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Figure S2: Time-evolution of the SADwith or without coexistence mechanisms. Starting from an even initial condition, we track the evolution
of the SAD averaged over 1000 realizations. In the left panel, there is no immigration and no additional self-suppression, in contrast to the right panel.
Early on, both scenarios give similar distributions, until the bounds in the latter scenario restrict the expansion of the distribution; for the former
scenario, the power-law section extends ever into lower abundance decades with time, seemingly approaching an exponent of 1 (dashed line). Here,
� = 500, �� = 1,�� = 0.05, � = 10.
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Abundance distributions

Diversity is best studied by looking at the identity and abundance of species

Statistical properties of abundance distributions reflect demographic processes

The hope is therefore to be able to tell processes apart by looking at the 
corresponding distributions

A large number of models exist, based on different hypotheses on, for instance, 
species symmetry, degree of competition, importance of finite-size 
fluctuations/drift, dispersal.



Long-lasting debate on the 
functional form of SADs.

Problem: ecologically different 
modelling hypotheses produce the 
same class of distributions, and, 
vice-versa, different distributions 
can become qualitatively similar in 
certain limits.

Fitting abundance distributions



Long-lasting debate on the 
functional form of SADs.

Problem: ecologically different 
modelling hypotheses produce the 
same class of distributions, and, 
vice-versa, different distributions 
can become qualitatively similar in 
certain limits.

Sampling blurs things further.

Preston’s veil Fitting abundance distributions



Universal law of abundance decay

 19 

Figures 360 

 361 

Fig. 1 Goodness of fit of SAD models in 13,819 animal and plant communities. The 362 

predicted values are plotted against observed values for a, species abundance. b, SAD 363 

dominance. c, SAD evenness, and d, SAD rareness. Each dot in a represents a species and 364 

each dot in b-d represents a community. The color represents the density of the dots: red 365 

represents the densest dots and dark blue represents the least dense ones. The black 366 

diagonal line is the 1:1 line that represents a perfect fit. Goodness of fit for each SAD model 367 
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Gao et al.
The powerbend distribution provides a unified model for the 
species abundance distribution across animals, plants and microbes
Nature Comm (2025)

13.819 animal and plant communities
15.329 microbial communities

‘Powerbend’   fits the SADs best 
when sampling is modelled



Distributions of microbial abundance fluctuations

zero-inflated Gamma distribution (see Methods and Supplemen-
tary Fig. 6).

This result strongly suggests that, at the taxonomic resolution
used in this study, competitive exclusion is absent or, at least,
statistically irrelevant. Importantly, this result clarifies the relation
between abundance and occupancy21, which has been reported in
multiple microbial systems18,22,23 but has never been quantita-
tively characterized and explained.

Taylor’s Law. The mean and variance of abundance fluctuations
are sufficient to characterize the full distribution of abundances of
species across communities, as Eq. (1) depends only on the two
moments !xi and σxi . The second macroecological law describes
the relation between mean and variance of species abundance,
which is often referred to as Taylor’s Law24. Taylor’s law has been
reported in many contexts, ranging from ecology25,26 to phy-
siology27–29, from economics30 to geomorphology31. Figure 1c
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Fig. 1 Laws of variation in microbial communities. a The species abundance distribution (SAD) describes the fluctuations of abundance across species in a
community. b The Abundance Fluctuation Distribution (AFD) describes the distribution of abundances of a species across communities. I consider cross-
sectional data from 9 data sets (colored symbols, see Methods). A Gamma distribution (solid black line) closely matches the AFD, here reported for the
most abundant species (see Methods). The Gamma distribution describes the AFD of both abundant and rare species (Supplementary Note 1 and
Supplementary Fig. 2). c The mean and variance of the abundance distribution are not independent across species, a relationship known as Taylor's Law.
The variance is, in fact, proportional to the square of the mean (solid line), implying that the coefficient of variation of the abundance fluctuations is
constant across species (Supplementary Fig. 7). Taylor's Law (together with a Gamma AFD) implies that a single parameter per species (the average
abundance) recapitulates the distribution of fluctuations. d The Mean Abundance Distribution (MAD), defined as the distribution of mean abundance
(obtained by averaging over communities) across species, is Lognormally distributed (black line, Supplementary Note 7).
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Fig. 2 The AFD predicts the presence/absence of species from fluctuations of abundance. a Relationship between fluctuation in abundance and the
absence of species. The fluctuations of species abundances across communities (AFD) are Gamma distributed (Fig. 1), which implies that species are
absent only because of finite sampling. b Tests the prediction, by comparing the occupancy of species (the fraction of communities where a species is
presence) in different biomes with what expected from independent sampling from Gamma distributed relative abundances (Supplementary Note 4 and
Supplementary Fig. 3).
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What are the key features of species abundance distributions?

What ecological factors shape them?

Emil Mallmin & Arne Traulsen
MPI for Evolutionary Biology, Plön



A general model with fluctuating growth rates and regulation

Species growth rate can fluctuate due to (effective) environmental fluctuations, and abundances 
are capped by interactions within the same species and with the rest of the community

[short title] [draft]

[40]. Fitness variance and autocorrelation will be species-
independent throughout. Thus, species are held equivalent
in the face of �uctuations.
As a concrete model of �uctuations we choose an

Ornstein-Uhlenbeck process

� ���(�) = �(��(�) � ��� ) +
�
� ���(�). (3)

Here, ���(�) is a white noise (formally de�ned by its inte-
gral being a Wiener process). At stationarity, the �tness is
normally distributed like�(��� ,��) and the autocorrelation
function decays exponentially with rate 1��. The e�ect of
�uctuations is quanti�ed by the parameter

� �= 2�2� � (4)

that we later identify as the ’rate of stochastic exclusion’.
Choosing ��(�) as a coloured noise has several concep-

tual advantages over a white noise, which would follow
��(�) = ��� +� ���: we do not implicitly assume environmen-
tal �uctuation timescales are fast (perhaps reasonable for
elephants, but less so for E. coli); the parameters ��, � have
a clearer biological interpretation than the noise amplitude
�; and we can ignore subtleties of stochastic calculus con-
vention. The white noise model for ��(�) can be recovered
from Eq. (3) in the limit � � 0,�� � �, while keeping
�2 = 2�2� � constant, implying the Stratonovich stochastic
calculus [61].

Model parameters and simulations

In the absence of �tness �uctuations, the total abundance
equilibrates at the carrying capacity � = ����. By rescaling
abundances, we can set � = 1. We measure time in units of
1���, approximately equal to one generation time, whichwe
set to 1 day for ease of communication and without loss of
generality. In addition to �, this rescaling leaves three non-
dimensional parameters: �����, ���, �ext��.
The numerical implementation of the model is described in
Appendix B and the values of the rescaled parameters are
speci�ed in the �gure captions.

RESULTS

Randomly �uctuating �tnesses drive diversity loss

To establish a baseline for the e�ect of �tness �uctuations
on species coexistence and diversity, consider the special
case of Eq. (1) with neutral competition (� = 0) and no im-
migration (� = 0):

���(�) = ��(�)[��(�) � ��(�)]. (5)

Below, we study the dynamics of this system, �rst in simu-
lation and then analytically, with the following main con-
clusions.
Coexistence in Eq. (5) is only transient: communities

progress toward pronounced unevenness, and eventually
monodominance. This is true even in the absence of an ex-
tinction cuto�, in which case it takes progressively longer
for the identity of the dominant species to change. The

stickiness e�ect forms part of the explanation [16, 73]: Be-
cause the magnitude of abundance �uctuations is propor-
tional to the current abundance, the rarer a species, the
larger (and hence more infrequent) the �tness �uctuation
needed to escape rarity. The other part can be traced to the
growing variance of �tnesses integrated over time, despite
the convergence of time-averaged �tnesses toward ��.
A keymeasure of the e�ectiveness of stochastic exclusion

is the time �� it takes for an initially even community to be-
come composed of a few dominant species. We show that
it scales as ln(�)��, where the denominator is de�ned as
Eq. (4). Whether this is large or small on the generation time
scale depends primarily ����; it is long if relative �uctua-
tions are small (����� � 1), or if environmental changes are
fast compared to generation time (� � 1���). Remarkably,
a community of � = 10’000 species would only need twice
the time to reach few-species dominance as a 100-species
community, all else being equal. Because �� � ��1, we will
refer to � as the rate of (stochastic) exclusion.

Numerical simulations reveal transient diversity

To provide intuition on the ecological dynamics of an initial
maximally diverse community (��(0) = ���, ��(0) = ��), we
simulate numerically Eq. (5) (Figure 1). We observe that,
within a few hundred days, a handful of high-abundance
species stand out (Figure 1C). While it is di�cult to judge
any species’ success by its instantaneous�tness (Figure 1A),
the dominant species can be recognized as having the high-
est time-integrated �tness since the initial time (Figure 1B).
After a few thousand days, the community is dominated
by a single species (Figure 1D). As we observe the abun-
dances over long timescales—from years (Figure 1C), to
decades (Figure 1D), to centuries (Figure 1E), to millen-
nia (Figure 1F)—the intervals between exchanges of dom-
inance tend to lengthen. Correspondingly, species that are
not dominant become increasingly rare, so that, for any pos-
itive extinction threshold �ext, the number of extant species
progressively decays until only one species remains (varying
�ext�� from 10�3 to 10�12 has less than an order of magni-
tude e�ect on the timescale of �xation; see Figure 1D). The
last surviving species is at no practical risk of stochastic ex-
tinction, although, technically, it will vanish eventually.
We focus next on the timescale for the community to be-

come highly uneven. As a proxy for the number of domi-
nant species, we measure the e�ective richness by the Simp-
son’s reciprocal diversity index:

�e�(�) �=
1�

� �2� (�)
, (6)

where �� = ���� denote relative abundances. In the ini-
tially even community �e�(0) = �, while �e� � 1 for large
times indicatesmonodominance. Wemeasure the time �� at
which the the e�ective richness crosses a threshold of a few
species. As shown in Figure 2, distributions readily grow
uneven also in very large communities, with �� scaling as
ln �.
The critical time �� decreases with � = 2���, as we prove

in the next section. Indeed, � essentially sets the ‘ecological
clock’ of the model. As shown in Figure 3, when � is �xed,
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Fitness

[short title] [draft]

At the other end of a ‘niche–neutral continuum’ [30,
25, 32], deterministic models of heterogeneous competition
(generalized Lotka-Volterra [10, 7] and consumer-resource
models [1, 14]) show that under quite generic assump-
tions, species-rich and stable coexistence equilibria require
species to beweakly (or sparsely) coupledwith one another;
in otherwords, to have small niche overlap, whereas neutral
theories assume a large overlap [63]. An equilibrium that is
stable in the absence of �uctuations may be an appropri-
ate description of some species-rich communities on short
timescales. Nonetheless, the species abundance distribu-
tions predicted from weak and heterogeneous competition
are unrealistically even, unless model parameters, such as
carrying capacities, are assumed to be highly variable (e.g.
they follow a power-law distribution). [6]. Interestingly, it
has been widely reported that the regime of strong inter-
actions, rather than implying pervasive competitive exclu-
sion, can drive a local turnover of many rare and few abun-
dant species if immigration is present [66, 60, 15, 50, 8],
and produces similar abundance distributions as some neu-
tral models. Such turnover re�ects deterministic chaos
due to nonlinear interactions, but the time series of a fo-
cal species largely resembles logistic growth under environ-
mental noise [50, 3], forging a phenomenological link to the
time-averaged neutral models.

A pressing challenge for theoretical ecology is to syn-
thesize the results from an array of partially overlapping
models—neutral or niche-based, stochastic or determinis-
tic, well-mixed or spatially structured—towards a mathe-
matically robust understanding of species-rich community
patterns. To this end, we consider here a model incor-
porating strong but competitively neutral interactions and
time-averaged neutral environmental stochasticity within a
Lotka-Volterra framework [49, 56, 73, 42]. Recently, van
Nes et al [73] employed such a model to suggest an ex-
planation for the (hyper-)dominance of species in a wide
range of community data sets. They draw attention to the
‘stickiness’ e�ect (called ‘di�usive trapping’ in prior work
by Dean and Shnerb [17]), whereby the scaling of abun-
dance �uctuations biases species that become rare to re-
main rare. We present a detailed mathematical exposition
of this phenomenon through an exact mapping to repli-
cator dynamics and to condensation phase transitions in
physics, and explain why noise in fact drives the commu-
nity toward unevenness, and eventually monodominance,
even in very large communities. We show that necessary
to the maintenance of diversity are bu�ering or stabilizing
mechanisms, such as immigration (as in parallel work by
Kessler and Shnerb [42]) or su�ciently strong intraspeci�c
competition. We then characterize the SAD of the commu-
nity, whose shape interpolates between a few empirically
relevant archetypes, including power law and log-normal-
like. We �nd that these di�erent shapes can be classi�ed
by only two parameters that quantify the relative impor-
tance of environmental noise, bu�ering, and stabilizing pro-
cesses. We use an approximate single-species model to re-
late the shape of the SAD to the �uctuation statistics of indi-
vidual species. Finally, we consider heterogeneity in single-
species time-averaged �tness, and discuss how the model

can bridge community-level patterns and the dynamics of
individual species.

MODEL

Community dynamics

We consider a pool of � species that in a local community
of interest have abundances ��(�) (� = 1, 2,… , �) at time �.
When a species � is alone, its intrinsic �tness is de�ned by
its per capita growth rate ��(�), whose �uctuations re�ect
changes in the environment. Following classical hypothe-
ses, we take interactions to be dominated by competition,
and such that any pair of individuals compete with identical
strength � (i.e. neutral competition). Conspeci�cs, however,
may experience an additional self-limitation of strength �,
due to higher niche overlap. Moreover, we consider a small,
constant rate of net immigration �, intended as a simpli�ed
representation of a metacommunity structure. Denoting
the total abundance by �(�) = ��

�=1 ��(�), these assump-
tions translate into the growth equation:

���(�) = ��(�)[��(�) � ��(�) � ���(�)] + �. (1)

Later, we will also consider an explicit metacommunity
structure by replacing � with

��

�=1
(�����,�(�) � �����,�(�)), (2)

where ��,�(�) is the abundance of species � in patch �, and
��� a species-independent dispersal rate from patch � to �.
While the community dynamics encompasses some of

the most broadly relevant processes, there are also notable
omissions. We do not include demographic stochasticity,
arising from the discrete nature of individual birth and
deaths. To nonetheless allow for the extinction of rare
species we introduce a threshold �ext below which abun-
dances are set to zero. Furthermore, species coexistence
through the storage e�ect (i.a. noise-induced stabilization)
[12, 39] has been precluded, since the �uctuating �tnesses
and competition appear additively in the growth rate. For
perspectives on these e�ects in species-rich communities,
we refer to several recent works [16, 59, 42].

Fluctuating �tnesses

The �uctuating �tnesses ��(�) represent the net e�ect of
a complex and time-varying environment that we do not
model explicitly, and could include e�ects of interactions
outwith the community (e.g. grazing, predation), varying
resource availabilities, abiotic environment (e.g. tempera-
ture, salinity), and so on. For simplicity, we assume the
��(�)’s to be statistically independent between species, and
independent of the abundance of any species, thereby as-
suming that the important density-dependent mechanisms
in the community are in the main captured by the explicit
competition terms in Eq. (1). We characterize �tness �uc-
tuations by their expected value ��� , variance �2� , and auto-
correlation time �. Unless otherwise indicated, we will as-
sume species are time-average neutral, meaning ��� = ��
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[40]. Fitness variance and autocorrelation will be species-
independent throughout. Thus, species are held equivalent
in the face of �uctuations.
As a concrete model of �uctuations we choose an

Ornstein-Uhlenbeck process

� ���(�) = �(��(�) � ��� ) +
�
� ���(�). (3)

Here, ���(�) is a white noise (formally de�ned by its inte-
gral being a Wiener process). At stationarity, the �tness is
normally distributed like�(��� ,��) and the autocorrelation
function decays exponentially with rate 1��. The e�ect of
�uctuations is quanti�ed by the parameter

� �= 2�2� � (4)

that we later identify as the ’rate of stochastic exclusion’.
Choosing ��(�) as a coloured noise has several concep-

tual advantages over a white noise, which would follow
��(�) = ��� +� ���: we do not implicitly assume environmen-
tal �uctuation timescales are fast (perhaps reasonable for
elephants, but less so for E. coli); the parameters ��, � have
a clearer biological interpretation than the noise amplitude
�; and we can ignore subtleties of stochastic calculus con-
vention. The white noise model for ��(�) can be recovered
from Eq. (3) in the limit � � 0,�� � �, while keeping
�2 = 2�2� � constant, implying the Stratonovich stochastic
calculus [61].

Model parameters and simulations

In the absence of �tness �uctuations, the total abundance
equilibrates at the carrying capacity � = ����. By rescaling
abundances, we can set � = 1. We measure time in units of
1���, approximately equal to one generation time, whichwe
set to 1 day for ease of communication and without loss of
generality. In addition to �, this rescaling leaves three non-
dimensional parameters: �����, ���, �ext��.
The numerical implementation of the model is described in
Appendix B and the values of the rescaled parameters are
speci�ed in the �gure captions.

RESULTS

Randomly �uctuating �tnesses drive diversity loss

To establish a baseline for the e�ect of �tness �uctuations
on species coexistence and diversity, consider the special
case of Eq. (1) with neutral competition (� = 0) and no im-
migration (� = 0):

���(�) = ��(�)[��(�) � ��(�)]. (5)

Below, we study the dynamics of this system, �rst in simu-
lation and then analytically, with the following main con-
clusions.
Coexistence in Eq. (5) is only transient: communities

progress toward pronounced unevenness, and eventually
monodominance. This is true even in the absence of an ex-
tinction cuto�, in which case it takes progressively longer
for the identity of the dominant species to change. The

stickiness e�ect forms part of the explanation [16, 73]: Be-
cause the magnitude of abundance �uctuations is propor-
tional to the current abundance, the rarer a species, the
larger (and hence more infrequent) the �tness �uctuation
needed to escape rarity. The other part can be traced to the
growing variance of �tnesses integrated over time, despite
the convergence of time-averaged �tnesses toward ��.
A keymeasure of the e�ectiveness of stochastic exclusion

is the time �� it takes for an initially even community to be-
come composed of a few dominant species. We show that
it scales as ln(�)��, where the denominator is de�ned as
Eq. (4). Whether this is large or small on the generation time
scale depends primarily ����; it is long if relative �uctua-
tions are small (����� � 1), or if environmental changes are
fast compared to generation time (� � 1���). Remarkably,
a community of � = 10’000 species would only need twice
the time to reach few-species dominance as a 100-species
community, all else being equal. Because �� � ��1, we will
refer to � as the rate of (stochastic) exclusion.

Numerical simulations reveal transient diversity

To provide intuition on the ecological dynamics of an initial
maximally diverse community (��(0) = ���, ��(0) = ��), we
simulate numerically Eq. (5) (Figure 1). We observe that,
within a few hundred days, a handful of high-abundance
species stand out (Figure 1C). While it is di�cult to judge
any species’ success by its instantaneous�tness (Figure 1A),
the dominant species can be recognized as having the high-
est time-integrated �tness since the initial time (Figure 1B).
After a few thousand days, the community is dominated
by a single species (Figure 1D). As we observe the abun-
dances over long timescales—from years (Figure 1C), to
decades (Figure 1D), to centuries (Figure 1E), to millen-
nia (Figure 1F)—the intervals between exchanges of dom-
inance tend to lengthen. Correspondingly, species that are
not dominant become increasingly rare, so that, for any pos-
itive extinction threshold �ext, the number of extant species
progressively decays until only one species remains (varying
�ext�� from 10�3 to 10�12 has less than an order of magni-
tude e�ect on the timescale of �xation; see Figure 1D). The
last surviving species is at no practical risk of stochastic ex-
tinction, although, technically, it will vanish eventually.
We focus next on the timescale for the community to be-

come highly uneven. As a proxy for the number of domi-
nant species, we measure the e�ective richness by the Simp-
son’s reciprocal diversity index:

�e�(�) �=
1�

� �2� (�)
, (6)

where �� = ���� denote relative abundances. In the ini-
tially even community �e�(0) = �, while �e� � 1 for large
times indicatesmonodominance. Wemeasure the time �� at
which the the e�ective richness crosses a threshold of a few
species. As shown in Figure 2, distributions readily grow
uneven also in very large communities, with �� scaling as
ln �.
The critical time �� decreases with � = 2���, as we prove

in the next section. Indeed, � essentially sets the ‘ecological
clock’ of the model. As shown in Figure 3, when � is �xed,
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‘Neutral’ case
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Figure 1: Simulated community dynamics showing progressive un-
evenness. Single simulation run of Eq. (1) & (3), starting from a perfectly
even community. Instantaneous �tness (A) and time-averaged one (B),
highlighted in colour for a few highly successful species. The same species
are highlighted in the abundance time series (C-F), displayed in increas-
ingly longer time windows. The simulation was run without an extinction
threshold, but the vertical red lines in D indicate when, for the same �t-
ness dynamics as shown, a single species would �xate under di�erent ex-
tinction thresholds (�ext�� = 10�3, 10�6, 10�9, 10�12). Despite a transient
with high species diversity, monodominance is readily attained and is �xed
for any positive extinction threshold. Simulation parameters are � = 100,
� = 1, �� = 1, � = 0.05 � = 10.

the correlation time � alone has little e�ect on the main dy-
namical trends, but controls the extent of rapid �uctuations
around them.

