
3. Community evolution under collective-level selection 
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Appendix 1—figure 4. Example of collective genealogy (Supplement of Figure 2). Symbols and
colours are as in Appendix 1—figure 1 and extinct lineages are marked transparent. Collective-level
parameters in this simulation are M ¼ 30; D ¼ 20; ! ¼ 0:1. A. Neutral regime: at the final generation,
collectives are monochromatic and most likely composed of the faster-growing type. B. Selective
regime: at the final generation, collectives contain both red and blue particles.

Appendix 1—figure 5. The stochastic-corrector mechanism can maintain both types of particles in
the absence of mutations (Supplement of Figure 2). Collective phenotype distribution through time
in the selective regime with ancestral particle traits and no mutations. Without collective-level
mutation, the only mechanism maintaining both types within the population is the stochastic
corrector, whereby a fraction of the collectives with colour closer to the target are propagated to
the next collective generation. This means that at every generation the distribution of collective
phenotypes is skewed towards the colour that has higher maximal growth rate, and the target
colour is realized, in a small fraction of collective population, thanks to stochastic fluctuations in the
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Are such functions selected, and how?

Heterogeneity
Biodiversity
Complementarity 
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three experiments and reappearing in only two. The 4.2-fold
difference in plant biomass and the 25-fold difference in pH are
impressive responses to ecosystem-level selection but they, too,
may have collapsed if the experiments were continued for a
longer period.

Evolution and Complex Systems. Both the response to selection and
its unstable quality can probably be explained in terms of

complex systems dynamics. Mathematical and computer simu-
lation models of evolution tend to assume a simple relationship
between phenotypic traits and their genetic basis, such as an
altruistic behavior that is coded directly by an altruistic gene. In
the case of our soil ecosystem experiment, we might imagine
genes in soil organisms that have positive or negative effects on
plant biomass, with variation among ecosystems caused by
sampling error. Ecosystems initiated by small numbers of soil
organisms may possess sufficient variation for ecosystem-level
selection to operate, but not ecosystems initiated by large
numbers of soil organisms. By this reasoning, our experiment
should not have worked because variation caused by sampling
error would be negligible in ecosystems initiated by 6.0 g of soil,
which contains many millions of microbes comprising thousands
of species (4–6). Also, if variation among ecosystems is caused
purely by sampling error, it should have been greater in our
0.06-g experiments than our 6.0-g experiments, which differed by
two orders of magnitude in the number of organisms initiating
each ecosystem.

The substantial phenotypic variation observed in our exper-
iments (and also in artificial selection experiments at the group
and two-species community levels) reveals that something is
wrong with theoretical reasoning based on simple interactions.
In real biological systems, phenotypic traits often are caused by
complex interactions among components of the system. Complex
physical systems such as the weather are well known to display
sensitive dependence on initial conditions, which causes repli-
cate systems that initially are virtually identical to become very
different over time (the so-called ‘‘butterfly effect’’; ref. 7). If
complex biological systems are like complex physical systems,
they too will diverge in their phenotypic properties, no matter
how small their initial differences. In the context of our exper-
iment, very small initial differences in the genetic and species
composition of our units, initially caused by sampling error, will
develop into much larger differences during the course of an
ecosystem generation, with correlated effects on the phenotypic
trait that forms the basis for selection. Ecosystems initiated by
6.0 g of soil might vary as much as ecosystems initiated by 0.06 g
of soil, because the initial differences that form the basis of the
butterfly effect can be arbitrarily small. In short, theoretical
reasoning based on complex interactions leads to profoundly
different predictions about phenotypic variation among units,
one of the fundamental ingredients of natural selection at all
levels.

Complex interactions also are likely to have an effect on
heritability that might explain the unusual patterns of response
to selection shown in Fig. 2. Consider the replicate ecosystems
at the beginning of an ecosystem-selection experiment. Sensitive
dependence will cause them to diverge in their species compo-
sition and the genetic composition of the component species.
Some of the differences will influence the phenotypic trait being
measured. However, the genetic and species compositions of the
selected ecosystems are unlikely to have come to equilibrium by
the time they are used to create the next generation. The
offspring ecosystems are therefore likely to embark on trajec-
tories of their own with different effects on the phenotypic trait
being measured, which will appear as an absence of heritability
in the artificial selection experiment. Eventually, some ecosys-
tems may reach a relatively stable local equilibrium with two
properties: (i) they produce the phenotype that enables them to
survive as units in the artificial selection experiment, and (ii) they
are internally stable enough to retain their properties in the
passage from the parent to the offspring generation, which
appears as heritability in the artificial selection experiment.
Artificial ecosystem selection can be seen as a method of
searching an astronomically large parameter space (thousands of
species and thousands of genes within each species) for ecosys-
tems with these two properties.

