degree of randomness in real ecosystems?

J. Giral, Martinez, M Barbier*, SDM*, BioRxiv
J. Giral, Martinez, SDM*, M Barbier*, arXiv
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