Amapping to the replicator equation explains the dynamics
of community unevenness

Despite the large �uctuations of individual species abun-
dances in the simulation, the total abundance �(�) �uctu-
ates only moderately. This motivates focussing on the rela-
tive abundances�� = ����, which obey the replicator equa-
tion [34] (Appendix C)

���(�) = ��(�)[��(�) � �(�)], (7)

Figure 2: Decay of the e�ective species richness �e�(�) (Eq. (6)), start-
ing from initially even community of 25 to 1600 species. Thick lines show
averages over 200 simulations, with the two thin lines illustrating repre-
sentative single runs for � = 25 and 1600. The inset shows the time ��
at which the ensemble-averaged �e�(�) has decayed to 5 species, plotted
against the initial richness. The initially even community loses its diver-
sity on a timescale of ln �, in agreement with our calculations.

where the mean �tness �(�) �= �
� ��(�)��(�). This result

follows fromEq. (1) regardless of the functional form of ��(�)
and of the neutral competition term, as long as they remain
neutral, hence they have the same value for every species.
On the other hand, the strength of neutral competition �
constrains the total abundance, whose dynamics

��(�) = �(�)[�(�) � ��(�)] (8)

is coupled to community composition only through �(�).
Key to understanding the dynamics of species composi-

tion are the time-integrated �tnesses

��(�) �=�
�

0
d�� ��(��), (9)

as appreciated from the formal solution to Eq. (7):

��(�) =
��(0)���(�)
�(�) , �(�) �=

��

�=1
��(0)���(�). (10)

A species � becomes dominant when the factor ��� makes
up a sizeable fraction of the sum of exponentials, so that the
question of dominance is essentially one of extreme value
statistics. If the gap between the largest (or largest few) ��
and the rest tends to grow in time, then eventually—and,
indeed, rather soon due to the exponentiation—the corre-
sponding species will come to dominate. If species di�er
in their expected �tnesses, that with larger average �tness
eventually wins deterministically (competitive exclusion).
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[40]. Fitness variance and autocorrelation will be species-
independent throughout. Thus, species are held equivalent
in the face of �uctuations.
As a concrete model of �uctuations we choose an

Ornstein-Uhlenbeck process

� ���(�) = �(��(�) � ��� ) +
�
� ���(�). (3)

Here, ���(�) is a white noise (formally de�ned by its inte-
gral being a Wiener process). At stationarity, the �tness is
normally distributed like�(��� ,��) and the autocorrelation
function decays exponentially with rate 1��. The e�ect of
�uctuations is quanti�ed by the parameter

� �= 2�2� � (4)

that we later identify as the ’rate of stochastic exclusion’.
Choosing ��(�) as a coloured noise has several concep-

tual advantages over a white noise, which would follow
��(�) = ��� +� ���: we do not implicitly assume environmen-
tal �uctuation timescales are fast (perhaps reasonable for
elephants, but less so for E. coli); the parameters ��, � have
a clearer biological interpretation than the noise amplitude
�; and we can ignore subtleties of stochastic calculus con-
vention. The white noise model for ��(�) can be recovered
from Eq. (3) in the limit � � 0,�� � �, while keeping
�2 = 2�2� � constant, implying the Stratonovich stochastic
calculus [61].

Model parameters and simulations

In the absence of �tness �uctuations, the total abundance
equilibrates at the carrying capacity � = ����. By rescaling
abundances, we can set � = 1. We measure time in units of
1���, approximately equal to one generation time, whichwe
set to 1 day for ease of communication and without loss of
generality. In addition to �, this rescaling leaves three non-
dimensional parameters: �����, ���, �ext��.
The numerical implementation of the model is described in
Appendix B and the values of the rescaled parameters are
speci�ed in the �gure captions.

RESULTS

Randomly �uctuating �tnesses drive diversity loss

To establish a baseline for the e�ect of �tness �uctuations
on species coexistence and diversity, consider the special
case of Eq. (1) with neutral competition (� = 0) and no im-
migration (� = 0):

���(�) = ��(�)[��(�) � ��(�)]. (5)

Below, we study the dynamics of this system, �rst in simu-
lation and then analytically, with the following main con-
clusions.
Coexistence in Eq. (5) is only transient: communities

progress toward pronounced unevenness, and eventually
monodominance. This is true even in the absence of an ex-
tinction cuto�, in which case it takes progressively longer
for the identity of the dominant species to change. The

stickiness e�ect forms part of the explanation [16, 73]: Be-
cause the magnitude of abundance �uctuations is propor-
tional to the current abundance, the rarer a species, the
larger (and hence more infrequent) the �tness �uctuation
needed to escape rarity. The other part can be traced to the
growing variance of �tnesses integrated over time, despite
the convergence of time-averaged �tnesses toward ��.
A keymeasure of the e�ectiveness of stochastic exclusion

is the time �� it takes for an initially even community to be-
come composed of a few dominant species. We show that
it scales as ln(�)��, where the denominator is de�ned as
Eq. (4). Whether this is large or small on the generation time
scale depends primarily ����; it is long if relative �uctua-
tions are small (����� � 1), or if environmental changes are
fast compared to generation time (� � 1���). Remarkably,
a community of � = 10’000 species would only need twice
the time to reach few-species dominance as a 100-species
community, all else being equal. Because �� � ��1, we will
refer to � as the rate of (stochastic) exclusion.

Numerical simulations reveal transient diversity

To provide intuition on the ecological dynamics of an initial
maximally diverse community (��(0) = ���, ��(0) = ��), we
simulate numerically Eq. (5) (Figure 1). We observe that,
within a few hundred days, a handful of high-abundance
species stand out (Figure 1C). While it is di�cult to judge
any species’ success by its instantaneous�tness (Figure 1A),
the dominant species can be recognized as having the high-
est time-integrated �tness since the initial time (Figure 1B).
After a few thousand days, the community is dominated
by a single species (Figure 1D). As we observe the abun-
dances over long timescales—from years (Figure 1C), to
decades (Figure 1D), to centuries (Figure 1E), to millen-
nia (Figure 1F)—the intervals between exchanges of dom-
inance tend to lengthen. Correspondingly, species that are
not dominant become increasingly rare, so that, for any pos-
itive extinction threshold �ext, the number of extant species
progressively decays until only one species remains (varying
�ext�� from 10�3 to 10�12 has less than an order of magni-
tude e�ect on the timescale of �xation; see Figure 1D). The
last surviving species is at no practical risk of stochastic ex-
tinction, although, technically, it will vanish eventually.
We focus next on the timescale for the community to be-

come highly uneven. As a proxy for the number of domi-
nant species, we measure the e�ective richness by the Simp-
son’s reciprocal diversity index:

�e�(�) �=
1�

� �2� (�)
, (6)

where �� = ���� denote relative abundances. In the ini-
tially even community �e�(0) = �, while �e� � 1 for large
times indicatesmonodominance. Wemeasure the time �� at
which the the e�ective richness crosses a threshold of a few
species. As shown in Figure 2, distributions readily grow
uneven also in very large communities, with �� scaling as
ln �.
The critical time �� decreases with � = 2���, as we prove

in the next section. Indeed, � essentially sets the ‘ecological
clock’ of the model. As shown in Figure 3, when � is �xed,
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Figure 1: Simulated community dynamics showing progressive un-
evenness. Single simulation run of Eq. (1) & (3), starting from a perfectly
even community. Instantaneous �tness (A) and time-averaged one (B),
highlighted in colour for a few highly successful species. The same species
are highlighted in the abundance time series (C-F), displayed in increas-
ingly longer time windows. The simulation was run without an extinction
threshold, but the vertical red lines in D indicate when, for the same �t-
ness dynamics as shown, a single species would �xate under di�erent ex-
tinction thresholds (�ext�� = 10�3, 10�6, 10�9, 10�12). Despite a transient
with high species diversity, monodominance is readily attained and is �xed
for any positive extinction threshold. Simulation parameters are � = 100,
� = 1, �� = 1, � = 0.05 � = 10.

the correlation time � alone has little e�ect on the main dy-
namical trends, but controls the extent of rapid �uctuations
around them.

Amapping to the replicator equation explains the dynamics
of community unevenness

Despite the large �uctuations of individual species abun-
dances in the simulation, the total abundance �(�) �uctu-
ates only moderately. This motivates focussing on the rela-
tive abundances�� = ����, which obey the replicator equa-
tion [34] (Appendix C)

���(�) = ��(�)[��(�) � �(�)], (7)

Figure 2: Decay of the e�ective species richness �e�(�) (Eq. (6)), start-
ing from initially even community of 25 to 1600 species. Thick lines show
averages over 200 simulations, with the two thin lines illustrating repre-
sentative single runs for � = 25 and 1600. The inset shows the time ��
at which the ensemble-averaged �e�(�) has decayed to 5 species, plotted
against the initial richness. The initially even community loses its diver-
sity on a timescale of ln �, in agreement with our calculations.

where the mean �tness �(�) �= �
� ��(�)��(�). This result

follows fromEq. (1) regardless of the functional form of ��(�)
and of the neutral competition term, as long as they remain
neutral, hence they have the same value for every species.
On the other hand, the strength of neutral competition �
constrains the total abundance, whose dynamics

��(�) = �(�)[�(�) � ��(�)] (8)

is coupled to community composition only through �(�).
Key to understanding the dynamics of species composi-

tion are the time-integrated �tnesses

��(�) �=�
�

0
d�� ��(��), (9)

as appreciated from the formal solution to Eq. (7):

��(�) =
��(0)���(�)
�(�) , �(�) �=

��

�=1
��(0)���(�). (10)

A species � becomes dominant when the factor ��� makes
up a sizeable fraction of the sum of exponentials, so that the
question of dominance is essentially one of extreme value
statistics. If the gap between the largest (or largest few) ��
and the rest tends to grow in time, then eventually—and,
indeed, rather soon due to the exponentiation—the corre-
sponding species will come to dominate. If species di�er
in their expected �tnesses, that with larger average �tness
eventually wins deterministically (competitive exclusion).
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At the other end of a ‘niche–neutral continuum’ [30,
25, 32], deterministic models of heterogeneous competition
(generalized Lotka-Volterra [10, 7] and consumer-resource
models [1, 14]) show that under quite generic assump-
tions, species-rich and stable coexistence equilibria require
species to beweakly (or sparsely) coupledwith one another;
in otherwords, to have small niche overlap, whereas neutral
theories assume a large overlap [63]. An equilibrium that is
stable in the absence of �uctuations may be an appropri-
ate description of some species-rich communities on short
timescales. Nonetheless, the species abundance distribu-
tions predicted from weak and heterogeneous competition
are unrealistically even, unless model parameters, such as
carrying capacities, are assumed to be highly variable (e.g.
they follow a power-law distribution). [6]. Interestingly, it
has been widely reported that the regime of strong inter-
actions, rather than implying pervasive competitive exclu-
sion, can drive a local turnover of many rare and few abun-
dant species if immigration is present [66, 60, 15, 50, 8],
and produces similar abundance distributions as some neu-
tral models. Such turnover re�ects deterministic chaos
due to nonlinear interactions, but the time series of a fo-
cal species largely resembles logistic growth under environ-
mental noise [50, 3], forging a phenomenological link to the
time-averaged neutral models.

A pressing challenge for theoretical ecology is to syn-
thesize the results from an array of partially overlapping
models—neutral or niche-based, stochastic or determinis-
tic, well-mixed or spatially structured—towards a mathe-
matically robust understanding of species-rich community
patterns. To this end, we consider here a model incor-
porating strong but competitively neutral interactions and
time-averaged neutral environmental stochasticity within a
Lotka-Volterra framework [49, 56, 73, 42]. Recently, van
Nes et al [73] employed such a model to suggest an ex-
planation for the (hyper-)dominance of species in a wide
range of community data sets. They draw attention to the
‘stickiness’ e�ect (called ‘di�usive trapping’ in prior work
by Dean and Shnerb [17]), whereby the scaling of abun-
dance �uctuations biases species that become rare to re-
main rare. We present a detailed mathematical exposition
of this phenomenon through an exact mapping to repli-
cator dynamics and to condensation phase transitions in
physics, and explain why noise in fact drives the commu-
nity toward unevenness, and eventually monodominance,
even in very large communities. We show that necessary
to the maintenance of diversity are bu�ering or stabilizing
mechanisms, such as immigration (as in parallel work by
Kessler and Shnerb [42]) or su�ciently strong intraspeci�c
competition. We then characterize the SAD of the commu-
nity, whose shape interpolates between a few empirically
relevant archetypes, including power law and log-normal-
like. We �nd that these di�erent shapes can be classi�ed
by only two parameters that quantify the relative impor-
tance of environmental noise, bu�ering, and stabilizing pro-
cesses. We use an approximate single-species model to re-
late the shape of the SAD to the �uctuation statistics of indi-
vidual species. Finally, we consider heterogeneity in single-
species time-averaged �tness, and discuss how the model

can bridge community-level patterns and the dynamics of
individual species.

MODEL

Community dynamics

We consider a pool of � species that in a local community
of interest have abundances ��(�) (� = 1, 2,… , �) at time �.
When a species � is alone, its intrinsic �tness is de�ned by
its per capita growth rate ��(�), whose �uctuations re�ect
changes in the environment. Following classical hypothe-
ses, we take interactions to be dominated by competition,
and such that any pair of individuals compete with identical
strength � (i.e. neutral competition). Conspeci�cs, however,
may experience an additional self-limitation of strength �,
due to higher niche overlap. Moreover, we consider a small,
constant rate of net immigration �, intended as a simpli�ed
representation of a metacommunity structure. Denoting
the total abundance by �(�) = ��

�=1 ��(�), these assump-
tions translate into the growth equation:

���(�) = ��(�)[��(�) � ��(�) � ���(�)] + �. (1)

Later, we will also consider an explicit metacommunity
structure by replacing � with

��

�=1
(�����,�(�) � �����,�(�)), (2)

where ��,�(�) is the abundance of species � in patch �, and
��� a species-independent dispersal rate from patch � to �.
While the community dynamics encompasses some of

the most broadly relevant processes, there are also notable
omissions. We do not include demographic stochasticity,
arising from the discrete nature of individual birth and
deaths. To nonetheless allow for the extinction of rare
species we introduce a threshold �ext below which abun-
dances are set to zero. Furthermore, species coexistence
through the storage e�ect (i.a. noise-induced stabilization)
[12, 39] has been precluded, since the �uctuating �tnesses
and competition appear additively in the growth rate. For
perspectives on these e�ects in species-rich communities,
we refer to several recent works [16, 59, 42].

Fluctuating �tnesses

The �uctuating �tnesses ��(�) represent the net e�ect of
a complex and time-varying environment that we do not
model explicitly, and could include e�ects of interactions
outwith the community (e.g. grazing, predation), varying
resource availabilities, abiotic environment (e.g. tempera-
ture, salinity), and so on. For simplicity, we assume the
��(�)’s to be statistically independent between species, and
independent of the abundance of any species, thereby as-
suming that the important density-dependent mechanisms
in the community are in the main captured by the explicit
competition terms in Eq. (1). We characterize �tness �uc-
tuations by their expected value ��� , variance �2� , and auto-
correlation time �. Unless otherwise indicated, we will as-
sume species are time-average neutral, meaning ��� = ��
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Figure 1: Simulated community dynamics showing progressive un-
evenness. Single simulation run of Eq. (1) & (3), starting from a perfectly
even community. Instantaneous �tness (A) and time-averaged one (B),
highlighted in colour for a few highly successful species. The same species
are highlighted in the abundance time series (C-F), displayed in increas-
ingly longer time windows. The simulation was run without an extinction
threshold, but the vertical red lines in D indicate when, for the same �t-
ness dynamics as shown, a single species would �xate under di�erent ex-
tinction thresholds (�ext�� = 10�3, 10�6, 10�9, 10�12). Despite a transient
with high species diversity, monodominance is readily attained and is �xed
for any positive extinction threshold. Simulation parameters are � = 100,
� = 1, �� = 1, � = 0.05 � = 10.

the correlation time � alone has little e�ect on the main dy-
namical trends, but controls the extent of rapid �uctuations
around them.

Amapping to the replicator equation explains the dynamics
of community unevenness

Despite the large �uctuations of individual species abun-
dances in the simulation, the total abundance �(�) �uctu-
ates only moderately. This motivates focussing on the rela-
tive abundances�� = ����, which obey the replicator equa-
tion [34] (Appendix C)

���(�) = ��(�)[��(�) � �(�)], (7)

Figure 2: Decay of the e�ective species richness �e�(�) (Eq. (6)), start-
ing from initially even community of 25 to 1600 species. Thick lines show
averages over 200 simulations, with the two thin lines illustrating repre-
sentative single runs for � = 25 and 1600. The inset shows the time ��
at which the ensemble-averaged �e�(�) has decayed to 5 species, plotted
against the initial richness. The initially even community loses its diver-
sity on a timescale of ln �, in agreement with our calculations.

where the mean �tness �(�) �= �
� ��(�)��(�). This result

follows fromEq. (1) regardless of the functional form of ��(�)
and of the neutral competition term, as long as they remain
neutral, hence they have the same value for every species.
On the other hand, the strength of neutral competition �
constrains the total abundance, whose dynamics

��(�) = �(�)[�(�) � ��(�)] (8)

is coupled to community composition only through �(�).
Key to understanding the dynamics of species composi-

tion are the time-integrated �tnesses

��(�) �=�
�

0
d�� ��(��), (9)

as appreciated from the formal solution to Eq. (7):

��(�) =
��(0)���(�)
�(�) , �(�) �=

��

�=1
��(0)���(�). (10)

A species � becomes dominant when the factor ��� makes
up a sizeable fraction of the sum of exponentials, so that the
question of dominance is essentially one of extreme value
statistics. If the gap between the largest (or largest few) ��
and the rest tends to grow in time, then eventually—and,
indeed, rather soon due to the exponentiation—the corre-
sponding species will come to dominate. If species di�er
in their expected �tnesses, that with larger average �tness
eventually wins deterministically (competitive exclusion).
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Figure 1: Simulated community dynamics showing progressive un-
evenness. Single simulation run of Eq. (1) & (3), starting from a perfectly
even community. Instantaneous �tness (A) and time-averaged one (B),
highlighted in colour for a few highly successful species. The same species
are highlighted in the abundance time series (C-F), displayed in increas-
ingly longer time windows. The simulation was run without an extinction
threshold, but the vertical red lines in D indicate when, for the same �t-
ness dynamics as shown, a single species would �xate under di�erent ex-
tinction thresholds (�ext�� = 10�3, 10�6, 10�9, 10�12). Despite a transient
with high species diversity, monodominance is readily attained and is �xed
for any positive extinction threshold. Simulation parameters are � = 100,
� = 1, �� = 1, � = 0.05 � = 10.

the correlation time � alone has little e�ect on the main dy-
namical trends, but controls the extent of rapid �uctuations
around them.

Amapping to the replicator equation explains the dynamics
of community unevenness

Despite the large �uctuations of individual species abun-
dances in the simulation, the total abundance �(�) �uctu-
ates only moderately. This motivates focussing on the rela-
tive abundances�� = ����, which obey the replicator equa-
tion [34] (Appendix C)

���(�) = ��(�)[��(�) � �(�)], (7)

Figure 2: Decay of the e�ective species richness �e�(�) (Eq. (6)), start-
ing from initially even community of 25 to 1600 species. Thick lines show
averages over 200 simulations, with the two thin lines illustrating repre-
sentative single runs for � = 25 and 1600. The inset shows the time ��
at which the ensemble-averaged �e�(�) has decayed to 5 species, plotted
against the initial richness. The initially even community loses its diver-
sity on a timescale of ln �, in agreement with our calculations.

where the mean �tness �(�) �= �
� ��(�)��(�). This result

follows fromEq. (1) regardless of the functional form of ��(�)
and of the neutral competition term, as long as they remain
neutral, hence they have the same value for every species.
On the other hand, the strength of neutral competition �
constrains the total abundance, whose dynamics

��(�) = �(�)[�(�) � ��(�)] (8)

is coupled to community composition only through �(�).
Key to understanding the dynamics of species composi-

tion are the time-integrated �tnesses

��(�) �=�
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0
d�� ��(��), (9)

as appreciated from the formal solution to Eq. (7):

��(�) =
��(0)���(�)
�(�) , �(�) �=

��

�=1
��(0)���(�). (10)

A species � becomes dominant when the factor ��� makes
up a sizeable fraction of the sum of exponentials, so that the
question of dominance is essentially one of extreme value
statistics. If the gap between the largest (or largest few) ��
and the rest tends to grow in time, then eventually—and,
indeed, rather soon due to the exponentiation—the corre-
sponding species will come to dominate. If species di�er
in their expected �tnesses, that with larger average �tness
eventually wins deterministically (competitive exclusion).
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[40]. Fitness variance and autocorrelation will be species-
independent throughout. Thus, species are held equivalent
in the face of �uctuations.
As a concrete model of �uctuations we choose an

Ornstein-Uhlenbeck process

� ���(�) = �(��(�) � ��� ) +
�
� ���(�). (3)

Here, ���(�) is a white noise (formally de�ned by its inte-
gral being a Wiener process). At stationarity, the �tness is
normally distributed like�(��� ,��) and the autocorrelation
function decays exponentially with rate 1��. The e�ect of
�uctuations is quanti�ed by the parameter

� �= 2�2� � (4)

that we later identify as the ’rate of stochastic exclusion’.
Choosing ��(�) as a coloured noise has several concep-

tual advantages over a white noise, which would follow
��(�) = ��� +� ���: we do not implicitly assume environmen-
tal �uctuation timescales are fast (perhaps reasonable for
elephants, but less so for E. coli); the parameters ��, � have
a clearer biological interpretation than the noise amplitude
�; and we can ignore subtleties of stochastic calculus con-
vention. The white noise model for ��(�) can be recovered
from Eq. (3) in the limit � � 0,�� � �, while keeping
�2 = 2�2� � constant, implying the Stratonovich stochastic
calculus [61].

Model parameters and simulations

In the absence of �tness �uctuations, the total abundance
equilibrates at the carrying capacity � = ����. By rescaling
abundances, we can set � = 1. We measure time in units of
1���, approximately equal to one generation time, whichwe
set to 1 day for ease of communication and without loss of
generality. In addition to �, this rescaling leaves three non-
dimensional parameters: �����, ���, �ext��.
The numerical implementation of the model is described in
Appendix B and the values of the rescaled parameters are
speci�ed in the �gure captions.

RESULTS

Randomly �uctuating �tnesses drive diversity loss

To establish a baseline for the e�ect of �tness �uctuations
on species coexistence and diversity, consider the special
case of Eq. (1) with neutral competition (� = 0) and no im-
migration (� = 0):

���(�) = ��(�)[��(�) � ��(�)]. (5)

Below, we study the dynamics of this system, �rst in simu-
lation and then analytically, with the following main con-
clusions.
Coexistence in Eq. (5) is only transient: communities

progress toward pronounced unevenness, and eventually
monodominance. This is true even in the absence of an ex-
tinction cuto�, in which case it takes progressively longer
for the identity of the dominant species to change. The

stickiness e�ect forms part of the explanation [16, 73]: Be-
cause the magnitude of abundance �uctuations is propor-
tional to the current abundance, the rarer a species, the
larger (and hence more infrequent) the �tness �uctuation
needed to escape rarity. The other part can be traced to the
growing variance of �tnesses integrated over time, despite
the convergence of time-averaged �tnesses toward ��.
A keymeasure of the e�ectiveness of stochastic exclusion

is the time �� it takes for an initially even community to be-
come composed of a few dominant species. We show that
it scales as ln(�)��, where the denominator is de�ned as
Eq. (4). Whether this is large or small on the generation time
scale depends primarily ����; it is long if relative �uctua-
tions are small (����� � 1), or if environmental changes are
fast compared to generation time (� � 1���). Remarkably,
a community of � = 10’000 species would only need twice
the time to reach few-species dominance as a 100-species
community, all else being equal. Because �� � ��1, we will
refer to � as the rate of (stochastic) exclusion.