Fig. 2. Results of ecosystem artificial selection experiments (as in Fig. 1)
expressed as deviations from overall means. Symbols are the same as in Fig.
1. (a) Difference between above-ground biomasses of Arabidopsis thaliana
grown in ecosystem microcosms selected at high or low biomass, 6.0-g
inoculum. (b) Difference between above-ground biomasses, 0.06-g inocu-
lum treatment. (c) Difference in pH of aquatic microcosms selected for high
or low pH.

Fig. 3. Discriminant function analysis of 10 soil nutrient variables in the 6.0-g
inoculum size treatments, generations 13 and 14 combined. Open, upward-
pointing triangles represent soils in microcosms selected for high biomass.
Filled, downward-pointing triangles represent selection for low biomass.
Circles represent soils from microcosms inoculated with autoclaved slurries
and selected at random. The first discriminant function is largely attributable
to soil NH4

! content. The second discriminant function is most strongly
attributable to soil K, Zn, and P content. (Wilk’s !, 0.00828; F (20, 156) " 77.895;
P # 0.0001).

9112 ! www.pnas.org Swenson et al.

Swenson, Wilson & Elias
Artificial ecosystem selection
PNAS (2000)

Experiments on microbial community selection

population level. Indeed, the metapopulations in these experiments fulfilled the two conditions
that are required for artificial selection to work. First, the authors found a significant between-
population variation in the phenotype under selection due to the combination of small, genetically
diverse populations and sexual recombination. Second, follow-up studies also demonstrated that
this variation had a heritable component, stemming from interactions between specific combina-
tions of genotypes, which were directly responsible for the population-level trait under selection
(e.g., the number of adult individuals) (41, 43).

Artificial Selection of Microbial Communities and Ecosystems
In the early 2000s, artificial selection above the organismal level was extended from populations
and small pairwise communities to entire microbial ecosystems. In a landmark set of studies (103,
104), Swenson and coworkers adapted the propagule and migrant pool strategies to select for
microbial ecosystems with high scores in three emergent community-level traits: (a) the pH of
the aquatic medium on which the ecosystems were growing; (b) the collective degradation of 3-
chloroaniline, a water contaminant; and (c) an indirect microbiome phenotype, such as the above-
earth biomass of the plants on which those communities had been inoculated. Although these
experiments were promising, the effect of selection was modest compared to the robust and large
responses observed in animal populations (40, 43, 111, 112).

These studies were followed by a handful of additional artificial microbiome selection ex-
periments, all of which adopted similar protocols and selection strategies. Using a migrant pool
method, Panke-Buisse et al. (75, 76) artificially selected for soil microbiomes that induced either
early or late flowering in various genotypes of Arabidopsis thaliana and Brassica rapa. This exper-
iment found a strong and statistically significant relative difference between the mean flowering
times ofmicrobiomes that were selected for early versus late flowering.However, both lines drifted
over time and flowered later than the starting (nonselected) microbiomes. In a later study, Blouin
et al. (15) used an experimental design with multiple artificial selection (as well as random selec-
tion) lines and selected for lowCO2 emission in aquatic ecosystems.The amount of respirationwas
lower in the artificially selected lines than in the random controls. In both, however, the amount
of CO2 produced declined over time. More recent studies have attempted to select microbiomes
that degrade extracellular polymers (18, 121), protect plants against drought (55, 71), alter the de-
velopment of animal embryos (8), and facilitate the growth of a species that could not grow on its
own (18).We believe that it is fair to say that success has been mixed (some experiments succeeded
while others failed or were inconclusive) and generally modest.

What Limits the Success of Artificial Selection at the Community Level?
As we discuss above, artificial selection at the community level requires that communities exhibit
variation on the selected trait, and that this trait is reliably passed from parent to offspring com-
munities. With regard to the heritability of community-level traits, the method used to generate
offspring communities from their parents is therefore critical (83). Due to the success of the
propagule and migrant pool strategies in animal populations, both methods have been universally
adopted in all microbial community-level selection studies of which we are aware. There are,
however, important quantitative differences between animal populations and microbial communi-
ties. First, microbial communities are generally several orders of magnitude larger. A conservative
estimate of the number of bacterial cells that were used to inoculate each generation in previous
experiments is N ∼ 106, and the actual number is likely to have been several orders of magnitude
higher (19). This large inoculum size could limit the power of stochastic sampling to generate
large between-population variation,which is a critical factor on which selection acts (19). In animal
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Abstract
Directed evolution is a form of artificial selection that has been used
for decades to find biomolecules and organisms with new or enhanced
functional traits. Directed evolution can be conceptualized as a guided
exploration of the genotype–phenotype map, where genetic variants with
desirable phenotypes are first selected and then mutagenized to search the
genotype space for an even better mutant. In recent years, the idea of apply-
ing artificial selection to microbial communities has gained momentum. In
this article,we review themain limitations of artificial selection when applied
to large and diverse collectives of asexually dividing microbes and discuss
how the tools of directed evolution may be deployed to engineer commu-
nities from the top down.We conceptualize directed evolution of microbial
communities as a guided exploration of an ecological structure–function
landscape and propose practical guidelines for navigating these ecological
landscapes.
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Artificial selection of community function