Numerical simulations reveal transient diversity

To provide intuition on the ecological dynamics of an initial
maximally diverse community (��(0) = ���, ��(0) = ��), we
simulate numerically Eq. (5) (Figure 1). We observe that,
within a few hundred days, a handful of high-abundance
species stand out (Figure 1C). While it is di�cult to judge
any species’ success by its instantaneous�tness (Figure 1A),
the dominant species can be recognized as having the high-
est time-integrated �tness since the initial time (Figure 1B).
After a few thousand days, the community is dominated
by a single species (Figure 1D). As we observe the abun-
dances over long timescales—from years (Figure 1C), to
decades (Figure 1D), to centuries (Figure 1E), to millen-
nia (Figure 1F)—the intervals between exchanges of dom-
inance tend to lengthen. Correspondingly, species that are
not dominant become increasingly rare, so that, for any pos-
itive extinction threshold �ext, the number of extant species
progressively decays until only one species remains (varying
�ext�� from 10�3 to 10�12 has less than an order of magni-
tude e�ect on the timescale of �xation; see Figure 1D). The
last surviving species is at no practical risk of stochastic ex-
tinction, although, technically, it will vanish eventually.
We focus next on the timescale for the community to be-

come highly uneven. As a proxy for the number of domi-
nant species, we measure the e�ective richness by the Simp-
son’s reciprocal diversity index:

�e�(�) �=
1�

� �2� (�)
, (6)

where �� = ���� denote relative abundances. In the ini-
tially even community �e�(0) = �, while �e� � 1 for large
times indicatesmonodominance. Wemeasure the time �� at
which the the e�ective richness crosses a threshold of a few
species. As shown in Figure 2, distributions readily grow
uneven also in very large communities, with �� scaling as
ln �.
The critical time �� decreases with � = 2���, as we prove

in the next section. Indeed, � essentially sets the ‘ecological
clock’ of the model. As shown in Figure 3, when � is �xed,
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At the other end of a ‘niche–neutral continuum’ [30,
25, 32], deterministic models of heterogeneous competition
(generalized Lotka-Volterra [10, 7] and consumer-resource
models [1, 14]) show that under quite generic assump-
tions, species-rich and stable coexistence equilibria require
species to beweakly (or sparsely) coupledwith one another;
in otherwords, to have small niche overlap, whereas neutral
theories assume a large overlap [63]. An equilibrium that is
stable in the absence of �uctuations may be an appropri-
ate description of some species-rich communities on short
timescales. Nonetheless, the species abundance distribu-
tions predicted from weak and heterogeneous competition
are unrealistically even, unless model parameters, such as
carrying capacities, are assumed to be highly variable (e.g.
they follow a power-law distribution). [6]. Interestingly, it
has been widely reported that the regime of strong inter-
actions, rather than implying pervasive competitive exclu-
sion, can drive a local turnover of many rare and few abun-
dant species if immigration is present [66, 60, 15, 50, 8],
and produces similar abundance distributions as some neu-
tral models. Such turnover re�ects deterministic chaos
due to nonlinear interactions, but the time series of a fo-
cal species largely resembles logistic growth under environ-
mental noise [50, 3], forging a phenomenological link to the
time-averaged neutral models.

A pressing challenge for theoretical ecology is to syn-
thesize the results from an array of partially overlapping
models—neutral or niche-based, stochastic or determinis-
tic, well-mixed or spatially structured—towards a mathe-
matically robust understanding of species-rich community
patterns. To this end, we consider here a model incor-
porating strong but competitively neutral interactions and
time-averaged neutral environmental stochasticity within a
Lotka-Volterra framework [49, 56, 73, 42]. Recently, van
Nes et al [73] employed such a model to suggest an ex-
planation for the (hyper-)dominance of species in a wide
range of community data sets. They draw attention to the
‘stickiness’ e�ect (called ‘di�usive trapping’ in prior work
by Dean and Shnerb [17]), whereby the scaling of abun-
dance �uctuations biases species that become rare to re-
main rare. We present a detailed mathematical exposition
of this phenomenon through an exact mapping to repli-
cator dynamics and to condensation phase transitions in
physics, and explain why noise in fact drives the commu-
nity toward unevenness, and eventually monodominance,
even in very large communities. We show that necessary
to the maintenance of diversity are bu�ering or stabilizing
mechanisms, such as immigration (as in parallel work by
Kessler and Shnerb [42]) or su�ciently strong intraspeci�c
competition. We then characterize the SAD of the commu-
nity, whose shape interpolates between a few empirically
relevant archetypes, including power law and log-normal-
like. We �nd that these di�erent shapes can be classi�ed
by only two parameters that quantify the relative impor-
tance of environmental noise, bu�ering, and stabilizing pro-
cesses. We use an approximate single-species model to re-
late the shape of the SAD to the �uctuation statistics of indi-
vidual species. Finally, we consider heterogeneity in single-
species time-averaged �tness, and discuss how the model

can bridge community-level patterns and the dynamics of
individual species.

MODEL

Community dynamics

We consider a pool of � species that in a local community
of interest have abundances ��(�) (� = 1, 2,… , �) at time �.
When a species � is alone, its intrinsic �tness is de�ned by
its per capita growth rate ��(�), whose �uctuations re�ect
changes in the environment. Following classical hypothe-
ses, we take interactions to be dominated by competition,
and such that any pair of individuals compete with identical
strength � (i.e. neutral competition). Conspeci�cs, however,
may experience an additional self-limitation of strength �,
due to higher niche overlap. Moreover, we consider a small,
constant rate of net immigration �, intended as a simpli�ed
representation of a metacommunity structure. Denoting
the total abundance by �(�) = ��

�=1 ��(�), these assump-
tions translate into the growth equation:

���(�) = ��(�)[��(�) � ��(�) � ���(�)] + �. (1)

Later, we will also consider an explicit metacommunity
structure by replacing � with

��

�=1
(�����,�(�) � �����,�(�)), (2)

where ��,�(�) is the abundance of species � in patch �, and
��� a species-independent dispersal rate from patch � to �.
While the community dynamics encompasses some of

the most broadly relevant processes, there are also notable
omissions. We do not include demographic stochasticity,
arising from the discrete nature of individual birth and
deaths. To nonetheless allow for the extinction of rare
species we introduce a threshold �ext below which abun-
dances are set to zero. Furthermore, species coexistence
through the storage e�ect (i.a. noise-induced stabilization)
[12, 39] has been precluded, since the �uctuating �tnesses
and competition appear additively in the growth rate. For
perspectives on these e�ects in species-rich communities,
we refer to several recent works [16, 59, 42].

Fluctuating �tnesses

The �uctuating �tnesses ��(�) represent the net e�ect of
a complex and time-varying environment that we do not
model explicitly, and could include e�ects of interactions
outwith the community (e.g. grazing, predation), varying
resource availabilities, abiotic environment (e.g. tempera-
ture, salinity), and so on. For simplicity, we assume the
��(�)’s to be statistically independent between species, and
independent of the abundance of any species, thereby as-
suming that the important density-dependent mechanisms
in the community are in the main captured by the explicit
competition terms in Eq. (1). We characterize �tness �uc-
tuations by their expected value ��� , variance �2� , and auto-
correlation time �. Unless otherwise indicated, we will as-
sume species are time-average neutral, meaning ��� = ��
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Figure 1: Simulated community dynamics showing progressive un-
evenness. Single simulation run of Eq. (1) & (3), starting from a perfectly
even community. Instantaneous �tness (A) and time-averaged one (B),
highlighted in colour for a few highly successful species. The same species
are highlighted in the abundance time series (C-F), displayed in increas-
ingly longer time windows. The simulation was run without an extinction
threshold, but the vertical red lines in D indicate when, for the same �t-
ness dynamics as shown, a single species would �xate under di�erent ex-
tinction thresholds (�ext�� = 10�3, 10�6, 10�9, 10�12). Despite a transient
with high species diversity, monodominance is readily attained and is �xed
for any positive extinction threshold. Simulation parameters are � = 100,
� = 1, �� = 1, � = 0.05 � = 10.

the correlation time � alone has little e�ect on the main dy-
namical trends, but controls the extent of rapid �uctuations
around them.

Amapping to the replicator equation explains the dynamics
of community unevenness

Despite the large �uctuations of individual species abun-
dances in the simulation, the total abundance �(�) �uctu-
ates only moderately. This motivates focussing on the rela-
tive abundances�� = ����, which obey the replicator equa-
tion [34] (Appendix C)

���(�) = ��(�)[��(�) � �(�)], (7)

Figure 2: Decay of the e�ective species richness �e�(�) (Eq. (6)), start-
ing from initially even community of 25 to 1600 species. Thick lines show
averages over 200 simulations, with the two thin lines illustrating repre-
sentative single runs for � = 25 and 1600. The inset shows the time ��
at which the ensemble-averaged �e�(�) has decayed to 5 species, plotted
against the initial richness. The initially even community loses its diver-
sity on a timescale of ln �, in agreement with our calculations.

where the mean �tness �(�) �= �
� ��(�)��(�). This result

follows fromEq. (1) regardless of the functional form of ��(�)
and of the neutral competition term, as long as they remain
neutral, hence they have the same value for every species.
On the other hand, the strength of neutral competition �
constrains the total abundance, whose dynamics

��(�) = �(�)[�(�) � ��(�)] (8)

is coupled to community composition only through �(�).
Key to understanding the dynamics of species composi-

tion are the time-integrated �tnesses

��(�) �=�
�

0
d�� ��(��), (9)

as appreciated from the formal solution to Eq. (7):

��(�) =
��(0)���(�)
�(�) , �(�) �=

��

�=1
��(0)���(�). (10)

A species � becomes dominant when the factor ��� makes
up a sizeable fraction of the sum of exponentials, so that the
question of dominance is essentially one of extreme value
statistics. If the gap between the largest (or largest few) ��
and the rest tends to grow in time, then eventually—and,
indeed, rather soon due to the exponentiation—the corre-
sponding species will come to dominate. If species di�er
in their expected �tnesses, that with larger average �tness
eventually wins deterministically (competitive exclusion).
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[40]. Fitness variance and autocorrelation will be species-
independent throughout. Thus, species are held equivalent
in the face of �uctuations.
As a concrete model of �uctuations we choose an

Ornstein-Uhlenbeck process

� ���(�) = �(��(�) � ��� ) +
�
� ���(�). (3)

Here, ���(�) is a white noise (formally de�ned by its inte-
gral being a Wiener process). At stationarity, the �tness is
normally distributed like�(��� ,��) and the autocorrelation
function decays exponentially with rate 1��. The e�ect of
�uctuations is quanti�ed by the parameter

� �= 2�2� � (4)

that we later identify as the ’rate of stochastic exclusion’.
Choosing ��(�) as a coloured noise has several concep-

tual advantages over a white noise, which would follow
��(�) = ��� +� ���: we do not implicitly assume environmen-
tal �uctuation timescales are fast (perhaps reasonable for
elephants, but less so for E. coli); the parameters ��, � have
a clearer biological interpretation than the noise amplitude
�; and we can ignore subtleties of stochastic calculus con-
vention. The white noise model for ��(�) can be recovered
from Eq. (3) in the limit � � 0,�� � �, while keeping
�2 = 2�2� � constant, implying the Stratonovich stochastic
calculus [61].

Model parameters and simulations

In the absence of �tness �uctuations, the total abundance
equilibrates at the carrying capacity � = ����. By rescaling
abundances, we can set � = 1. We measure time in units of
1���, approximately equal to one generation time, whichwe
set to 1 day for ease of communication and without loss of
generality. In addition to �, this rescaling leaves three non-
dimensional parameters: �����, ���, �ext��.
The numerical implementation of the model is described in
Appendix B and the values of the rescaled parameters are
speci�ed in the �gure captions.

RESULTS

Randomly �uctuating �tnesses drive diversity loss

To establish a baseline for the e�ect of �tness �uctuations
on species coexistence and diversity, consider the special
case of Eq. (1) with neutral competition (� = 0) and no im-
migration (� = 0):

���(�) = ��(�)[��(�) � ��(�)]. (5)

Below, we study the dynamics of this system, �rst in simu-
lation and then analytically, with the following main con-
clusions.
Coexistence in Eq. (5) is only transient: communities

progress toward pronounced unevenness, and eventually
monodominance. This is true even in the absence of an ex-
tinction cuto�, in which case it takes progressively longer
for the identity of the dominant species to change. The

stickiness e�ect forms part of the explanation [16, 73]: Be-
cause the magnitude of abundance �uctuations is propor-
tional to the current abundance, the rarer a species, the
larger (and hence more infrequent) the �tness �uctuation
needed to escape rarity. The other part can be traced to the
growing variance of �tnesses integrated over time, despite
the convergence of time-averaged �tnesses toward ��.
A keymeasure of the e�ectiveness of stochastic exclusion

is the time �� it takes for an initially even community to be-
come composed of a few dominant species. We show that
it scales as ln(�)��, where the denominator is de�ned as
Eq. (4). Whether this is large or small on the generation time
scale depends primarily ����; it is long if relative �uctua-
tions are small (����� � 1), or if environmental changes are
fast compared to generation time (� � 1���). Remarkably,
a community of � = 10’000 species would only need twice
the time to reach few-species dominance as a 100-species
community, all else being equal. Because �� � ��1, we will
refer to � as the rate of (stochastic) exclusion.

Numerical simulations reveal transient diversity

To provide intuition on the ecological dynamics of an initial
maximally diverse community (��(0) = ���, ��(0) = ��), we
simulate numerically Eq. (5) (Figure 1). We observe that,
within a few hundred days, a handful of high-abundance
species stand out (Figure 1C). While it is di�cult to judge
any species’ success by its instantaneous�tness (Figure 1A),
the dominant species can be recognized as having the high-
est time-integrated �tness since the initial time (Figure 1B).
After a few thousand days, the community is dominated
by a single species (Figure 1D). As we observe the abun-
dances over long timescales—from years (Figure 1C), to
decades (Figure 1D), to centuries (Figure 1E), to millen-
nia (Figure 1F)—the intervals between exchanges of dom-
inance tend to lengthen. Correspondingly, species that are
not dominant become increasingly rare, so that, for any pos-
itive extinction threshold �ext, the number of extant species
progressively decays until only one species remains (varying
�ext�� from 10�3 to 10�12 has less than an order of magni-
tude e�ect on the timescale of �xation; see Figure 1D). The
last surviving species is at no practical risk of stochastic ex-
tinction, although, technically, it will vanish eventually.
We focus next on the timescale for the community to be-

come highly uneven. As a proxy for the number of domi-
nant species, we measure the e�ective richness by the Simp-
son’s reciprocal diversity index:

�e�(�) �=
1�

� �2� (�)
, (6)

where �� = ���� denote relative abundances. In the ini-
tially even community �e�(0) = �, while �e� � 1 for large
times indicatesmonodominance. Wemeasure the time �� at
which the the e�ective richness crosses a threshold of a few
species. As shown in Figure 2, distributions readily grow
uneven also in very large communities, with �� scaling as
ln �.
The critical time �� decreases with � = 2���, as we prove

in the next section. Indeed, � essentially sets the ‘ecological
clock’ of the model. As shown in Figure 3, when � is �xed,
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Figure 3: The main trend in community composition is scarcely af-
fected by the�tness autocorrelation time �—as long as � is constant.
The random numbers underlying the simulations are identical for all pan-
els. We have �xed � = 0.05, and set �� =

�
��2�. Other parameters as in

Figure 1.

In the time-averaged neutral case with random �tness �uc-
tuations following Eq. (3), after a transient of length com-
parable to �, the ��s diverge at rate � (see Eq. (23) in Ap-
pendix A), which thus controls the speed at which com-
munity unevenness develops. Also the aging dynamics ob-
served for �ext = 0, where changes in dominance become
increasingly rare, is explained by the property of Brownian
motions�� to return to the origin in �nite time despite the
growing variance. Instead, when �uctuations are perfectly
periodical, e.g. ��(�) = �� +

�
2�� cos(������), the variance

among��s remains bounded, and no asymptoticmonodom-
inance would be established.
We note that Eq. (10) has the form of the Boltzmann dis-

tribution from equilibrium statistical physics. Indeed, in
Appendix E we show how the ecological model with Gaus-
sian �tness �uctuations can be exactly mapped to the ‘ran-
dom energy model’ of a spin glass, for which many proper-
ties have been calculated in the large-system limit [19]. The
spin glass exhibits a condensation phase transition at a crit-
ical temperature, which is mathematically analogous to the
community unevenness transition at a critical time Eq. (39)
that, for � � ��, scales as

�� �
ln �
� . (11)

This explains the simulation results in Figure 2.
The dynamics of community unevennes can also be un-

derstood by looking at a single focal species. For a commu-
nity of two species [16], using �2 = 1 � �1 in Eq. (7),

��1(�) = ��1(�)�1(�)[1 � �1(�)], (12)

with ��1(�) �= �1(�) � �2(�), which is independent of any

species’ abundance. As the relative abundance of the fo-
cal species 1 approaches either 0 or 1, the dynamics slows
down, keeping the species generally closer to these extremes
than at any intermediate value. We show in Appendix D
that Eq. (12) holds for a focal species also in an �-species
community, given a generalized form of ��1. Consider the
sub-community of all species except the focal one, and de-
note by ��1(�) the mean �tness in this subcommunity (i.e.,
where relative abundances are normalized only with re-
spect to the � � 1 non-focal species). Then Eq. (12) holds
for

��1(�) �= �1(�) � ��1(�). (13)

Unlike the two-species case, ��1 now has a negative bias:
��1 is weighted towards the species with higher abun-
dances, which tend to have a higher-than average growth
rate. Thus, all species are biased towards rarity, but the
compositional nature of relative abundances (enforced by
the correlations between all the ���s) implies that some (ul-
timately only one) species will counter this tendency and
reach a large fraction of the total population size.

Species loss is drastically slowed by intra-speci�c lim-
itation or metacommunity bu�ering

As we have demonstrated, environmental stochasticity can
drive ‘commonness of rarity’ and turnover of composition,
but only transiently. Long-term maintenance of species
richness, however, requires local coexistence mechanisms
[11, 5], or extinction–colonization balance [47, 35]. We
therefore consider here the e�ects of additional intraspeci�c
limitation or metacommunity dispersal on diversity.
We suppose intraspeci�c competition exceeds interspe-

ci�c competition by an amount � > 0 of self-suppression:

���(�) = ��(�)(��(�) � ��(�) � ���). (14)

This introduces negative frequency dependence, such that a
species is penalized (favoured) when its relative abundance
is above (below) 1��e� (see Eq. (52), Appendix G), resulting
in the stabilization of high-diversity states. We �nd that in-
creasing ��� from 0 to 1 increases the timescale of substan-
tial loss of species richness by many orders of magnitude
(Figure 4A). The e�ective species richness remains roughly
constant until constrained by the absolute richness, as the
rare species headed toward extinction have amarginal e�ect
on the rest of the community. It is therefore reasonable to
consider the community as quasi-stationary on timescales
that can indeed be very long even when intraspeci�c sup-
pression is weak. Further increasing ��� to around 3������
(= 15 with default simulation parameters) would allow es-
sentially all species to coexist deterministically if the �t-
nesses were suddenly frozen, i.e. drawn statically from the
stationary distribution (Appendix F); then stochastic exclu-
sion does not occur at all, in practice.
Alternatively, we represented the bu�ering e�ect of

the metacommunity by adding a self-consistent dispersal
among� patches:

���,� = ��,�(��,� � ���) +
��

�=1
(�����,� � �����,�). (15)
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At the other end of a ‘niche–neutral continuum’ [30,
25, 32], deterministic models of heterogeneous competition
(generalized Lotka-Volterra [10, 7] and consumer-resource
models [1, 14]) show that under quite generic assump-
tions, species-rich and stable coexistence equilibria require
species to beweakly (or sparsely) coupledwith one another;
in otherwords, to have small niche overlap, whereas neutral
theories assume a large overlap [63]. An equilibrium that is
stable in the absence of �uctuations may be an appropri-
ate description of some species-rich communities on short
timescales. Nonetheless, the species abundance distribu-
tions predicted from weak and heterogeneous competition
are unrealistically even, unless model parameters, such as
carrying capacities, are assumed to be highly variable (e.g.
they follow a power-law distribution). [6]. Interestingly, it
has been widely reported that the regime of strong inter-
actions, rather than implying pervasive competitive exclu-
sion, can drive a local turnover of many rare and few abun-
dant species if immigration is present [66, 60, 15, 50, 8],
and produces similar abundance distributions as some neu-
tral models. Such turnover re�ects deterministic chaos
due to nonlinear interactions, but the time series of a fo-
cal species largely resembles logistic growth under environ-
mental noise [50, 3], forging a phenomenological link to the
time-averaged neutral models.

A pressing challenge for theoretical ecology is to syn-
thesize the results from an array of partially overlapping
models—neutral or niche-based, stochastic or determinis-
tic, well-mixed or spatially structured—towards a mathe-
matically robust understanding of species-rich community
patterns. To this end, we consider here a model incor-
porating strong but competitively neutral interactions and
time-averaged neutral environmental stochasticity within a
Lotka-Volterra framework [49, 56, 73, 42]. Recently, van
Nes et al [73] employed such a model to suggest an ex-
planation for the (hyper-)dominance of species in a wide
range of community data sets. They draw attention to the
‘stickiness’ e�ect (called ‘di�usive trapping’ in prior work
by Dean and Shnerb [17]), whereby the scaling of abun-
dance �uctuations biases species that become rare to re-
main rare. We present a detailed mathematical exposition
of this phenomenon through an exact mapping to repli-
cator dynamics and to condensation phase transitions in
physics, and explain why noise in fact drives the commu-
nity toward unevenness, and eventually monodominance,
even in very large communities. We show that necessary
to the maintenance of diversity are bu�ering or stabilizing
mechanisms, such as immigration (as in parallel work by
Kessler and Shnerb [42]) or su�ciently strong intraspeci�c
competition. We then characterize the SAD of the commu-
nity, whose shape interpolates between a few empirically
relevant archetypes, including power law and log-normal-
like. We �nd that these di�erent shapes can be classi�ed
by only two parameters that quantify the relative impor-
tance of environmental noise, bu�ering, and stabilizing pro-
cesses. We use an approximate single-species model to re-
late the shape of the SAD to the �uctuation statistics of indi-
vidual species. Finally, we consider heterogeneity in single-
species time-averaged �tness, and discuss how the model

can bridge community-level patterns and the dynamics of
individual species.

MODEL

Community dynamics

We consider a pool of � species that in a local community
of interest have abundances ��(�) (� = 1, 2,… , �) at time �.
When a species � is alone, its intrinsic �tness is de�ned by
its per capita growth rate ��(�), whose �uctuations re�ect
changes in the environment. Following classical hypothe-
ses, we take interactions to be dominated by competition,
and such that any pair of individuals compete with identical
strength � (i.e. neutral competition). Conspeci�cs, however,
may experience an additional self-limitation of strength �,
due to higher niche overlap. Moreover, we consider a small,
constant rate of net immigration �, intended as a simpli�ed
representation of a metacommunity structure. Denoting
the total abundance by �(�) = ��

�=1 ��(�), these assump-
tions translate into the growth equation:

���(�) = ��(�)[��(�) � ��(�) � ���(�)] + �. (1)

Later, we will also consider an explicit metacommunity
structure by replacing � with

��

�=1
(�����,�(�) � �����,�(�)), (2)

where ��,�(�) is the abundance of species � in patch �, and
��� a species-independent dispersal rate from patch � to �.
While the community dynamics encompasses some of

the most broadly relevant processes, there are also notable
omissions. We do not include demographic stochasticity,
arising from the discrete nature of individual birth and
deaths. To nonetheless allow for the extinction of rare
species we introduce a threshold �ext below which abun-
dances are set to zero. Furthermore, species coexistence
through the storage e�ect (i.a. noise-induced stabilization)
[12, 39] has been precluded, since the �uctuating �tnesses
and competition appear additively in the growth rate. For
perspectives on these e�ects in species-rich communities,
we refer to several recent works [16, 59, 42].

Fluctuating �tnesses

The �uctuating �tnesses ��(�) represent the net e�ect of
a complex and time-varying environment that we do not
model explicitly, and could include e�ects of interactions
outwith the community (e.g. grazing, predation), varying
resource availabilities, abiotic environment (e.g. tempera-
ture, salinity), and so on. For simplicity, we assume the
��(�)’s to be statistically independent between species, and
independent of the abundance of any species, thereby as-
suming that the important density-dependent mechanisms
in the community are in the main captured by the explicit
competition terms in Eq. (1). We characterize �tness �uc-
tuations by their expected value ��� , variance �2� , and auto-
correlation time �. Unless otherwise indicated, we will as-
sume species are time-average neutral, meaning ��� = ��
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Species coexist virtually 
forever with a perpetual 
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Figure 5: Variation in the shape of abundance distributions across simulated communities with varying base parameters. A An example
times series (top) with the corresponding data matrix (middle). Di�erent abundance distributions (bottom) can be constructed from this data: the
‘snapshot’ species abundance distribution (SAD, blue histogram); the frequency abundance distribution (FAD, pink symbols) for one arbitrary species.
The black line denotes the predicted stationary distribution Eq. (54a) of the focal species model, parameterized with ��e�, ��e� as per the statistics of� in the simulation. Three key features of the distributions are highlighted in dark blue: the number of decades� spanned by the SAD; the modal
abundance class ��; and the downward slope of the power-law section, as de�ned by the formula Eq. (20). B Variation of the highlighted features along
the Exclusion–Stabilization and Exclusion–Bu�ering axes. Each point represents one simulation. Parameters are sampled (log-)uniformly to vary over
orders of magnitude: � � [100, 1000], log10 � � [�4, 2], log10 � � [�2, 2], log10 � � [�2, 2], log10 � � [�10, 4]. Units are adapted so that � = 1 and
�� = 1. E�ective parameters appear to capture most of the shape variation, which is also reproduced by the focal species stochastic model. The goodness
of �t of �(�) with the species-averaged FAD (from 0 (no match) to 1 (perfect match)) is measured by (one minus) the Kolmogorov-Smirnov distance
of the distributions: 1 � sup� ���(�) � �FAD(�)�. The predicted exponent is shown in colour only for simulations where the �t was � 85% accurate
and the distribution with was at least two decades (� � 2). Note that colour scale for the exponent is capped in the range [0, 2], so that all negative
values appear in the same color (dark purple). C Examples of typical shapes of the abundance distributions. The species-averaged FAD is plotted for
the 10 simulations whose parameters put them closest in the EB/ES plane to the four points labelled EE, ES, BE, BS in B (the two letters signifying the
dominant end of the two axes). Di�erences in line colour are only a guide for the eye.

with cut-o�s at low and high abundance set by immigra-
tion and self-suppression, respectively (abundances cannot
be smaller than� � and larger than� 1��); seeAppendixH.
There, we also give an approximate solution for �nite �e�,
Eq. (54a), which has modi�ed cut-o�s but the same power
law section compared to Eq. (19). Note that � can be both
larger and smaller than one, depending on the sign of ��e�.
How the shape of the distribution depends on the base pa-

rameters (i.e.�, ��,� = ����, �, �, �, �) is not fully clear from
the focal-species model, as they enter indirectly in the e�ec-
tive rates ��e�, �e� and the three relevant parameter combi-
nations ��e���e�, ���e�, ���e� that appear in Eq. (19). Going
back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
binations, that capture the relative proportions of exclusion
rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):

�� = �
�� , �� = ��

�� ,
��tot =

��
��� . (21)

We compare these by two log-ratios (that fully determine the
third one): log( ��� ��) and log( ��tot� ��), that we call Exclusion–
Stabilization (ES), and Exclusion–Bu�ering (EB), respec-
tively.
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At the other end of a ‘niche–neutral continuum’ [30,
25, 32], deterministic models of heterogeneous competition
(generalized Lotka-Volterra [10, 7] and consumer-resource
models [1, 14]) show that under quite generic assump-
tions, species-rich and stable coexistence equilibria require
species to beweakly (or sparsely) coupledwith one another;
in otherwords, to have small niche overlap, whereas neutral
theories assume a large overlap [63]. An equilibrium that is
stable in the absence of �uctuations may be an appropri-
ate description of some species-rich communities on short
timescales. Nonetheless, the species abundance distribu-
tions predicted from weak and heterogeneous competition
are unrealistically even, unless model parameters, such as
carrying capacities, are assumed to be highly variable (e.g.
they follow a power-law distribution). [6]. Interestingly, it
has been widely reported that the regime of strong inter-
actions, rather than implying pervasive competitive exclu-
sion, can drive a local turnover of many rare and few abun-
dant species if immigration is present [66, 60, 15, 50, 8],
and produces similar abundance distributions as some neu-
tral models. Such turnover re�ects deterministic chaos
due to nonlinear interactions, but the time series of a fo-
cal species largely resembles logistic growth under environ-
mental noise [50, 3], forging a phenomenological link to the
time-averaged neutral models.

A pressing challenge for theoretical ecology is to syn-
thesize the results from an array of partially overlapping
models—neutral or niche-based, stochastic or determinis-
tic, well-mixed or spatially structured—towards a mathe-
matically robust understanding of species-rich community
patterns. To this end, we consider here a model incor-
porating strong but competitively neutral interactions and
time-averaged neutral environmental stochasticity within a
Lotka-Volterra framework [49, 56, 73, 42]. Recently, van
Nes et al [73] employed such a model to suggest an ex-
planation for the (hyper-)dominance of species in a wide
range of community data sets. They draw attention to the
‘stickiness’ e�ect (called ‘di�usive trapping’ in prior work
by Dean and Shnerb [17]), whereby the scaling of abun-
dance �uctuations biases species that become rare to re-
main rare. We present a detailed mathematical exposition
of this phenomenon through an exact mapping to repli-
cator dynamics and to condensation phase transitions in
physics, and explain why noise in fact drives the commu-
nity toward unevenness, and eventually monodominance,
even in very large communities. We show that necessary
to the maintenance of diversity are bu�ering or stabilizing
mechanisms, such as immigration (as in parallel work by
Kessler and Shnerb [42]) or su�ciently strong intraspeci�c
competition. We then characterize the SAD of the commu-
nity, whose shape interpolates between a few empirically
relevant archetypes, including power law and log-normal-
like. We �nd that these di�erent shapes can be classi�ed
by only two parameters that quantify the relative impor-
tance of environmental noise, bu�ering, and stabilizing pro-
cesses. We use an approximate single-species model to re-
late the shape of the SAD to the �uctuation statistics of indi-
vidual species. Finally, we consider heterogeneity in single-
species time-averaged �tness, and discuss how the model

can bridge community-level patterns and the dynamics of
individual species.

MODEL

Community dynamics

We consider a pool of � species that in a local community
of interest have abundances ��(�) (� = 1, 2,… , �) at time �.
When a species � is alone, its intrinsic �tness is de�ned by
its per capita growth rate ��(�), whose �uctuations re�ect
changes in the environment. Following classical hypothe-
ses, we take interactions to be dominated by competition,
and such that any pair of individuals compete with identical
strength � (i.e. neutral competition). Conspeci�cs, however,
may experience an additional self-limitation of strength �,
due to higher niche overlap. Moreover, we consider a small,
constant rate of net immigration �, intended as a simpli�ed
representation of a metacommunity structure. Denoting
the total abundance by �(�) = ��

�=1 ��(�), these assump-
tions translate into the growth equation:

���(�) = ��(�)[��(�) � ��(�) � ���(�)] + �. (1)

Later, we will also consider an explicit metacommunity
structure by replacing � with

��

�=1
(�����,�(�) � �����,�(�)), (2)

where ��,�(�) is the abundance of species � in patch �, and
��� a species-independent dispersal rate from patch � to �.
While the community dynamics encompasses some of

the most broadly relevant processes, there are also notable
omissions. We do not include demographic stochasticity,
arising from the discrete nature of individual birth and
deaths. To nonetheless allow for the extinction of rare
species we introduce a threshold �ext below which abun-
dances are set to zero. Furthermore, species coexistence
through the storage e�ect (i.a. noise-induced stabilization)
[12, 39] has been precluded, since the �uctuating �tnesses
and competition appear additively in the growth rate. For
perspectives on these e�ects in species-rich communities,
we refer to several recent works [16, 59, 42].

Fluctuating �tnesses

The �uctuating �tnesses ��(�) represent the net e�ect of
a complex and time-varying environment that we do not
model explicitly, and could include e�ects of interactions
outwith the community (e.g. grazing, predation), varying
resource availabilities, abiotic environment (e.g. tempera-
ture, salinity), and so on. For simplicity, we assume the
��(�)’s to be statistically independent between species, and
independent of the abundance of any species, thereby as-
suming that the important density-dependent mechanisms
in the community are in the main captured by the explicit
competition terms in Eq. (1). We characterize �tness �uc-
tuations by their expected value ��� , variance �2� , and auto-
correlation time �. Unless otherwise indicated, we will as-
sume species are time-average neutral, meaning ��� = ��
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Figure 5: Variation in the shape of abundance distributions across simulated communities with varying base parameters. A An example
times series (top) with the corresponding data matrix (middle). Di�erent abundance distributions (bottom) can be constructed from this data: the
‘snapshot’ species abundance distribution (SAD, blue histogram); the frequency abundance distribution (FAD, pink symbols) for one arbitrary species.
The black line denotes the predicted stationary distribution Eq. (54a) of the focal species model, parameterized with ��e�, ��e� as per the statistics of� in the simulation. Three key features of the distributions are highlighted in dark blue: the number of decades� spanned by the SAD; the modal
abundance class ��; and the downward slope of the power-law section, as de�ned by the formula Eq. (20). B Variation of the highlighted features along
the Exclusion–Stabilization and Exclusion–Bu�ering axes. Each point represents one simulation. Parameters are sampled (log-)uniformly to vary over
orders of magnitude: � � [100, 1000], log10 � � [�4, 2], log10 � � [�2, 2], log10 � � [�2, 2], log10 � � [�10, 4]. Units are adapted so that � = 1 and
�� = 1. E�ective parameters appear to capture most of the shape variation, which is also reproduced by the focal species stochastic model. The goodness
of �t of �(�) with the species-averaged FAD (from 0 (no match) to 1 (perfect match)) is measured by (one minus) the Kolmogorov-Smirnov distance
of the distributions: 1 � sup� ���(�) � �FAD(�)�. The predicted exponent is shown in colour only for simulations where the �t was � 85% accurate
and the distribution with was at least two decades (� � 2). Note that colour scale for the exponent is capped in the range [0, 2], so that all negative
values appear in the same color (dark purple). C Examples of typical shapes of the abundance distributions. The species-averaged FAD is plotted for
the 10 simulations whose parameters put them closest in the EB/ES plane to the four points labelled EE, ES, BE, BS in B (the two letters signifying the
dominant end of the two axes). Di�erences in line colour are only a guide for the eye.

with cut-o�s at low and high abundance set by immigra-
tion and self-suppression, respectively (abundances cannot
be smaller than� � and larger than� 1��); seeAppendixH.
There, we also give an approximate solution for �nite �e�,
Eq. (54a), which has modi�ed cut-o�s but the same power
law section compared to Eq. (19). Note that � can be both
larger and smaller than one, depending on the sign of ��e�.
How the shape of the distribution depends on the base pa-

rameters (i.e.�, ��,� = ����, �, �, �, �) is not fully clear from
the focal-species model, as they enter indirectly in the e�ec-
tive rates ��e�, �e� and the three relevant parameter combi-
nations ��e���e�, ���e�, ���e� that appear in Eq. (19). Going
back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
binations, that capture the relative proportions of exclusion
rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):

�� = �
�� , �� = ��

�� ,
��tot =

��
��� . (21)

We compare these by two log-ratios (that fully determine the
third one): log( ��� ��) and log( ��tot� ��), that we call Exclusion–
Stabilization (ES), and Exclusion–Bu�ering (EB), respec-
tively.
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Figure 4: Loss o� species richness (large panel) and e�ective richness Eq. (6) (side panel) over time. The e�ective richnesses are plotted for
the times at which the absolute abundance crosses the level values indicated by horizontal grey lines. The average diversity decay over 20 simulation
runs is plotted for di�erent values of intra-speci�c suppression � (A), and in metapopulations with di�erent number of patches� and migration rates
� (B). Other parameters are as given in Figure 1 with �ext�� = 10�12.

Naturally, the rates of local and regional extinction will de-
pend on the number of patches and the topology of the net-
work, the correlation in environmental conditions between
patches, the rates of dispersal, and the extinction threshold;
enough factors to make a systematic analysis challenging.
In Figure 4B we only consider a fully connected patch net-
work, uncorrelated �tnesses, and vary either the net disper-
sal rate (�) or the dispersal per patch (���). In either case,
every doubling of the number of patches leads to about one
more order of magnitude in the time it takes to lose species
richness in a given patch. Indeed, related metacommunity
models have found species lifetimes to grow exponentially
in the number of patches [66, 28].
Given the radical slowdown of diversity loss achievable

by modest amounts of stabilization or bu�ering, we con-
sider in the following the single-patch dynamics Eq. (1)
without extinction cut-o�, which has a true stationary state
thanks to the constant immigration term �. Next, we use
this model to explore the e�ects of self-suppression rate �
and the immigration rate � on abundance distributions, as
they promote coexistence.

A modi�ed power-law abundance distribution is
maintained by turnover of rare and dominant species

With Eq. (1) at hand, for which �tness �uctuations drive
community unevenness but intraspeci�c suppression and
immigration limit species rarity, we now look at two empir-
ically relevant statistics: the abundance distributions dis-
played by individual species over long stretches of time
(frequency–abundance distribution, FAD), or by all species
of the community at a snapshot in time (species–abundance
distribution, SAD). Their relation is illustrated in Figure 5A.

While all species �uctuate in abundance over time, the SAD
retains, across snapshots, the same shape, which appears
to be a subsampling of the FAD. Moreover, all species have
identical FAD if compared for a su�ciently long time, due
to species-symmetry of the model parameters. Thus, for
large, time-average neutral communities, the FAD and SAD
essentially coincide.
To estimate the shape of these distributions we consider,

similar to [50], an e�ective equation that governs the dy-
namics of a single, focal species:

�� = �(�e�(�) � ��) + �. (16)

Here, �e�(�) is again an Ornstein-Uhlenbeck process like
Eq. (3), with statistics now chosen to approximate those of
��(�)� ��(�). Thus, we set the mean of the e�ective �uctu-
ations to

��e� = ��(1 ����), (17)

with the over bar denoting an average over long times; the
variance (neglecting the small covariance of focal species�t-
ness and total abundance) to

�2�e� � �2� + �2Var[�]; (18)

and �e� � �, because �uctuations are chie�y driven by ��(�).
In the fast-environment limit, where �e� � 0 while �e� =
2�2�e��e� remains �nite, the stationary distribution is

�(�) � �����
2
�e�

(��+���), (19)

combining a power-law section with exponent

� = 1 �
2��e�
�e�

(20)
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Figure 4: Loss o� species richness (large panel) and e�ective richness Eq. (6) (side panel) over time. The e�ective richnesses are plotted for
the times at which the absolute abundance crosses the level values indicated by horizontal grey lines. The average diversity decay over 20 simulation
runs is plotted for di�erent values of intra-speci�c suppression � (A), and in metapopulations with di�erent number of patches� and migration rates
� (B). Other parameters are as given in Figure 1 with �ext�� = 10�12.

Naturally, the rates of local and regional extinction will de-
pend on the number of patches and the topology of the net-
work, the correlation in environmental conditions between
patches, the rates of dispersal, and the extinction threshold;
enough factors to make a systematic analysis challenging.
In Figure 4B we only consider a fully connected patch net-
work, uncorrelated �tnesses, and vary either the net disper-
sal rate (�) or the dispersal per patch (���). In either case,
every doubling of the number of patches leads to about one
more order of magnitude in the time it takes to lose species
richness in a given patch. Indeed, related metacommunity
models have found species lifetimes to grow exponentially
in the number of patches [66, 28].
Given the radical slowdown of diversity loss achievable

by modest amounts of stabilization or bu�ering, we con-
sider in the following the single-patch dynamics Eq. (1)
without extinction cut-o�, which has a true stationary state
thanks to the constant immigration term �. Next, we use
this model to explore the e�ects of self-suppression rate �
and the immigration rate � on abundance distributions, as
they promote coexistence.

A modi�ed power-law abundance distribution is
maintained by turnover of rare and dominant species

With Eq. (1) at hand, for which �tness �uctuations drive
community unevenness but intraspeci�c suppression and
immigration limit species rarity, we now look at two empir-
ically relevant statistics: the abundance distributions dis-
played by individual species over long stretches of time
(frequency–abundance distribution, FAD), or by all species
of the community at a snapshot in time (species–abundance
distribution, SAD). Their relation is illustrated in Figure 5A.

While all species �uctuate in abundance over time, the SAD
retains, across snapshots, the same shape, which appears
to be a subsampling of the FAD. Moreover, all species have
identical FAD if compared for a su�ciently long time, due
to species-symmetry of the model parameters. Thus, for
large, time-average neutral communities, the FAD and SAD
essentially coincide.
To estimate the shape of these distributions we consider,

similar to [50], an e�ective equation that governs the dy-
namics of a single, focal species:

�� = �(�e�(�) � ��) + �. (16)

Here, �e�(�) is again an Ornstein-Uhlenbeck process like
Eq. (3), with statistics now chosen to approximate those of
��(�)� ��(�). Thus, we set the mean of the e�ective �uctu-
ations to

��e� = ��(1 ����), (17)

with the over bar denoting an average over long times; the
variance (neglecting the small covariance of focal species�t-
ness and total abundance) to

�2�e� � �2� + �2Var[�]; (18)

and �e� � �, because �uctuations are chie�y driven by ��(�).
In the fast-environment limit, where �e� � 0 while �e� =
2�2�e��e� remains �nite, the stationary distribution is

�(�) � �����
2
�e�

(��+���), (19)

combining a power-law section with exponent

� = 1 �
2��e�
�e�

(20)
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Figure 4: Loss o� species richness (large panel) and e�ective richness Eq. (6) (side panel) over time. The e�ective richnesses are plotted for
the times at which the absolute abundance crosses the level values indicated by horizontal grey lines. The average diversity decay over 20 simulation
runs is plotted for di�erent values of intra-speci�c suppression � (A), and in metapopulations with di�erent number of patches� and migration rates
� (B). Other parameters are as given in Figure 1 with �ext�� = 10�12.

Naturally, the rates of local and regional extinction will de-
pend on the number of patches and the topology of the net-
work, the correlation in environmental conditions between
patches, the rates of dispersal, and the extinction threshold;
enough factors to make a systematic analysis challenging.
In Figure 4B we only consider a fully connected patch net-
work, uncorrelated �tnesses, and vary either the net disper-
sal rate (�) or the dispersal per patch (���). In either case,
every doubling of the number of patches leads to about one
more order of magnitude in the time it takes to lose species
richness in a given patch. Indeed, related metacommunity
models have found species lifetimes to grow exponentially
in the number of patches [66, 28].
Given the radical slowdown of diversity loss achievable

by modest amounts of stabilization or bu�ering, we con-
sider in the following the single-patch dynamics Eq. (1)
without extinction cut-o�, which has a true stationary state
thanks to the constant immigration term �. Next, we use
this model to explore the e�ects of self-suppression rate �
and the immigration rate � on abundance distributions, as
they promote coexistence.

A modi�ed power-law abundance distribution is
maintained by turnover of rare and dominant species

With Eq. (1) at hand, for which �tness �uctuations drive
community unevenness but intraspeci�c suppression and
immigration limit species rarity, we now look at two empir-
ically relevant statistics: the abundance distributions dis-
played by individual species over long stretches of time
(frequency–abundance distribution, FAD), or by all species
of the community at a snapshot in time (species–abundance
distribution, SAD). Their relation is illustrated in Figure 5A.

While all species �uctuate in abundance over time, the SAD
retains, across snapshots, the same shape, which appears
to be a subsampling of the FAD. Moreover, all species have
identical FAD if compared for a su�ciently long time, due
to species-symmetry of the model parameters. Thus, for
large, time-average neutral communities, the FAD and SAD
essentially coincide.
To estimate the shape of these distributions we consider,

similar to [50], an e�ective equation that governs the dy-
namics of a single, focal species:

�� = �(�e�(�) � ��) + �. (16)

Here, �e�(�) is again an Ornstein-Uhlenbeck process like
Eq. (3), with statistics now chosen to approximate those of
��(�)� ��(�). Thus, we set the mean of the e�ective �uctu-
ations to

��e� = ��(1 ����), (17)

with the over bar denoting an average over long times; the
variance (neglecting the small covariance of focal species�t-
ness and total abundance) to

�2�e� � �2� + �2Var[�]; (18)

and �e� � �, because �uctuations are chie�y driven by ��(�).
In the fast-environment limit, where �e� � 0 while �e� =
2�2�e��e� remains �nite, the stationary distribution is

�(�) � �����
2
�e�

(��+���), (19)

combining a power-law section with exponent

� = 1 �
2��e�
�e�

(20)
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Figure 5: Variation in the shape of abundance distributions across simulated communities with varying base parameters. A An example
times series (top) with the corresponding data matrix (middle). Di�erent abundance distributions (bottom) can be constructed from this data: the
‘snapshot’ species abundance distribution (SAD, blue histogram); the frequency abundance distribution (FAD, pink symbols) for one arbitrary species.
The black line denotes the predicted stationary distribution Eq. (54a) of the focal species model, parameterized with ��e�, ��e� as per the statistics of� in the simulation. Three key features of the distributions are highlighted in dark blue: the number of decades� spanned by the SAD; the modal
abundance class ��; and the downward slope of the power-law section, as de�ned by the formula Eq. (20). B Variation of the highlighted features along
the Exclusion–Stabilization and Exclusion–Bu�ering axes. Each point represents one simulation. Parameters are sampled (log-)uniformly to vary over
orders of magnitude: � � [100, 1000], log10 � � [�4, 2], log10 � � [�2, 2], log10 � � [�2, 2], log10 � � [�10, 4]. Units are adapted so that � = 1 and
�� = 1. E�ective parameters appear to capture most of the shape variation, which is also reproduced by the focal species stochastic model. The goodness
of �t of �(�) with the species-averaged FAD (from 0 (no match) to 1 (perfect match)) is measured by (one minus) the Kolmogorov-Smirnov distance
of the distributions: 1 � sup� ���(�) � �FAD(�)�. The predicted exponent is shown in colour only for simulations where the �t was � 85% accurate
and the distribution with was at least two decades (� � 2). Note that colour scale for the exponent is capped in the range [0, 2], so that all negative
values appear in the same color (dark purple). C Examples of typical shapes of the abundance distributions. The species-averaged FAD is plotted for
the 10 simulations whose parameters put them closest in the EB/ES plane to the four points labelled EE, ES, BE, BS in B (the two letters signifying the
dominant end of the two axes). Di�erences in line colour are only a guide for the eye.

with cut-o�s at low and high abundance set by immigra-
tion and self-suppression, respectively (abundances cannot
be smaller than� � and larger than� 1��); seeAppendixH.
There, we also give an approximate solution for �nite �e�,
Eq. (54a), which has modi�ed cut-o�s but the same power
law section compared to Eq. (19). Note that � can be both
larger and smaller than one, depending on the sign of ��e�.
How the shape of the distribution depends on the base pa-

rameters (i.e.�, ��,� = ����, �, �, �, �) is not fully clear from
the focal-species model, as they enter indirectly in the e�ec-
tive rates ��e�, �e� and the three relevant parameter combi-
nations ��e���e�, ���e�, ���e� that appear in Eq. (19). Going
back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
binations, that capture the relative proportions of exclusion
rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):

�� = �
�� , �� = ��

�� ,
��tot =

��
��� . (21)

We compare these by two log-ratios (that fully determine the
third one): log( ��� ��) and log( ��tot� ��), that we call Exclusion–
Stabilization (ES), and Exclusion–Bu�ering (EB), respec-
tively.
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be smaller than� � and larger than� 1��); seeAppendixH.
There, we also give an approximate solution for �nite �e�,
Eq. (54a), which has modi�ed cut-o�s but the same power
law section compared to Eq. (19). Note that � can be both
larger and smaller than one, depending on the sign of ��e�.
How the shape of the distribution depends on the base pa-

rameters (i.e.�, ��,� = ����, �, �, �, �) is not fully clear from
the focal-species model, as they enter indirectly in the e�ec-
tive rates ��e�, �e� and the three relevant parameter combi-
nations ��e���e�, ���e�, ���e� that appear in Eq. (19). Going
back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
binations, that capture the relative proportions of exclusion
rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):
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We compare these by two log-ratios (that fully determine the
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law section compared to Eq. (19). Note that � can be both
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(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
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back to the full-community model, a dimensional analysis

(Appendix G) indicates that most of the variation in distri-
bution shape can be reduced to only two parameter com-
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rate, self-limitation rate, and total immigration rate. First,
we make these three rates comparable by expressing them
in our chosen units (1��� for time, � for abundance):
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Empirical observations: SADs and AFDs

zero-inflated Gamma distribution (see Methods and Supplemen-
tary Fig. 6).

This result strongly suggests that, at the taxonomic resolution
used in this study, competitive exclusion is absent or, at least,
statistically irrelevant. Importantly, this result clarifies the relation
between abundance and occupancy21, which has been reported in
multiple microbial systems18,22,23 but has never been quantita-
tively characterized and explained.

Taylor’s Law. The mean and variance of abundance fluctuations
are sufficient to characterize the full distribution of abundances of
species across communities, as Eq. (1) depends only on the two
moments !xi and σxi . The second macroecological law describes
the relation between mean and variance of species abundance,
which is often referred to as Taylor’s Law24. Taylor’s law has been
reported in many contexts, ranging from ecology25,26 to phy-
siology27–29, from economics30 to geomorphology31. Figure 1c
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Distributions for heterogeneous communities
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Figure 6: Emergence of frequent and infrequent species under breaking of time-averaged neutrality. The two rows report the same numerical
protocol but starting from di�erent sets of model parameters, corresponding to the scenarios EE and BS in Figure 5. Time-averaged neutrality is broken
by drawing the ��� s uniformly at random from the interval [�� � ���, �� + ���], with ��� varying by column. In each panel, the frequency–abundance
distribution (FAD) of each individual species is plotted, with a subset of species shown in colour according to their ��� ; the black dashed lines are the
species-averaged FADs (equal to the time-averaged SAD). Simulation parameters used are � = 500, �� = 1, � = 1, �� = 0.05, � = 10, and for EE, BS,
respectively, � = 0.05, 50; � = 10�8, 3.2 ◊ 10�5. Simulations were run for 500’000 time units.

transient states inherently depend on the initial condition.
We showed that steady states with high species diver-

sity emerge instead from a combination of local coexistence
mechanisms and extinction-colonization balance. We ob-
served how increasing intraspeci�c competition (implying
stabilization throughniche-di�erentiation [4]), or introduc-
ing dispersal within a metacommunity (promoting a spa-
tiotemporal bu�ering e�ect [46, 28]) can preserve both ab-
solute and e�ective species richness on super-generational
timescales.
Such combined e�ects of stabilization and bu�ering are

captured by a model for a single patch with both intra-
speci�c limitation and constant immigration. By chang-
ing the model parameters, the dynamics exhibits di�erent
regimes with characteristic community patterns. To un-
derstand the variation in shape of the species–abundance
distribution (SAD), in particular, we exploited its corre-
spondence to the frequency–abundance distribution (FAD)
of single species when the community is species-rich and
time-average neutral. A focal-species model predicts the
functional form of the distribution, but depends on ef-
fective parameters whose values are not a priori known.
Still, we showed that the distribution shape is essentially
controlled by the relative rates of stochastic exclusion,
self-limitation, and total immigration, summarized in an
Exclusion–Bu�ering and Exclusion–Stabilization (EB/ES)
plane. Its axes are similar in spirit to niche–neutral and
dispersal-limitation axes [30, 25, 32, 44], but stochastic ex-
clusion results here from environmental �uctuations as op-
posed to neutral drift.
We described the patterns of unevenness and turnover

found across the EB/ES plane. When stochastic exclu-
sion dominates, there are a few dominant (or even hyper-
dominant [42, 73]) species at any given time, while the rare
species are maintained by immigration. Concomitantly,
there is high turnover of species between the dominant
and rare component. The SAD is characterized by an ex-
tended power-law section between the immigration thresh-
old and the single-species carrying capacity, similar to what
observed in plankton communities [67]. A ‘power bend’ (a
power-law decay with exponential cuto�) appears to be a
commonly good �t to empirical SADs [27], with exponents
close to 1 for animals and plants, and with a median of 1.6
inmicrobial communities—a range encompassed by our re-
sults. As stabilization becomes stronger in the model, the
SAD comes to resemble a gamma distribution, which has
been associated with FADs in various microbial communi-
ties [31, 21]. Increasing also immigration leads to a more
classical log-normal-like shape [62], associated with more
stable community compositions, and less rapid turnover.

Time-average neutrality is a useful hypothesis for a null
model, but is likely unrealistic. We have therefore intro-
duced heterogeneity in mean �tnesses, and observed the
emergence of persistently common or rare species, with a
split in both the shapes and locations of the FADs. This dis-
tinction re�ects a di�erence in temporal occurrence, remi-
niscent of the distinction, in natural communities, between
‘core’, endemic species and ‘occasional’ species, which are
less systematically sampled [48]. Although the SAD now
does not necessarily look like the FAD of any particular
species, the individual FADs can still be described by the
same focal-speciesmodel butwith di�erent e�ective param-
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Empirical observations: temporal turnover

Grazing
In the context of plankton, 
grazing refers to the removal of 
organisms by a predatory or 
herbivorous organism.

Upwelling
The physical upward vertical 
transport of water from deeper 
to shallower depths (often 
caused by seasonal offshore 
winds near a coast). In the 
context of this Review, it refers 
to water and its accompanying 
nutrients entering the euphotic 
zone from below.

Allochthonous material
Material that is derived from 
an external source, as opposed 
to autochthonous material that 
is generated internally.

Eddies
Swirls of water motion caused 
by flow around objects or by 
instabilities inherent in the 
motion of density-stratified 
water on a rotating Earth. 
Ocean mesoscale eddies are 
typically 10–500 km in 
diameter.

Autoregression
Refers to the phenomenon  
in which samples that are 
collected closer to each other 
(in space or time) tend to be 
more similar to each other than 
those further separated.

Phytoplankton
(Also known as photosynthetic 
plankton). Single-cell 
photosynthetic organisms  
that form the basis of the 
marine food web, including 
cyanobacteria and many  
kinds of protists (such as 
diatoms, dinoflagellates, 
coccolithophores and others).

Allelopathic
An organism is termed 
allelopathic if it produces 
biochemicals that influence  
the growth, behaviour and 
reproduction of other 
organisms, with negative 
allelopathy adversely affecting 
the target organisms. The 
chemicals are generally not 
required for metabolism and 
include compounds such as 
antibiotics or repellants.

(trending in one direction, such as anthropogenic global 
warming and ocean acidification19–21), other anthropo-
genic regional environmental changes (such as hypoxia 
and anoxia caused by eutrophication22) and food-web 
cascade effects due to variations in larger organisms, 
such as fish. Other forces operating at this scale include 
alterations in entire ecosystems owing to overfishing, 
invasive species or general environmental degradation. 
Furthermore, there are even longer-term climatological 

variations at time scales much longer than decades, 
which emerge owing to geological and astronomical 
processes that are associated with changes in micro-
bial assemblages: for example, foraminiferal sp. have 
been shown to vary over scales of tens to thousands of 
years23,24, and diatom25 and dinoflagellate26 populations 
have trended towards species with smaller cell sizes over 
the past 50 million years owing to, among other vari-
ables, increased stratification (which generally decreases 
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SI: Fluctuating growth rates link turnover and unevenness in species-rich communities 4 SUPPLEMENTARY FIGURES

Figure S3: Turnover measured by Bray-Curtis decay corresponding to the panels in Figure S1. The color of the line re�ects the value of log10 �,
normalized separately for each panel. Light colors for small �, dark color for large. Note that small � gives slower decay, and that narrow SADs are
associated with high limit of the BC.

Figure S4: Turnover measured by Bray-Curtis decay corresponding to Main Text Figure 6. For each scenario (row) of Main Text Figure 6, each
of the four panels with di�erent ������ corresponds to one line. Note the 10x di�erence in timescale between the two scenarios.
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Conclusions
The combination of fitness fluctuations (that yield growing inequalities in integrated fitness), 
buffering (that prevents extinction) and limitation (that bounds abundances) generically 
constrains abundance distributions. 

A number of features of empirical observations (snapshot and time-resolved) are retrieved 
with a stylized model that encompasses those features.

In such model, the shape of the abundance distributions mostly depends on just two 
parameter combinations, that quantify the relative strength of limitation and of buffering 
relative to the exclusion time scale.

This pinpoints the limitations of resolving ecological processes from fitting abundance 
distributions, but also to the possible use of quantitative variation to distinguish different 
ecological regimes.

Emil Mallmin, Arne Traulsen, SDM
Fluctuating growth rates link turnover and unevenness in species-rich communities
https://arxiv.org/pdf/2505.01376
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Species are often clustered into functional groups

Goldford et al.
Emergent simplicity in microbial community assembly
Science (2018)

To better understand the origin of the tax-
onomic variability observed below the family
level, we started eight replicate communities from
each of the 12 starting microbiome suspensions
(inocula) and propagated them in minimal me-
dia with glucose, as in the previous experiment.
Given that the replicate communities were as-
sembled in identical habitats and were inoculated
from the same pool of species, any observed
variability in community composition across rep-
licates would suggest that random colonization
from the regional pool and microbe-microbe in-
teractions are sufficient to generate alternative
species-level community assembly.
For most of the inocula (9 out of 12), replicate

communities assembled into alternative stable
ESV-level compositions, while still converging
to the same family-level attractor described in
Fig. 1E (see also fig. S6). One representative
example is shown in Fig. 1, F and G; all eight
replicates from the same starting inoculum
assembled into strongly similar family-level
structures, which were quantitatively consistent
with those found before (Fig. 1D). However,
different replicates contained alternative Pseudo-
monadaceae ESVs, and the Enterobacteriaceae

fraction was constituted by either an ESV from
the Klebsiella genus or a guild consisting of var-
iable subcompositions of Enterobacter,Raoultella,
and/or Citrobacter as the dominant taxa.
For the remaining (3 out of 12) inocula, all

replicates exhibited strongly similar population
dynamics to each other and equilibrated to sim-
ilar population structures at all levels of taxo-
nomic resolution (fig. S7). The reproducibility in
population dynamics between replicate commun-
ities indicates that experimental error is not the
main source of variability in community compo-
sition. The population bottlenecks introduced
by the serial dilutions in fresh media have only
a modest effect on the observed variability in
population dynamics (fig. S8). However, the
dilution factor can influence community as-
sembly through means other than introducing
population bottlenecks—for instance, by set-
ting the number of generations in between dilu-
tions and by diluting, to a greater or lesser extent,
the environment generated in a previous growth
period.
Despite the observed species-level variation

in community structure, the existence of family-
level attractors suggests that fundamental rules

govern community assembly. Recent work on
natural communities has consistently found
that environmental filtering selects for convergent
function across similar habitats, while allowing
for taxonomic variability within each functional
class (5, 6). In our assembled communities in
glucose media, fixed proportions of Entero-
bacteriaceae and Pseudomonadaceae may have
emerged owing to a competitive advantage, given
thewell-known glucose uptake capabilities of the
phosphotransferase system in Enterobacteriaceae
and ABC (adenosine triphosphate–binding cas-
sette) transporters in Pseudomonadaceae (19).
This suggests that the observed family-level at-
tractor may change if we add a different carbon
source to our synthetic media.
To determine the effect of the externally pro-

vided carbon source on environmental filtering,
we repeated the community assembly experi-
ments with eight replicates of all 12 natural com-
munities, this time using one of two alternative
single carbon sources—citrate or leucine—instead
of glucose. Consistent with previous experiments
using glucose minimal media, communities that
assembled on citrate or leucine contained large
numbers of species: At a sequencing depth of
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Fig. 1. Top-down assembly
of bacterial consortia.
(A) Experimental scheme:
Large ensembles of
taxa were obtained from
12 leaf and soil samples
and used as inocula in
serial dilution cultures
containing synthetic
media supplemented
with glucose as the sole
carbon source. After each
transfer, 16S rRNA
amplicon sequencing was
used to assay bacterial
community structure.
(B) Analysis of the
structure of a representative
community (from
inoculum 2) after
every dilution cycle
(about seven generations)
reveals a five-member
consortium from the
Enterobacter, Raoultella,
Citrobacter, Pseudomonas,
and Stenotrophomonas
genera. The community
composition of all
12 starting inocula after
84 generations is shown
at (C) the exact sequence
variant (ESV) level or
(D) the family taxonomic
level, converging to
characteristic fractions of
Enterobacteriaceae and Pseudomonadaceae. (E) Simplex representation of family-level taxonomy before (t = 0) and after (t = 84) the passaging
experiment. (F and G) Experiments were repeated with eight replicates from a single source (inocula 2). Communities converged to very similar
family-level distributions (G) but displayed characteristic variability at the genus and species level (F).
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To better understand the origin of the tax-
onomic variability observed below the family
level, we started eight replicate communities from
each of the 12 starting microbiome suspensions
(inocula) and propagated them in minimal me-
dia with glucose, as in the previous experiment.
Given that the replicate communities were as-
sembled in identical habitats and were inoculated
from the same pool of species, any observed
variability in community composition across rep-
licates would suggest that random colonization
from the regional pool and microbe-microbe in-
teractions are sufficient to generate alternative
species-level community assembly.
For most of the inocula (9 out of 12), replicate

communities assembled into alternative stable
ESV-level compositions, while still converging
to the same family-level attractor described in
Fig. 1E (see also fig. S6). One representative
example is shown in Fig. 1, F and G; all eight
replicates from the same starting inoculum
assembled into strongly similar family-level
structures, which were quantitatively consistent
with those found before (Fig. 1D). However,
different replicates contained alternative Pseudo-
monadaceae ESVs, and the Enterobacteriaceae

fraction was constituted by either an ESV from
the Klebsiella genus or a guild consisting of var-
iable subcompositions of Enterobacter,Raoultella,
and/or Citrobacter as the dominant taxa.
For the remaining (3 out of 12) inocula, all

replicates exhibited strongly similar population
dynamics to each other and equilibrated to sim-
ilar population structures at all levels of taxo-
nomic resolution (fig. S7). The reproducibility in
population dynamics between replicate commun-
ities indicates that experimental error is not the
main source of variability in community compo-
sition. The population bottlenecks introduced
by the serial dilutions in fresh media have only
a modest effect on the observed variability in
population dynamics (fig. S8). However, the
dilution factor can influence community as-
sembly through means other than introducing
population bottlenecks—for instance, by set-
ting the number of generations in between dilu-
tions and by diluting, to a greater or lesser extent,
the environment generated in a previous growth
period.
Despite the observed species-level variation

in community structure, the existence of family-
level attractors suggests that fundamental rules

govern community assembly. Recent work on
natural communities has consistently found
that environmental filtering selects for convergent
function across similar habitats, while allowing
for taxonomic variability within each functional
class (5, 6). In our assembled communities in
glucose media, fixed proportions of Entero-
bacteriaceae and Pseudomonadaceae may have
emerged owing to a competitive advantage, given
thewell-known glucose uptake capabilities of the
phosphotransferase system in Enterobacteriaceae
and ABC (adenosine triphosphate–binding cas-
sette) transporters in Pseudomonadaceae (19).
This suggests that the observed family-level at-
tractor may change if we add a different carbon
source to our synthetic media.
To determine the effect of the externally pro-

vided carbon source on environmental filtering,
we repeated the community assembly experi-
ments with eight replicates of all 12 natural com-
munities, this time using one of two alternative
single carbon sources—citrate or leucine—instead
of glucose. Consistent with previous experiments
using glucose minimal media, communities that
assembled on citrate or leucine contained large
numbers of species: At a sequencing depth of

Goldford et al., Science 361, 469–474 (2018) 3 August 2018 2 of 6

Fig. 1. Top-down assembly
of bacterial consortia.
(A) Experimental scheme:
Large ensembles of
taxa were obtained from
12 leaf and soil samples
and used as inocula in
serial dilution cultures
containing synthetic
media supplemented
with glucose as the sole
carbon source. After each
transfer, 16S rRNA
amplicon sequencing was
used to assay bacterial
community structure.
(B) Analysis of the
structure of a representative
community (from
inoculum 2) after
every dilution cycle
(about seven generations)
reveals a five-member
consortium from the
Enterobacter, Raoultella,
Citrobacter, Pseudomonas,
and Stenotrophomonas
genera. The community
composition of all
12 starting inocula after
84 generations is shown
at (C) the exact sequence
variant (ESV) level or
(D) the family taxonomic
level, converging to
characteristic fractions of
Enterobacteriaceae and Pseudomonadaceae. (E) Simplex representation of family-level taxonomy before (t = 0) and after (t = 84) the passaging
experiment. (F and G) Experiments were repeated with eight replicates from a single source (inocula 2). Communities converged to very similar
family-level distributions (G) but displayed characteristic variability at the genus and species level (F).
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10,000 reads, communities stabilized on leu-
cine contained 6 to 22 ESVs, and communities
stabilized on citrate contained 4 to 22 ESVs.
As was the case for glucose, replicate commu-
nities assembled on citrate and leucine also
differed widely in their ESV-level composi-
tions, while converging to carbon source–
specific family-level attractors (Fig. 2A and
figs. S9 and S10).
Family-level community similarity (Renkonen

similarity) was, on average, higher between com-
munities passaged on the same carbon source
(median, 0.88) than between communities pas-
saged from the same environmental sample
(median, 0.77; one-tailed Kolmogorov-Smirnov
test, P < 10−5; fig. S11). Communities stabilized
on citrate media had a significantly lower frac-
tion of Enterobacteriaceae (Mann-Whitney
U test, P < 10−5) and were enriched in Flavo-
bacteriaceae (Mann-Whitney U test, P < 10−5)
relative to communities grown on glucose; com-
munities stabilized on leucine media had no
growth of Enterobacteriaceae and were enriched
in Comamonadaceae relative to communities
grown on glucose (Mann-Whitney U test, P <
10−5) or citrate (Mann-Whitney U test, P < 10−5).
These results suggest that the supplied source

of carbon governs community assembly. To quan-
tify this effect, we used a machine learning ap-
proach and trained a support vector machine
to predict the identity of the supplied carbon
source from the family-level community composi-
tion. We obtained a cross-validation accuracy
of 97.3% (Fig. 2B and methods). Importantly,
we found that considering the tails of the family-
level distribution (as opposed to just the two
dominant taxa) increased the predictive accuracy
(Fig. 2B), which indicates that carbon source–
mediated determinism in community assembly
extends to the entire family-level distribution,
including the rarer members.
Rather than selecting for the most fit single

species, our environments select complex com-
munities that contain fixed fractions of multiple
coexisting families whose identities are deter-
mined by the carbon source in a strong and
predictable manner (fig. S11). We hypothesized
that taxonomic convergence might reflect selec-
tion by functions that are conserved at the
family level. Consistent with this idea, we find
that the inferred community metagenomes as-
sembled in each type of carbon source exhibit
substantial clustering by the supplied carbon
source (Fig. 2C) and are enriched in pathways
for its metabolism (fig. S11). When we spread
the stabilized communities on agarose plates,
we routinely found multiple identifiable col-
ony morphologies per plate, showing that mul-
tiple taxa within each community are able to
grow independently on (and thus compete for)
the single supplied carbon source. This sug-
gests that the genes and pathways that confer
each community with the ability to metabolize
the single supplied resource are distributed
among multiple taxa in the community, rather
than being present only in the best-competitor
species.

Widespread metabolic facilitation
stabilizes competition and
promotes coexistence
Classic consumer-resource models indicate that
when multiple species compete for a single,
externally supplied growth-limiting resource,
the only possible outcome is competitive ex-
clusion unless specific circumstances apply
(20–25). However, this scenario does not ade-
quately reflect the case ofmicrobes, whose ability
to engineer their own environments both in
the laboratory (26–29) and in nature (30, 31) is
well documented. Thus, we hypothesized that
the observed coexistence of competitor spe-
cies in our experiments may be attributed to
the generic tendency of microbes to secrete
metabolic by-products into the environment,
which could then be used by other community
members.
To determine the plausibility of niche creation

mediated by metabolic by-products, we analyzed
one representative glucose community in more
depth. We isolated members of the four most
abundantgenera in this community (Pseudomonas,
Raoultella, Citrobacter, and Enterobacter), which
together represented ~97% of the total popula-

tion in that community (Fig. 3A). These isolates
had different colonymorphologies and were also
phenotypically distinct (fig. S5). All isolates were
able to form colonies in glucose agarose plates,
and all grew independently in glucose as the only
carbon source, which indicates that each isolate
could compete for the single supplied resource.
All four species were able to stably coexist with
one another when the community was reconsti-
tuted from the bottom up by mixing the isolates
together (fig. S5). To test the potential for cross-
feeding interactions in this community, we grew
monocultures of the four isolates for 48 hours in
synthetic M9 media containing glucose as the
only carbon source (Fig. 3B). At the end of the
growth period, the glucose concentration was
too low to be detected, indicating that all of the
supplied carbon had been consumed and that
any carbon present in the media originated from
metabolic by-products previously secreted by
the cells. To test whether these secretions were
enough to support growth of the other species
in that community, we filtered the leftovermedia
to remove cells and added it to fresh M9 media
as the only source of carbon (Fig. 3B). We found
that all isolates were able to grow on every other
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Fig. 2. Family-level and metagenomic attractors are associated with different carbon
sources. (A and B) Family-level community compositions are shown for all replicates across
12 inocula grown on either glucose, citrate, or leucine as the limiting carbon source. Data
points are colored by carbon source (A) or initial inoculum (B). (C) A support vector machine
(methods) was trained to classify the carbon source from the family-level community structure.
Low-abundance taxa were filtered using a predefined cutoff (x axis) before training and
performing 10-fold cross-validation (averaged 10 times). Classification accuracy with only
Enterobacteriaceae and Pseudomonadaceae resulted in a model with ~93% accuracy
(rightmost bar), while retaining low-abundance taxa (relative abundance cutoff of 10−4) yielded
a classification accuracy of ~97% (leftmost bar). (D) Metagenomes were inferred using
PICRUSt (40) and dimensionally reduced using t-distributed stochastic neighbor embedding
(tSNE), revealing that carbon sources are strongly associated with the predicted functional
capacity of each community.
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10,000 reads, communities stabilized on leu-
cine contained 6 to 22 ESVs, and communities
stabilized on citrate contained 4 to 22 ESVs.
As was the case for glucose, replicate commu-
nities assembled on citrate and leucine also
differed widely in their ESV-level composi-
tions, while converging to carbon source–
specific family-level attractors (Fig. 2A and
figs. S9 and S10).
Family-level community similarity (Renkonen

similarity) was, on average, higher between com-
munities passaged on the same carbon source
(median, 0.88) than between communities pas-
saged from the same environmental sample
(median, 0.77; one-tailed Kolmogorov-Smirnov
test, P < 10−5; fig. S11). Communities stabilized
on citrate media had a significantly lower frac-
tion of Enterobacteriaceae (Mann-Whitney
U test, P < 10−5) and were enriched in Flavo-
bacteriaceae (Mann-Whitney U test, P < 10−5)
relative to communities grown on glucose; com-
munities stabilized on leucine media had no
growth of Enterobacteriaceae and were enriched
in Comamonadaceae relative to communities
grown on glucose (Mann-Whitney U test, P <
10−5) or citrate (Mann-Whitney U test, P < 10−5).
These results suggest that the supplied source

of carbon governs community assembly. To quan-
tify this effect, we used a machine learning ap-
proach and trained a support vector machine
to predict the identity of the supplied carbon
source from the family-level community composi-
tion. We obtained a cross-validation accuracy
of 97.3% (Fig. 2B and methods). Importantly,
we found that considering the tails of the family-
level distribution (as opposed to just the two
dominant taxa) increased the predictive accuracy
(Fig. 2B), which indicates that carbon source–
mediated determinism in community assembly
extends to the entire family-level distribution,
including the rarer members.
Rather than selecting for the most fit single

species, our environments select complex com-
munities that contain fixed fractions of multiple
coexisting families whose identities are deter-
mined by the carbon source in a strong and
predictable manner (fig. S11). We hypothesized
that taxonomic convergence might reflect selec-
tion by functions that are conserved at the
family level. Consistent with this idea, we find
that the inferred community metagenomes as-
sembled in each type of carbon source exhibit
substantial clustering by the supplied carbon
source (Fig. 2C) and are enriched in pathways
for its metabolism (fig. S11). When we spread
the stabilized communities on agarose plates,
we routinely found multiple identifiable col-
ony morphologies per plate, showing that mul-
tiple taxa within each community are able to
grow independently on (and thus compete for)
the single supplied carbon source. This sug-
gests that the genes and pathways that confer
each community with the ability to metabolize
the single supplied resource are distributed
among multiple taxa in the community, rather
than being present only in the best-competitor
species.

Widespread metabolic facilitation
stabilizes competition and
promotes coexistence
Classic consumer-resource models indicate that
when multiple species compete for a single,
externally supplied growth-limiting resource,
the only possible outcome is competitive ex-
clusion unless specific circumstances apply
(20–25). However, this scenario does not ade-
quately reflect the case ofmicrobes, whose ability
to engineer their own environments both in
the laboratory (26–29) and in nature (30, 31) is
well documented. Thus, we hypothesized that
the observed coexistence of competitor spe-
cies in our experiments may be attributed to
the generic tendency of microbes to secrete
metabolic by-products into the environment,
which could then be used by other community
members.
To determine the plausibility of niche creation

mediated by metabolic by-products, we analyzed
one representative glucose community in more
depth. We isolated members of the four most
abundantgenera in this community (Pseudomonas,
Raoultella, Citrobacter, and Enterobacter), which
together represented ~97% of the total popula-

tion in that community (Fig. 3A). These isolates
had different colonymorphologies and were also
phenotypically distinct (fig. S5). All isolates were
able to form colonies in glucose agarose plates,
and all grew independently in glucose as the only
carbon source, which indicates that each isolate
could compete for the single supplied resource.
All four species were able to stably coexist with
one another when the community was reconsti-
tuted from the bottom up by mixing the isolates
together (fig. S5). To test the potential for cross-
feeding interactions in this community, we grew
monocultures of the four isolates for 48 hours in
synthetic M9 media containing glucose as the
only carbon source (Fig. 3B). At the end of the
growth period, the glucose concentration was
too low to be detected, indicating that all of the
supplied carbon had been consumed and that
any carbon present in the media originated from
metabolic by-products previously secreted by
the cells. To test whether these secretions were
enough to support growth of the other species
in that community, we filtered the leftovermedia
to remove cells and added it to fresh M9 media
as the only source of carbon (Fig. 3B). We found
that all isolates were able to grow on every other
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Fig. 2. Family-level and metagenomic attractors are associated with different carbon
sources. (A and B) Family-level community compositions are shown for all replicates across
12 inocula grown on either glucose, citrate, or leucine as the limiting carbon source. Data
points are colored by carbon source (A) or initial inoculum (B). (C) A support vector machine
(methods) was trained to classify the carbon source from the family-level community structure.
Low-abundance taxa were filtered using a predefined cutoff (x axis) before training and
performing 10-fold cross-validation (averaged 10 times). Classification accuracy with only
Enterobacteriaceae and Pseudomonadaceae resulted in a model with ~93% accuracy
(rightmost bar), while retaining low-abundance taxa (relative abundance cutoff of 10−4) yielded
a classification accuracy of ~97% (leftmost bar). (D) Metagenomes were inferred using
PICRUSt (40) and dimensionally reduced using t-distributed stochastic neighbor embedding
(tSNE), revealing that carbon sources are strongly associated with the predicted functional
capacity of each community.
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our in vitro experiments also resulted in sub-
stantially fewer positive outcomes of pairwise
interactions when compared with our in planta
results, suggesting competitive pressures in-
herent to batch cultures that are not captured
by our use of NOI and genome-scale models.
In particular, the lack of spatial structure may
favor strains that experience fast growth when
substrate availability is high and thus out-
compete slower-growing strains within the
timescale of a batch experiment. Moreover,
this rapid depletion of nutrients contrasts with
the resource dynamics of leaf surfaces, which
exhibit a steady resupply of resources that can
be accessed by epiphytic microbes (38). Al-
though we do not explicitly consider spatial
structure in our use of NOI and genome-scale
models, these tools generate predictions based
on a broader consideration of the various re-

sources that can be used by the organisms at
steady state. This assumption may therefore
better reflect a broader andmore continuously
supplied pool of resources, which can be used
by microbes on a population level in spatially
structured settings.

Compensatory metabolic mechanisms offset
resource competition

In addition to predicting interaction outcome
directionalities, we used genome-scale model-
ing to explore the metabolic mechanisms that
could be underlying the observed ecological
patterns. We first examined experimentally
validated interactions to determine changes
in resource uptake rates that emerged as a
result of pairing two strains together. As rep-
resentative examples, we looked specifically
at two interactions involving Arthrobacter sp.

Leaf145, a highly versatile strain that experi-
enced a weakly positive effect when paired
with Frigoribacterium sp. Leaf8 and a negative
effect when paired with Rhodococcus sp. Leaf233
(Fig. 4, C to F, and Fig. 5A). Our flux balance
simulations had predicted that in both cocul-
tures, Leaf145 would have a lower net uptake
flux of sugars compared with those experi-
enced in monoculture (Fig. 5B). This was also
the case for Leaf8, which was additionally pre-
dicted to experience a reduction in amino acid
uptake flux when paired with Leaf145. Whereas
a similar reduction in amino and organic acid
uptake occurred for Leaf233, Leaf145 was able
to take up amino acids at rates similar to those
noted in monoculture. The contribution of this
reallocation of resources to the dominance
of Leaf145 can be seen in its interaction with
Leaf8, in which Leaf145 was able to shift its
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Fig. 5. Model-predicted interaction outcomes and mechanisms. (A and
B) Log2FCs of (A) biomass and (B) resource uptake fluxes for two representative
interactions validated in planta. Dots indicate absolute log2FCs of less than
0.05 mmol gDW–1 hour–1. (C) Predicted pairwise interaction outcomes between
all 188 nonmethylotrophic strains in the At-LSPHERE (n ¼ 35,156 outcomes
for 17,578 pairs). Hierarchical clustering was performed on interaction outcomes,
with strain-specific phylogeny highlighted. White cells denote instances of no
predicted growth in both mono- and coculture. (D) Distribution of pairwise
interaction outcomes (n ¼ 35,156). Dashed lines separate outcomes in which a
strain’s predicted biomass flux in coculture was either less than 90% of that
in monoculture (strongly negative), within 10% of that in monoculture (neutral),
or more than 110% of that in monoculture (strongly positive). (E) Classification

of pairwise ecological outcomes (n ¼ 17,578). (F) Distributions of flux ratios
between resource uptake in coculture and monoculture, according to corresponding
interaction outcome. Only simulations in which a strain achieved growth in both
monoculture and coculture are considered (n ¼ 28,316 outcomes). Differences
between uptake rates of resource types provided in the simulated medium are
highlighted for sugars (left), amino acids (center), and organic acids (right).
Distributions of uptake fluxes are statistically significant for all three resource types
(p << 1" 10#10) as determined by one-tailed Mann-Whitney U tests. For clarity,
horizontal axes are truncated and show 98.8% of outcomes for sugars, 98.7%
for amino acids, and 94.7% for organic acids. The dashed line at ratio of 1 separates
instances of lower or higher uptake flux between coculture and monoculture, with
percentages highlighting the number of instances less than or greater than 1.
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process that is too intricate to be accurately characterized. When the matrix is completely unstructured,106

eq. (1) reduces to the so-called disordered gLVEs, whose dynamics has been extensively characterized107

under di↵erent assumptions on the statistics of the random interactions [3, 15, 21, 20]. The structural108

part, on the other hand, is expected to be robust against changes in microscopic details and independent109

of unknown environmental variables. It reflects known factors, e.g. the belonging to a trophic or size110

class, the use of metabolic substrates or the production of public goods [22, 7, 23], in their e↵ect on the111

fixed pair-wise interaction coe�cients. The two terms of such decomposition can generally vary in their112

relative importance, bridging between two extreme cases that have been previously addressed with distinct113

mathematical approaches, as we discuss in Section 3.1.114

115

2.2 Structured interactions116

We define structure as resulting from the existence of a set of nF community-level functions. We will index117

functions f� with Greek letters, � = 1, . . . , nF . Every species can contribute to a community function and118

can be a↵ected by it. This relationship is characterized by two sets of species-specific functional traits (Figure119

2, a). Its impact trait I
(�)
i quantifies the per-capita contribution of species i to function �. Its sensitivity120

trait S
(�)
i gives the impact of function � on the per-capita growth rate of species i [24]. These can also be121

interpreted, respectively, as the impact and requirement niches in [25]. Figure 1 illustrates the application of122

this formalism to two classical modelling schemes: interactions dictated by belonging to a functional group123

(Fig. 1 a) and consumer-resource models (Fig. 1 b).124

125

For simplicity, we consider the total magnitude of the function f� at time t to be a linear combination of the

species’ abundances,

f�(t) = I(�)x(t) :=
1

S

X

i

I
(�)
i xi(t). (2)

Here and in the following, the overline defines an average over species for a fixed set of parameters (interaction126

coe�cients). Due to the factor S�1, each species’s contribution to a given function is small in comparison127

to that of the rest of the community, in accordance with our focus on collective functions – which cannot128

be achieved by one species alone. Similarly, the total impact of all functions on a species’ growth rate is129

assumed to be a linear combination of the functional magnitudes, i.e.
P

� S
(�)
i f�(t). Our analytical approach,130

however, can be applied to more complicated dependencies, including non-linearities.131
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Examples of structuring interactions

Two functional groups Consumer-resource

Fig. 1: Examples of ecosystem structure and their formalization. (a) The community is divided in two
functional groups, whose total abundances f1, f2 are the relevant collective functions. Species in group � 2 {1, 2}
contribute to the abundance of their group with equal e↵ect traits, I(�)

i = 1. Conversely, a group acts upon the rest

of the community through its total biomass f�, whose e↵ect on any species is weighted by the sensitivity traits S(�)
i

(shown here only for the e↵ect of the blue group on two species of the green group). Here, only interactions between
functional groups are measurable, and community dynamics is hence described in terms of the total abundance
of species belonging to each group - while within-group variability is ignored. In this formalization, disordered
gLVEs [3] – where the total biomass is the only collective function – corresponds to the existence of a single group.
(b) Interactions between species are mediated by two resources of concentrations f1, f2, which provide the collective
functions. Each species a↵ects the function by either consuming the resource or producing a resource, as encoded by
the e↵ect traits I(�) (dotted lines, shown only for species i). Conversely, it is a↵ected by these resources through the
sensitivity traits S(�) (shown only for species j). This scenario reflects the classic assumptions of consumer-resource
models, where e↵ect traits are the consumption rates, and sensitivity traits are the rate of transformation into units
of species abundance [26, 16].
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where the interaction between any two species is based on their functional traits. Conversely, any interaction133

matrix with collective interactions can be written in this way via its Singular Value Decomposition, even134

though the functional traits thus obtained need not correspond to known ecological processes.135
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Figure 2 a and b illustrate how the structural matrix is derived from species functional traits in the case137

where there are three equally sized functional groups (panel a in Fig. 1).138
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2.3 Combining structure and randomness140

Structure being thus defined, we now turn to the unstructured part of the interactions, reflecting sources141

of between-species variation not described by simple community functions (Fig. 2 c). These non-observable142
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Structured random interaction matrix

where the scaling S�1/2 ensures that the impact of the random term is comparable to that of the structural
term. Under such assumptions, the e↵ect of a single random term is small, and meaningful contributions stem,
again, from the aggregation of many species. In such weak interaction regime, similar to the one investigated by
May [May1972] and many subsequent works, the expected e↵ects of randomness can be analytically treated
in the limit of a large number of species [Bunin2017].

Figure 1: Illustration of the structured and unstructured components of the interaction matrix and their relation
with functions and traits.Top row: An ecosystem can be seen as a collection of species and functions. Each

function � is characterized by its response traits u(�)
i (how each species i depends on the function) and its

e↵ect traits v(�)i (how it contributes to the function). In a complex community with many functions, only a
few groups (here, �0,�1,�2) are simple enough to be characterized by their functional relations. All the other
relations between species (right-half) cannot be characterized. Bottom row: The structural functional traits
are combined into a low-rank structural matrix µij , whose entries are constant by block. The rest are replaced
by a random unstructured matrix zij . The full interaction matrix is the sum of these two contributions.

Thus composed, the interaction matrix is the sum of a low-rank biased contribution and a high-rank, zero-
mean, random matrix. Without the latter, the dynamics of the community are driven only by the dynamics
of the functions. Understanding how this is modified in the presence of disorder is the subject of the following
sections.

3 Coarse-graining and Dynamical Mean-Field Theory

In the absence of randomness, � = 0, the Lotka-Volterra system’s behaviour is entirely determined by the
structured relations between species. For instance, if a small number of functional groups exist, then all the
species belonging to one group may be considered to have identical interactions with species belonging to
another functional group, and describing every species adds no new insight. A wealth of low-complexity models
in ecology, where a number of diverse species are treated in bulk, e.g. ’herbivores’ or ’phytoplankton’ ??,
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I(0) S(0)

features are modelled as random terms [1, 15, 27], and are defined as a random matrix of entries �zij (Fig.143

2 d). For simplicity, the zij ’s are chosen as independent, identically distributed variables with zero mean144

and unit variance. The specific details of the probability distribution do not matter, as long as it has finite145

variance and doesn’t depend on S.146

147

The total interaction matrix Aij (illustrated in Fig. 2) is defined as the sum of the structured and of the

disordered components:

Aij = µij +
�
p
S
zij . (4)

The S�1/2 scaling factor, again, ensures that single interaction terms are small compared to the aggregated148

e↵ect of the whole community.149

150

The parameter � balances the relative importance of structure and randomnes. Without structure, eq. (1)151

reduces to the classical disordered generalized LVEs studied in statistical physics. Analogous to the latter,152

we will consider typical ecosystem outcomes, i.e. those that do not depend on the specific realization of153

randomness. The expectation is that, when structure is added, the statistical properties of such randomness154

should be su�cient to characterize behaviours that are independent of the unknown species-level details,155

and that, in the spirit of macroecology, such generic predictions can be connected with recurrent empirical156

patterns.157

3 Results158

In the following section 3.1, we obtain an e↵ective description of the properties of a community by applying159

Dynamical Mean Field Theory (DMFT, [3, 20, 28]) to eq. (1) with interactions that combine structure and160

randomness. We then use it in section 3.2 to draw conclusions on how these two components combine at161

equilibrium. We first derive a set of closed equations for community-level degrees of freedom, that determine162

both community- and species-level states. We then illustrate their consequences by focusing on Species163

Abundance Distributions, a pattern classically studied in theoretical as well as applied ecology [29]. Finally,164

in section 3.3 we discuss how such community equilibrium can lose stability, and the respective roles of165

randomness and structure in out-of-equilibrium species coexistence. For the sake of readability, the main166

text only presents mathematical keystones, while the analytical details can be found in Supplementary167

Information (SI).168
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𝜎 measures the weight of the random versus 
structured component of interactions 



‘Structured’ DMFT

as predation) and situations in which their interactions are indirect, i.e. generated by their contribution or
response to a shared resource or ecosystem function. When the number of species is large, both the complexity
and the amount of processes leading to the assembly of the community are expected to grow. One practical
hindrance of such complexity is that only a fraction of all possible interactions may be inferred from data.
We will henceforth split the interaction matrix into a structural and an unstructured part, where the first one
encodes available information and the second everything else. Variability in the latter may reflect within-taxon
variance, physiological variability, environmentally-mediated e↵ects or any other feature too intricate to be
accurately characterized.

The structural part, on the other hand, is expected to be robust against changes in microscopic details and
not to depend on unknown environmental variables. It may depend on known environmental factors, as long as
this dependency is well-characterized. We stress that this decomposition needs not be related to the strength
of processes, i.e. the unstructured part need not be a small correction to the structural part. For very intri-
cate systems, it could happen that the impact of hidden processes is just as important as that of known processes.

In the following, the ecosystem structure will be characterized by a small set of ecosystem functions, that
we will index with Greek letters, � = 1, . . . , nF . The assumption that only a few macroscopic functions can be
reliably characterized translates into n being relatively small compared to the number of di↵erent types in the
community (nF ⌧ S). For instance, one may want to describe the community in terms of functional groups
and ignore how species within one such group interact. Every species contributes to a community function and
is in turn a↵ected by it. The relationship of each species with a given function is thus characterized by two

traits (Figure ??, top left). Its e↵ect trait v(�)i quantifies the per-capita contribution of species i to function �.
The total magnitude of the function f� at time t is then a linear combination of the species’ abundances,

f�(t) =
1

S

X

i

v(�)i xi(t) (3)

Given the factor S�1 in front, the convention is that each v(�)i is of order 1. This implies that each species’s
contribution to a given function is small in comparison to that of the rest of the community. In other words, our
approach focuses on collective ecosystem functions, those which stem from the aggregation of many di↵erent
species. The impact of function � on the per-capita growth rate of species i is, on the other hand, parametrized

by the response trait u(�)
i . The total impact of all functions on its growth rate is assumed to be a linear com-

bination the strength of the functions, i.e.
P

� u
(�)
i f�(t), although our analytical approach may be applied to

more complicated dependencies, including non-linearities. Examples of this description in an ecological context
are resource-mediated interactions [MacArthur1955, Advani2018] – where competitive interactions are gen-
erated by shared resources that play the role of functions – and trait-based interaction – where resources are
replaced by functional traits potentially aggregating the action of multiple species.

The structure bestowed on the Lotka-Volterra equations by the existence of collective functions is therefore
determined by the structural interaction matrix (Figure ??, bottom left)

µij = S�1
X

�

u(�)
i v(�)j . (4)

Formally, any given interaction matrix µij can be decomposed in such a way through its Singular Value De-
composition (SVD), although the function traits obtained this way need not correspond to known ecological
processes.
Structure being thus defined, we now turn to the unstructured part of the interactions. Interactions between
species can indeed reflect other sources of between-species variation than those captured by macroscopic func-
tions (Figure ??, top right). Unknown interactions can be modelled, following a long tradition in theoretical
ecology, as random terms [May1972, Galla2018, Galla2023], and are defined as a disordered matrix of entries
zij (Figure ??, bottom right). For any given community under controlled environmental conditions, such matrix
is fixed from the start and doesn’t vary in time. On the other hand, the disordered matrix might vary, along
with species composition, between communities, and may even di↵er when a same community is set in di↵erent
environments. Our study then focuses on typical ecosystem outcomes, i.e. those that do not depend on the
specific realization of randomness. This reflects the idea that, lacking direct knowledge, the most parsimonious
way to account for the unstructured part of interactions is to chose them randomly, and then focus on generic
predictions. For simplicity, the zij ’s are chosen as independent, identically distributed variables with zero mean
and variance hz2iji = �2. The specific details of the probability distribution do not matter, as long as it doesn’t
depend on S.

The total interaction matrix Aij (illustrated in Fig. ??) is defined as the sum of the structured and of the
disordered components:

Aij = µij +
1p
S
zij , (5)
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illustrate this kind of coarse-graining.
By contrast, the coarse-graining of fully random interactions requires more involved theoretical tools. Sta-

tistical physics provides an appropriate conceptual framework to studying aggregated properties that are shared
by typical realizations of the disordered matrix [Bunin2017]. That is, given a structural matrix, su�ciently
aggregated observables, usually called “self-averaging”, will be the same for any community whose fixed set
of disordered interactions are sampled from any distribution of variance �2. On the contrary, microscopic or
species-level observables, such as the abundance of a single species, generally change from one such realiza-
tion of the disorder to the next. A standard approach in disordered systems, Dynamical Mean Field Theory
(DMFT), allows to solve the dynamics and identify and compute these self-averaging observables [Hertz2017,
Opper1989]. We direct interested readers to an exposition of this method [Roy2019].

Here, we extend this application of DMFT to the case of the matrix (??) combining structure and disorder1.
The details of the calculation can be found in Appendix, so that here we only give a short overview of the
method. DMFT allows to establish a formal equivalence between the original dynamical equations with random
interaction coe�cients and a set of S uncoupled Stochastic Di↵erential Equations (SDE)

dxi

dt
= xi

"
1� xi +

X

�

u(�)
i f�(t) + �⇣i(t)

#
+m (6)

where the dynamic of species i depends, via the species-specific response traits, on the magnitude of functions
f� and on a Gaussian colored noise ⇣i. Such self-averaging, time-varying quantities result from the dynamics of
the whole community, and cannot be in general assigned without solving the full dynamical system. However,
when the community is composed of many species, DMFT allows to replace averages over species with averages
over realizations of the disorder matrix (see Appendix).
The statistics of the noise term in (??) thus depend on species’ abundances through the relation h⇣i(t)⇣j(t0)i =
�ijC(t, t0), where C(t, t0) is the mean abundance correlator:

C(t, t0) =
1

S

X

i

hxi(t)xi(t
0)i = xi(t)xi(t0) (7)

where brackets indicate averages over a single species in multiple realizations of the disorder matrix, and overline
the average over species for fixed interactions.

Similarly, collective functions, whose magnitude is defined by (??) as an average over species, no longer
explicitly feature species-specific details represented by the disorder contributions zij . Once the structure
matrix µ is assigned, the trajectory of ⇣i in (??) will generally di↵er between communities that have the same
disorder statistics. However, for fixed values of �, functional magnitudes are self-averaging and can thus be
directly computed as means over realizations of the disorder:

f�(t) =
1

S

X

i

v(�)i hxi(t)i = v(�)x(t). (8)

The dynamics of every species depends now on nF +1 community-level, self-averaging quantities: the ecosystem
function magnitudes and the correlator. Just as the functions are su�cient to capture the e↵ect of structure in
the absence of disorder, the e↵ects of disorder are summarized by the sole correlator.
The statistical equivalence between the original dynamics and trajectories obtained from the e↵ective equations
hinges upon defining the quantities in (??) and (??) in a self-consistent manner. Their computation from the
stochastic processes that they in turn define can be achieved numerically in the unstructured case [Roy2019].
However, the already important computational cost of the algorithm is exacerbated in our case by the fact that
di↵erent species have di↵erent statistics.

4 Results

The model proposed in equation (??) represents a middle ground between fully random ecological interactions,
capturing generic properties of highly diverse communities, and fully specified interactions, which typically
summarize empirical knowledge of particular ecosystems. Like the latter, the dynamics of a given species
reflects its peculiar ecological role, as defined by its traits. And analogously to the former, dynamics are
driven by a small, low-dimensional set of collective parameters, namely the functional magnitudes f�(t). Such
community-level degrees of freedom mediate the e↵ect of randomness that, unlike structure, a↵ects all species

1The most significant di↵erence is that, while DMFT in the usual setting yields a low-dimensional model, i.e. a single equation
representing the distribution of possible trajectories of any species picked at random in the system, here equations (??) are still as
numerous as the initial model, because species can be intrinsically di↵erent from each other due to their distinct positions in the
structure; what has been gained is that the equations are now uncoupled.
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structured relations between species. We can rewrite eq. (2) as

dxi

dt
= xi

"
1� xi +

X

�

u(�)
i f�(t)

#
+m (6)

and thus express the dynamics in terms of the few structural functions f�. These quantities can correspond,
for instance, to the total abundances of functional groups within which all species have identical traits, as in
Fig. 1, left. This kind of coarse-graining is implicit in many low-complexity models in ecology where a number
of species, e.g. ’herbivores’ or ’phytoplankton’, are treated in bulk [34]. Coarse-grained variables - typically a
few - then follow ODEs parametrized at the collective level.

For fully random interactions, the coarse-graining is instead less straightforward, and is only possible under
certain assumptions. Statistical physics provides an appropriate conceptual framework to studying aggregated
properties that are shared by typical realizations of the disordered matrix [11]. This approach describes ag-
gregated observables, usually called “self-averaging”, that are the same for any (large) community whose fixed
set of interactions is sampled from any distribution of variance �2. Contrary to such community-level, coarse-
grained variables, microscopic observables such as the abundance of a single species generally change from one to
another realization of the disorder. A standard approach in disordered systems, Dynamical Mean Field Theory
(DMFT), allows to identify and compute the dynamics of the self-averaging observables [21, 13] (see [33] for
an exposition of this method) when the interactions of every species are statistically equivalent.

DMFT can be generalized to encompass cases when structure and disorder combine in the interactions
matrix eq. (5). We overview in the following the essential steps of the derivation of such structured DMFT,
and leave the details for the Appendix. A key feature is that a formal equivalence can be established between
the original dynamical equations with random interaction coe�cients and a set of S uncoupled Stochastic
Di↵erential Equations (SDE)

dxi

dt
= xi

"
1� xi +

X

�

u(�)
i f�(t) + �⇣i(t)

#
+m (7)

where the dynamic of species i depends, via the species-specific response traits, on the magnitude of functions
f� and on a Gaussian colored noise ⇣i (see Appendix) 1. The statistics of the noise term in eq. (7) depend
on species’ abundances through the relation h⇣i(t)⇣j(t0)i = �ijC(t, t0), where C(t, t0) is the two-time average of
abundance, or correlator,

C(t, t0) = xi(t)xi(t0) = hxi(t)xi(t0)i. (8)

Here, brackets indicate averages over a single species in multiple realizations of the disorder matrix, while the
overline was defined in eq. (3) as an average over species for a given realization. Owing to the law of large
numbers, averages over species equal averages over species and disorder. This implies that, as for the ordinary
DMFT, the correlator doesn’t depend on the matrix realization.

Similarly, for a fixed value of �, functional magnitudes are self-averaging and can thus be directly computed
from the abundances averaged over realizations of the disorder:

f�(t) = v(�) hx(t)i. (9)

Such averaging makes them independent of species-specific details represented by the unstructured contributions

zij , while they retain the structural features through the e↵ect traits v(�)i .
Due to the non-linear nature of eq. (2), the simplicity of the equations does not entail a similar simplicity in
the dynamics. Every species indeed is influenced by nF + 1 community-level, self-averaging quantities: the
ecosystem function magnitudes eq. (9) and the correlator eq. (8). Just as the functions are su�cient to capture
the e↵ect of structure in the absence of disorder, the e↵ects of disorder are summarized by the sole correlator
and are not species-specific.
The statistical equivalence between the original dynamics and trajectories obtained from the e↵ective equations
hinges upon such aggregate observables being self-consistent, that is to match the microscopic, species-level
stochastic processes. In the unstructured case, their computation can be achieved numerically [33]. However,
this algorithm has important computational costs, which are exacerbated in our case by the fact that di↵erent
species have di↵erent statistics.

1
The most significant di↵erence with prior studies is that, while DMFT in the usual setting yields a low-dimensional model, i.e.

a single equation representing the distribution of possible trajectories of any species picked at random in the system, here equations

eq. (7) are still as numerous as the initial model, because species are intrinsically di↵erent from each other due to their distinct u’s
and v’s; what has been gained is that the equations are now uncoupled.
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In Figure 3 a we illustrate the SAD for a community structured in four groups, where abundances of209

non-extinct species concentrate over just three modal values, with relative frequency equal to the fraction of210

species in each group. Species with negative modal abundance go extinct.211

The presence of unstructured variation modifies this solution, and species will have a di↵erent equilibrium

abundance even if they share the same structural traits. The e↵ect of increasing the variance � is to spread

the abundances around the modal abundance. Species that share the same u(�)
j will have the same x+

i ,

consistent with the idea that they respond coherently to the function �, despite individual heterogeneity.

More precisely, in SI Sec. S5 we show that, when � > 0, the equilibrium abundance of species i is randomly

distributed according to a truncated-Gaussian random variable,
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where ⇠?i are independent standard Gaussian variables that reflect the diversity of traits among di↵erent212

species.213

Remarkably, moreover, community-level variables are related by a closed set of nF + 1 relations3
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where we have defined the mathematical functions
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We can now exploit the self-consistent relations eq. (14) to derive the exact distribution of the microscopic

abundances. The SAD turns out to be a convolution of a ’structure-driven SAD’, reflecting the deterministic

biases given by the modal abundances x+
i , and of a Gaussian distribution of typical width � (Fig. 3 b):

⇢(x) = (1� �?) �(x) +
⇥(x)

�

X

i

 

✓
x� x+

i

�

◆
. (16)

3In the case without disorder, eq. (12), the interaction matrix Aij was low-rank, allowing direct coarse-graining, whereas
here a low-dimensional description exists despite (Aij) being full-rank. Despite accounting for most of the dimensionality of
the matrix, random interactions thus modify the system in a minimal way, by adding a single macroscopic relation on top of
those provided by structure.
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At equilibrium, these are coupled by community-level self-consistent relations



Equilibrium SADs

The combination of structure and disorder can create virtually 
any shape of the species abundance distribution.
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those provided by structure.
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Fig. 3: Schematic representation of the Species Abundance Distribution (SAD) for functionally
structured communities. The SAD eq. (16) results from the overlap of structure – as defined by a small number
of functions – and randomness – quantified by the standard deviation �. (a) In the absence of randomness (� = 0),
abundances of species within functional groups coincide with those of the low-dimensional Lotka-Volterra equations
where within-group abundances are summed up. (b) When the x+

i s are su�ciently separated compared to �, the
distribution is multimodal. The values x+

i the group abundance distributions are centered on are in general di↵erent
with respect to those with pure structure.
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The nF functional magnitudes and the correlator correspondingly attain the community-level equilibrium
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C(t, t).

(9)

For convenience, we define the modal abundance of species i As discussed in Section 3.1, the equilibrium

abundances of individual species are not self-averaging, and therefore depend on the realization of randomness.

Still, it is useful to control how macroscopic structure biases species towards smaller or higher abundances.

We do so by defining their modal abundances, which we will later prove to correspond to their most likely

abundance at equilibrium in case of survival (see eq. (13)):
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Unlike species abundances xi, modal abundances depend only on the magnitude of ecological functions,

and are therefore self-averaging. Moreover, they coincide with the abundances when � = 0. Finally, let us

introduce the parameter
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that increases with the intensity of disorder and is also a self-averaging quantity.203

When interactions are dominated by structure (� = 0), the equilibrium values of species abundances coincide

with the modal abundance, and are readily obtained from eq. (5) as x?
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that only involve structural traits 2.204

The distribution of species abundances in the absence of randomness can be easily visualized when the205

community is structured in homogeneous functional groups (Figs. 1 a and 2). Every species belonging to206

the same group has the same e↵ect traits u(�)
j , therefore exactly the same equilibrium abundance, which207

corresponds simply to the solution of the low-dimensional Lotka-Volterra equations for the functional groups.208

2The equations above are strongly nonlinear at x+
i = 0, when species go extinct. Therefore, they generally admit multiple

equilibrium solutions, which may di↵er in abundance as well as stability.
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Trait structure propagates to the SAD

Figure 5: Species abundance distributions for communities with one power-law distributed struc-
tural trait. Comparison of the SAD of a simulated community with S = 1000 (histograms) and the theoretical
predictions of eq. (14) (lines) for two di↵erent levels of random variation in the interactions ((a) � = 0.25 and
(b) � = 0.75). Species abundances are a↵ected, as in the classical disordered LVEs, by a single function �: the

total biomass (meaning that they all have the same e↵ect trait v(�)j = 1). However, the response trait u(�)
i of a

species i is drawn from a power-law distribution with exponent ↵ = 2 on the interval [0, 3], creating a di↵erence
between species having di↵erent trait values. For small �, thus, the SAD reflects the power-law distribution
of the traits. As the magnitude of disorder increases, instead, the Gaussian shape of single-species variation
becomes dominant, and progressively erases the features imposed by structure. The shape of the SAD is well
predicted from the sole knowledge of ↵,�, without the need to resolve the traits of each individual species.

the presence of a deterministic underlying backbone. Instead, structure a↵ects functions for every value of the
disorder intensity.

3.3 Randomness can drive oscillating communities to stable equilibrium coexis-
tence

The previous analytical results rely on the existence of a stable fixed point. In the examples we considered, ran-
domness was modifying the equilibrium solution that was provided by structure. Equation (2) with structured
or random interactions is however known to also display out-of equilibrium dynamics, including limit cycles,
neutral cycles, and chaotic behaviour [60]. In this section, we explore the e↵ect of randomizing interactions
whose structure gives rise to a highly complex chaotic dynamics [42]. This emerges in communities where species
obey eq. (2) and interactions are disordered and strong (i.e. they do not decrease in intensity as the number
of species increases. In such a model, which has been used for describing the ecology of plankton communities,
complex regimes emerge by the interplay of a very large number of degrees of freedom (the species). When the
moments of the distribution of interactions have intermediate values and weak immigration ensures that species
cannot go extinct, the community is mostly composed by a small number of dominant and a majority of rare
species [42]. Dominant species turn over unpredictably, thus reproducing dynamic and static patterns that are
characteristic of plankton communities when observed at a high taxonomic resolution [55, 44].

Here, we ask whether this behavior changes when one accounts for the possible uncharacterized variation of
interactions between strains that belong to a same species. The recent availability of data at such a taxonomic
resolution, as well as theoretical investigations, indeed indicate that, analogous to functional groups, species
may harbour a degree of unknown genetic and trait variation, with dynamical consequences [34, 52, 25, 44].
The question then is how heterogeneity of traits within species a↵ects community collective dynamics, and if
our approach can be used to understand general properties of the regimes that ensue.

In keeping with previous notations, we consider a set of nF species and divide each of them into s strains,
for a total of S = s ⇥ nF strains that constitute the microscopic variables of our model. Figure 6 displays
the asymptotic regimes of a community with fixed structural interactions (chosen as in Mallmin, Traulsen, and
Monte) and for increasing values of the intensity of within-species variability. When � = 0, pairwise interactions
are exclusively determined by the species to which each strain belongs. All strains within a species are hence
identical and have the same chaotic trajectory as the species they belong to (Fig. 6 a). Random variability
within each species is then turned on by increasing the value of �. For small values of this parameter, we
expect strains of a given species to remain almost synchronized. On the opposite limit of very large within-
species variation, we expect to recover the behaviour of GLVs, as strong species-specific interactions should be
overshadowed by randomness.
In fact, as randomness increases, the trajectories get progressively modified. While strains keep displaying
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Power-law distributed response traits give rise to power-law SADs for small 
randomness, but for strong randomness the Gaussian shape supersedes.



Group structure and out-of-equilibrium dynamics

Ecosystems with a small number of functional classes (macroscopic degrees of freedom) 
are predicted to easily produce oscillations 
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2002; Neubert et al., 2004; Mitra, 2009; Kloosterman et al., 2014):
how should predation on the highest explicitly modeled trophic level
be described? In trophic models (see, e.g., Piltz et al., 2014, 2018;
Araujo and Moura, 2022; Tay et al., 2022 for recent examples), this has
typically been formulated as a linear loss rate (mZ, with m a constant
and Z the population density of the highest explicitly represented
trophic level). However, predation at higher trophic levels may lead
to an increase in the mortality rate toward higher population densities.
In recent ocean biogeochemical models (see, e.g., Aumont et al., 2015;
Baird et al., 2020; Pahlow et al., 2020 for recent examples), this has
often been represented by a quadratic mortality (mZ2) of the highest
explicitly represented trophic level (typically, large zooplankton). Fur-
thermore, a hyperbolic formulation ( mZ2

Z+KZ
) was used in some early

ocean ecosystem models (Frost, 1987, 1993; Hofmann and Ambler,
1988; Fasham, 1993). This is far from a trivial matter, as the closure
formulation has a strong impact on the model behavior. A quadratic
mortality at the highest trophic level leads to correlated increases in
predator and prey biomass with increasing enrichment (Gleeson, 1994),
in contrast with the linear formulation (Gatto, 1991). In addition, Steele
and Henderson (1992) showed that a quadratic zooplankton mortality
tends to stabilize the temporal dynamics of Nutrient–Phytoplankton–
Zooplankton (NPZ) models. Subsequently, it was demonstrated that
models with a linear closure term and with a quadratic closure can both
have stable steady states, but these exist in a larger region of parameter
space for the quadratic closure models (Edwards and Brindley, 1996,
1999; Edwards and Yool, 2000). Since models are in many cases used
to make predictions about the steady state of a system, a quadratic
mortality appears more practical to use than a linear mortality term.
That said, the enhanced stability does not imply that a quadratic
mortality is more realistic than linear mortality.

Which of these closure formulations may be the most realistic?
To make progress on this question, we have searched for systematic
relationships between predator and prey biomass. Recent compilations
of paired predator–prey abundance observations (Hatton et al., 2015;
Wigington et al., 2016; Yuan and Pollard, 2018) suggest that such
systematic relationships indeed exist. In this paper, we leverage these
empirical relationships to parameterize an implicit predator population
feeding on the zooplankton. Combining this with the commonly used
Holling Type II predation, we arrive at a hyperbolic closure.

What is the impact of this particular closure formulation on mod-
eled population dynamics? Linear-closure models generally exhibit a
shift from stability to predator–prey cycles due to nutrient enrich-
ment (Rosenzweig, 1971). As the system becomes more enriched, the
minima of the cycles reach such low values that the predator and prey
effectively become extinct. Rosenzweig (1971) termed this effect the
Paradox of Enrichment, since nutrient enrichment would intuitively
seem beneficial for the predator and prey. However, little empirical
evidence has been found in support of ecosystem destabilization by
enrichment (Jensen and Ginzburg, 2005). Much theoretical research
about resolving this paradox has focused on the impacts of behavioral
interactions among predators and between predators and prey (Ruxton,
1995; Huisman and de Boer, 1997; van Voorn et al., 2008; P∞ibylová
and Berec, 2015; Toyokawa, 2017). We instead focus on the role of the
model closure, comparing the enrichment response between linear and
hyperbolic formulations.

2. Models and methods

In Section 2.1, we formulate a NPZ model that is kept as simple as
possible (while maintaining key elements) to allow for a transparent
analysis. Subsequently, we discuss the choice of parameter values, as
well as the use of AUTO to test the sensitivity of the model predictions
to these parameter values (Section 2.2).

2.1. Model formulation

The model includes the processes of nutrient uptake and associated
phytoplankton growth, zooplankton grazing and growth, zooplankton
mortality, and maintenance losses for phytoplankton and zooplankton.
A Holling Type II functional response is used for nutrient uptake by
phytoplankton and for zooplankton grazing. Although sloppy feeding is
not included, trophic conversion inefficiencies are represented through
linear maintenance loss terms for phytoplankton and zooplankton.
Putting these processes together leads to the following set of equations:

dN
dt

= *
�P ,maxN
N +KN

P + IN ,tot (1a)

dP
dt

=
�P ,maxN
N +KN

P * mPP *
�Z,maxP
P +KP

Z (1b)

dZ
dt

=
�Z,maxP
P +KP

Z * mZZ * dZ (Z)Z (1c)

In these equations, N indicates the dissolved inorganic nitrogen (DIN)
concentration (in �M N), P the phytoplankton concentration (�M N),
and Z the zooplankton concentration (�M N). Although nitrogen serves
as the central currency of our model, the analysis and argumentation
do not change fundamentally if another nutrient (e.g., phosphorus) is
chosen for that role. IN ,tot is the total DIN input. �P ,max and �Z,max
are the maximum uptake rates for phytoplankton and zooplankton
(d*1), KN and KP are the half-saturation constants for nutrient uptake
by phytoplankton and grazing by zooplankton (�M N), mP and mZ
are maintenance loss rates of phytoplankton and zooplankton biomass
(d*1). The per capita death rate of zooplankton, or closure term, is
indicated by dZ (Z). Here we only have two trophic levels (P and Z),
but the same structure can be used for a model with any number
of trophic levels. The closure term is then imposed on the highest
explicitly resolved trophic level.

For the mortality, we consider two formulations: linear (dZ is
constant) and hyperbolic. For the hyperbolic formulation, we assume
that the zooplankton is being preyed upon by a fish (or other predator)
population (F ) with a Holling Type II functional response: dZ = �F ,maxF

Z+KZ
.

Here, �F ,max is the maximum uptake rate for the predator and KZ is a
half-saturation constant. The predator population is not modeled ex-
plicitly, but instead parameterized in terms of the zooplankton concen-
tration using an empirical predator–prey scaling relationship (Hatton
et al., 2015; Wigington et al., 2016):

F = cZ� (2)

with c a proportionality constant and � a scaling exponent. The number
of model parameters can be reduced by one by combining c and
�F ,max into a single parameter, the maximum zooplankton death rate
dZ,max í �F ,maxc. Hatton et al. (2015) generally reported slightly
sublinear scaling relationships between the predator and prey densities
(� Ù 0.7). However, these sublinear scalings have recently been brought
into question, because an accurate determination of such relationships
from environmental data with significant scatter is not straightforward.
Several different methods are in use; which one is the most appropriate
depends on the specifics of the data at hand (McArdle, 1988; Warton
et al., 2006; Smith, 2009). The Ordinary Least Squares (OLS) regression
used by Hatton et al. (2015) and Wigington et al. (2016) optimizes
the goodness-of-fit for the dependent (Y ) variable, while implicitly
assuming that errors in the predictor (X) variable are negligible. This
assumption is generally valid for data sets with clearly defined depen-
dent and independent variables, particularly results from controlled
experiments (Sokal and Rohlf, 1995; Warton et al., 2006). In many
environmental data sets, however, there is no meaningful distinction
between dependent and independent variables. For example, both the
predator (Y ) and prey (X) observations can have biological variability
and are subjected to measurement and sampling errors. For such data,
OLS regression tends to bias the scaling relationship between X and
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Fig. 3. Simulated dynamics of phytoplankton and zooplankton for the hyperbolic-closure model. Two types of behavior are seen: (a) a stable equilibrium (KZ = 1.0 �M, Ntot = 5 �M,
other parameters at their standard values as listed in Table 1) and (b) a limit cycle (KZ = 10 �M, Ntot = 5 �M, other parameters at their standard values as listed in Table 1).

Fig. 4. Two-parameter bifurcation diagrams. In panels (a), (b), and (c), the bifurcation parameters are KP and KZ , with different levels of nutrient enrichment: Ntot=0.5 �M (a),
Ntot=5 �M (b), Ntot=10 �M (c). In panel (d), the bifurcation parameters are dZ,max and �Z,max for Ntot=5 �M. In all panels, the other parameters are at their standard values (as
listed in Table 1). The red lines indicate the Hopf bifurcation separating the stable and limit-cycle regimes, whereas the blue lines indicate the transcritical bifurcation separating
the regime with only P from the regime with P and Z coexisting. High values of �Z,max and KZ and low values of dZ,max and KP correspond with a top-heavy system.

result, the stability of the system is not strongly affected by nutrient
enrichment. Thus, it appears that top-heaviness is the characteristic
responsible for instability across different closure formulations. The
specific formulation then determines under which conditions the sys-
tem becomes top-heavy. All this said, there is not a simple one-to-one
relationship between top-heaviness and instability in our model. For
example, we found that if KP is high, then the system can be stable with
a high Z

P ratio. This can be explained by the fact that a high value of KP
decreases the grazing pressure on the phytoplankton that can therefore
draw down the nutrients more effectively. As a result, the stabilization
due to nutrient limitation becomes stronger. In addition, the stability is
enhanced, because a higher value of KP decreases the saturation effect
in the grazing functional response.

We assumed linear scaling between the biomass of zooplankton and
its predator (� = 1), as suggested by Rajakaruna et al. (2023). To

investigate the impact on the model behavior of sublinear scaling (as
suggested by Hatton et al., 2015), we performed several simulations
using � = 0.7. The results were very similar to the � = 1 case: depending
on parameter values, we found a stable steady state or limit cycles.
In particular, limit cycles tended to be associated with high values of
KZ
KP

and �Z,max
dZ,max

(i.e., top-heaviness), as in the � = 1 case. This said,
the sizes of the stable and unstable regions will depend on the specific
model formulation and application. For example, the Holling Type II
functional response could be replaced by Holling Type III to account for
learning behavior (Flynn and Mitra, 2016) or by a functional response
that accounts for feedbacks between satiation and prey encounter
and capture (Pahlow, 2005; Smith and Yamanaka, 2007). It has been
shown previously that the stable region of parameter space tends to be
enlarged by Holling Type III grazing (Truscott and Brindley, 1994). Ed-
wards and Yool (2000) analyzed the stability properties of the Fasham

Omta et al.
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species are considered) undergo a bulk instability when

�?�2
� 1 = 0, (18)

where �? is the fraction of surviving species, as defined in eq. (17). Contrary to purely random systems, which283

obey the same condition, the location of the transition now changes with structure through the dependence284

of �? on �. For the community we simulated, disorder-driven microscopic chaos is predicted for � & 2.25.285

286

On top of such classic collective transition, the dynamics can also be destabilized for weaker intensity of

the random component, by two routes. First, the number of e↵ectively interacting strains can be reduced

so much by randomness-induced extinctions that the systems stops oscillating. Second, and less trivially,

structure-driven transitions to equilibrium can occur as bifurcations of the coarse-grained variables. Instead

of being related to the bulk of the Jacobian matrix, these bifurcations involve its outliers. Directly linked

to the low-rank community structure bestowed by functions, such eignevalues are modified by randomness.

We show in SI Sec. 7 that structure-driven transitions can be located using the ’pseudo-Jacobian’ matrix

Jij = �x?
i (�ij � µij) , (19)

which explicitly depends on the structural part of the interactions, but not on randomness. Nonetheless,287

randomness impacts J indirectly through the equilibrium abundances x?
i Equation (13).288

Whereas eq. (18) is satisfied when an extensive number of bulk modes diverge at once, here the increase of289

microscopic heterogeneity generically causes a single pair of conjugate outliers to cross the imaginary axis290

through a Hopf bifurcation. The mathematical underpinning of how microscopic randomness generically291

suppresses collective oscillations is addressed elsewhere [42].292

Here, we used this example to stress that the e↵ect of equilibrium abundances on the outliers of the structural293

interaction matrix can stabilize even very complex community dynamics – a phenomenon that transcends294

both purely random and purely deterministic models.295

4 Discussion296

Models of ecological dynamics with random species interactions are increasingly explored as a paradigm for297

simple and parsimonious explanations of species abundances and dynamics [4]. Yet, we do not know to which298

19

Coherent loss of stability of the fixed point

In Figure 3 a we illustrate the SAD for a community structured in four groups, where abundances of209

non-extinct species concentrate over just three modal values, with relative frequency equal to the fraction of210

species in each group. Species with negative modal abundance go extinct.211

The presence of unstructured variation modifies this solution, and species will have a di↵erent equilibrium

abundance even if they share the same structural traits. The e↵ect of increasing the variance � is to spread

the abundances around the modal abundance. Species that share the same u(�)
j will have the same x+

i ,

consistent with the idea that they respond coherently to the function �, despite individual heterogeneity.

More precisely, in SI Sec. S5 we show that, when � > 0, the equilibrium abundance of species i is randomly

distributed according to a truncated-Gaussian random variable,

x?
i = max

�
0, x+

i + �⇠?i
�
, (13)

where ⇠?i are independent standard Gaussian variables that reflect the diversity of traits among di↵erent212

species.213

Remarkably, moreover, community-level variables are related by a closed set of nF + 1 relations3

f?
� =

�

S

X

i

I
(�)
i !1

✓
x+
i

�

◆

1 =
�2

S

X

i

!2

✓
x+
i

�

◆ (14)

where we have defined the mathematical functions

!k(w) = (2⇡)�1/2

Z 1

�w
e�z2/2 (w + z)k dz. (15)

We can now exploit the self-consistent relations eq. (14) to derive the exact distribution of the microscopic

abundances. The SAD turns out to be a convolution of a ’structure-driven SAD’, reflecting the deterministic

biases given by the modal abundances x+
i , and of a Gaussian distribution of typical width � (Fig. 3 b):

⇢(x) = (1� �?) �(x) +
⇥(x)

�

X

i

 

✓
x� x+

i

�

◆
. (16)

3In the case without disorder, eq. (12), the interaction matrix Aij was low-rank, allowing direct coarse-graining, whereas
here a low-dimensional description exists despite (Aij) being full-rank. Despite accounting for most of the dimensionality of
the matrix, random interactions thus modify the system in a minimal way, by adding a single macroscopic relation on top of
those provided by structure.
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Pseudo-Jacobian

As the time scales associated with the microscopic variables spread out,  the 
macroscopic and microscopic oscillations are simultaneously suppressed

The outlier eigenvalues of the pseudo-Jacobian are 
the same as the Jacobian, but depend on disorder 
only through the equilibrium abundances.
They shift to the left when disorder increases.

3

sesses a single stable fixed point, where all groups coex-118

ist symmetrically, i.e. m1 = m2 = m3 ⌘ m(,�). For119

� = 0, every species has the same equilibrium of the low-120

dimensional system x?
i = N?

↵(). For � > 0, instead,121

we show that species abundances are distributed as the122

truncated Gaussian123

x?
i = (1� ̃m) max

⇣
0, 1 +

p
⌘⇣i

⌘
, (4)

where ̃ =  + 1/2, ⇣i are independent standard Gaus-124

sian variables and ⌘ = �2q/(1 � ̃m)2, with q =125

S�1
P

ih(xi)2i, is the spread in species abundances. The126

equilibrium macroscopic parameters m, ⌘ satisfy closed-127

form equations (see eq. (17)), whose solution indicates128

that ⌘ is an increasing function of heterogeneity �.129

We now linearize the dynamics eq. (2) around the fixed130

point given by eq. (4). Let �xi(t) = xi(t)� x?
i be a per-131

turbation to the abundances of extant species. Through132

DMFT, their dynamics can be equivalently described (see133

Appendix D) by the linear stochastic process134

d

dt
�xi = rix

?
i

0

@��xi �
X

�

M↵��m� + ��⇣i

1

A , (5)

where �⇣i are independent, centered Gaussian processes.135

We have also defined �m�(t) = S�1
g

P
i in �h�xi(t)ix? ,136

where the average is taken with respect to the stochastic137

process eq. (5), given the fixed point abundances x?. We138

characterize such a stochastic process through its first139

two moments. In Appendix D, we show how the FP/AF140

transition corresponds to the divergence of the second141

moment and occurs, in a class of models including the142

RPS (discussed later), when � =
p
2, as in the rGLV[19].143

In the remaining of this Letter, we focus on the first144

moments h�xi(t)ix? when the second moments do not145

diverge. In the FP and AF phases, where the dynamics146

are either stable or asynchronous, h�xi(t)ix? vanish as147

t ! 1. They instead remain finite when synchronous148

oscillations emerge at the FP/SO transition. Averaging149

eq. (5) yields an S ⇥ S linear system (see Appendix D),150

d

dt
h�xii = (1� ̃m)

X

j

Jijh�xji, (6)

where we have defined Jij = �z?i
�
�ij + S�1

g µij

�
, and,151

for mathematical convenience, the rescaled abundances152

z?i = rix?
i /(1 � ̃m). In the following, we refer to J153

as the pseudo-Jacobian matrix. Indeed, it resembles the154

Jacobian of eq. (2), Jij = �rix?
i (�ij +Aij), evaluated155

over extant species, but does not feature the disordered156

component. The spectrum of J , as most random ma-157

trices, contains a bulk of eigenvalues and a few outliers158

(Fig. 3b). The bulk diagonal is marginally stable but159

uninformative, and stability depends instead on the real160

part of the outliers.161

For � = 0, J has, up to a rescaling, the same outliers162163

FIG. 3. Spectrum of the Lotka-Volterra Jacobian J (left) and
the pseudo-Jacobian J (right) for the RPS system with pa-
rameters  = 5 and � = 0.75. The red circles are predictions
using Woodbury’s identity eq. (7). On top of such outliers,
the pseudo-Jacobian features a bulk of stable eigenvalues, cor-
responding to its diagonal component.

as the Jacobian of the low-dimensional system, given by164

JM
↵� = �r↵N↵ (�↵� +M↵�), hence the stability of the165

high- and low-dimensional systems is the same. As � is166

increased, each outlier �0 is continuously modified into an167

outlier �(�) of J , which depends on disorder exclusively168

through the distribution of z?i . For the RPS system, �(�)169

is related to �0 = (3� ± i
p
3)/2 by170

�(�)

⌧
1 + �0

1 + z�1�(�)

�

z>0

= 1, (7)

where �(�) is the fraction of surviving species and the171

average is realized on extant species (see Appendix E).172

By combining eq. (7) with the equilibrium distribution173

eq. (4) and by solving Re �(�) = 0, we obtain an analyt-174

ical expression for the line �() identifying the FP/SO175

transition in Fig. 1.176

We now analyze the behavior of �(�) as � is increased.177

When � = 0, z?i = 1 and � = 1, thus �(�) = �0. In-178

creasing � in eq. (7) has two e↵ects. The first is to de-179

crease � through extinctions, resulting in a reduction of180

Re �(�), hence, possibly, stabilization. Indeed, species in181

smaller communities tend to experience weaker competi-182

tion. This trivial e↵ect can be compensated by scaling183

the interactions by �S. A second e↵ect on the average184

in eq. (7) manifests however even when the number of185

extant species does not change (� can then be set to 1186

without loss of generality). By di↵erentiating eq. (7) with187

respect to � (see Appendix E), we obtain188

1

⌘0(�)

d�

d�
= ��

Z 1

0

⇢⌘(�)(z) dz

(�+ z)3

✓Z 1

0

⇢⌘(�)(z)z dz

(�+ z)2

◆�1

(8)
where ⇢⌘(z) = (2⇡⌘)�1/2 exp

�
�(z � 1)2/2⌘

�
is the dis-189

tribution of z?, obtained from eq. (4). For real and pos-190

itive eigenvalues, the integrals are positive. Thus, � de-191

creases with �, converging to 0+ for large heterogene-192

ity, and never crosses the imaginary axis. The real part193

of complex eigenvalues, on the other hand, can become194
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FIG. 2. E↵ects of disorder on collective dynamics. a) The phase diagram for the 3-group system comprises three
significant regions (and a divergent region in yellow where the LV model is meaningless [15]): a region with a unique fixed
point (green), a region with low-dimensional macroscopic oscillations (red) and a region with high-dimensional chaos (blue).
b) and c) Two examples of dynamics for the 3-group system along the � = 4 line, at � = 0.3 and � = 1. The macroscopic
dynamics (average abundance per group) are plotted as thick lines. A subset of species trajectories are shown as thin lines.
While species within each group initially follow the same trend, disorder progressively desynchronizes their trajectories and
leads to stabilization. d) Bifurcation diagram for the 4-group system showing the maximum abundance as a function of �.
Starting from low-dimensional chaotic dynamics at � = 0, the system undergoes a series of period-halving bifurcations leading
to simpler oscillatory. Eventually a Hopf bifurcation stabilizes the cycle into a fixed point. e) and f) Examples of dynamics
for the 4-group system at � = 0.04 and � = 0.4, with chaotic and cyclic dynamics respectively.

tween stability and synchrony.

Impact of time scale heterogeneity: We thus
map our problem to a more general and purely alge-
braic one: does heterogeneity in the time scales of mi-
croscopic variables stabilize macroscopic modes, i.e. how
does the spread in the row coe�cients x⇤

i of J impact its
outlier eigenvalues? To gain intuitions, let us consider
the x

?
i as abstract rate parameters and increase their

spread continuously, then follow the outliers as we do
this. Starting from equal equilibrium abundances, say
x
?
i = 1, we make them di↵use in virtual time ⌧ accord-

ing to x
?
i (⌧) ! x

?
i (⌧) + �x

?
i (⌧), where �x

?
i (⌧) is taken to

be a Gaussian variable of intensity ��(⌧) =
p
x?
i (⌧)d⌧ .

The factor
p
x?
i (⌧) ensures that abundances do not be-

come negative but similar results are obtained without
this scaling.

We use Woodbury’s formula (see Appendix C) to de-
rive an implicit expression for the eigenvalues of J , and
then di↵erentiate it to obtain their evolution equation.
Under simple conditions detailed below, we find that each

outlier � evolves according to

d�

d⌧
= ��

✓Z
dx⇢⌧ (x)

(�+ x)3

◆✓Z
dx⇢⌧ (x)

(�+ x)2

◆�1

, (6)

where ⇢t(x) is the density function of abundances at
virtual time ⌧ . We distinguish two case scenarios, de-
pending on whether � is real or complex. In the first
case, it is manifest that the integrals in eq. (6) are pos-
itive, and hence � relaxes to 0 while staying on the
unstable side. The latter is expected: since det J =
detx?⇥det (I� µ/S), eigenvalues can only cross through
zero due to extinctions x

⇤ = 0 or if I � µ/S is itself de-
generate, but not through any interplay between the two
components. A more interesting picture appears when �

is taken to be a complex eigenvalue. In that case, the
r.h.s in eq. (6) still has a negative real part. Yet, because
the eigenvalue no longer has to go through zero, it is able
to cross to the left half of the complex plane.
These findings are summarized in Fig. 3, where we plot

the flow of eigenvalues depending on their initial posi-
tion. Note that, as the abundance distribution changes,
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High-dimensional chaos and randomness

Figure 6: Influence of strain variability on species and strain dynamics. A matrix of species-species
interactions is chosen following the protocol of [42], with nF = 150 species. Each species is then divided into
s = 40 for a total of S = 6000 strains. Strain-strain interactions are chosen following our model: the structural
matrix µ is determined by the species to which strains belong and the nF ⇥nF matrix; variability at the strain
level is controlled by the random matrix of intensity �. Left column: Dynamics at the species level, equivalent
to the trajectories plotted in [42]. Right column: Dynamics at the strain level (only three strains per species
are plotted). The rows correspond to � = 0, 1, 1.75 and 2.75 respectively. (a) For small values of �, strains
within a species are synchronized and the trajectory at the species level is representative of the trajectories at
the strain level. We observe the chaotic dynamics reported by Mallmin, Traulsen & De Monte. (b) As � is
increased, oscillatory modes at the species (i.e. structural) level become progressively stabilized, starting with
the fastest ones. This causes a slowdown of the dynamics at the species level. (c) Further increasing � stabilizes
all the structural modes and the system reaches a fixed point both at the species and the strain level. This
is an example of a structural transition. (d) Increasing � even more, a collective transition is crossed, after
which strain trajectories oscillate in an asynchronous manner . Since the oscillations are no longer driven by the
structure at the species level, species trajectories now fluctuate much less. (e) Amplitude of the oscillations at
the species level (blue) and the strain level (orange), featuring a decrease as the structural modes are dampened
(between � = 0 and 1.75). After the collective transition (between � = 2.25 and 2.75), oscillations pick up again
at the strain level, but remain weak at the species level. Dotted lines correspond to the trajectories in (a-d).
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Conclusions on the interplay of structure and randomness

Structure and randomness overlap simply at equilibrium, where the system is described by 
mesoscopic variables that combine them.

Equilibria can lose stability through both collective transitions and low-codimension 
bifurcations.

When the structured dynamics is out-of-equilibrium, dephasing of species oscillations 
within functional groups induces community stabilization for intermediate disorder.

How to evaluate the degree of randomness in real ecosystems?
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Fig. 4: Species abundance distributions and community-level observables at equilibrium. SADs for a
community structured in two functional groups, as illustrated by the interaction matrix in the inset, in the absence
(a) and in the presence of random variation (b). The SADs for the two groups are separately plotted. Their mean
abundances (solid vertical lines) highlight that the signature of structure is still visible when randomness is so strong
that the total SAD would be featureless. (c) The functional magnitudes change with the intensity � of random
variation (dots, numerical simulations; solid lines, theoretical prediction from eqs. (14)). Di↵erent functional groups
can witness opposite changes in the value of their defining function, but when randomness is strong enough, they
will all see an increase in function due to the asymmetry induced by constraining abundances to be positive. In this
case, the total abundance of the class increases much faster for species that were rare in the absence of randomness.
(d) The number of surviving species (as predicted by eq. (15), solid lines vs simulations, dots) for both groups as
well as for the whole community (grey). By rescuing the blue group from extinction, randomness initially increases
the survival fraction. For large �, however, the e↵ect of extinctions dominates and the survival fraction decreases,
despite the increase in total abundance.
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