‘Newborn’ communities

‘Adult’ communities

growth
reproduction

selection is applied on a measurable 
function of the community composition
e.g. total biomass, specific species ratios

Arias-Sánchez et al.
Artificially selecting microbial communities: If
we can breed dogs, why not microbiomes?
PLoS Biol (2019)

mutation



Multi-species communities: numerical results

Williams & Lenton
Artificial selection of simulated microbial ecosystems
PNAS 

tions. Because a single species can push any environmental variable
in only one direction, at least two species may therefore be needed
to provide the necessary opposing influences for the low line
(target-seeking) problem. However, a variable can be moved away
from a target by pushing in a single direction, so a single dominant
species in the community may offer a good solution to the high line
(target-avoiding) problem. Thus the high and low lines offer
qualitatively different evolutionary problems that may demand
qualitatively different ecosystem solutions.

Artificial ecosystem selection is an iterative process based on
preferentially sampling from successive batches of flask ecosystems
to create each succeeding batch. After a randomly seeded initial
batch, at each iteration of the selection process, a new batch of flask
ecosystems is created by inoculating sterile flasks with individuals
from the fittest flasks of the previous iteration. A single inoculum
of a fixed number of individuals is created by sampling at random
from the source flasks, and identical copies of this inoculum are
then used to seed the entire new batch of ecosystems. Two sampling
methods are used: a propagule method, where the inoculum is
drawn from a single source ecosystem, and a migrant pool method,
where the inoculum takes individuals from several source ecosys-
tems. The propagule method is analogous to asexual reproduction
and should preserve ecological interactions among individuals. The
migrant pool method is analogous to sexual reproduction and may
better represent how new ecosystems form in nature. After inoc-
ulation, each ecosystem is propagated for a fixed period of Tprop
timesteps before ! is measured; the propagation time Tprop is
experimentally varied in the range [2000,20000] and specifies the
time between selection events. For more details see Methods.

Results
A robust response to artificial selection is seen in our model
ecosystems (e.g., Fig. 1). For an arbitrarily chosen target vector, in
both the high and low selected lines, the normalized abiotic
environment state vector quickly diverges from the randomly
selected control line. The high line is selected to maximize ! (the
distance of the actual abiotic environmental state from the target
state), and there is a rapid initial increase in this distance followed
by a leveling off. Similar behavior is displayed by the low line, except
that the ecosystem-level selection in this case is for a decrease in !.
When directed selection is removed (after 30 ecosystem selection
iterations), the selected lines relax toward the nonselected condition
(represented by the randomly selected control line ecosystems).
The response to selection is very similar with both the propagule
and the migrant pool sampling methods, and similar results are also
achieved with different target vectors (SI Figs. 3 and 4).

We explored the effects on the observed response of different
sampling methods, varying the microbial mutation rate, and the

ecosystem propagation time (Table 1). Selected ecosystem scores
deviate significantly from control line scores, showing the effect of
artificial ecosystem selection. There are inverse relationships be-
tween the size of the response to artificial ecosystem selection and
mutation rate, and between the size of the response and propaga-
tion time (Table 1; SI Figs. 5–7). The rate of relaxation when
directed selection is removed is directly proportional to the indi-
vidual-level mutation rate (SI Fig. 8a). No significant relaxation
occurs when mutation rate is zero, indicating that fit ecosystems in
this scenario undergo a stable transition in ecological organization,
i.e., a switch to a high-fitness ecological equilibrium. Relaxation rate
is unrelated to the frequency of ecosystem selection events (SI Fig.
8 b and c). Results from the migrant pool and propagule sampling
methods are similar for equivalent Pmut and Tprop. Perturbing the
environmental fluxes (see SI Table 3) has a deleterious effect on
performance, suggesting that both environment and community in
general contribute significantly to the selected ecosystem function.

Testing for Implicit Lower-Level Selection. We tested (see Methods)
whether the observed response to artificial ecosystem selection
could be due to implicit selection at a lower level, by examining
whether any species taken from an artificially selected community
could achieve or exceed the performance of the intact selected
community, either when allowed to develop in isolation as a clonal
monoculture population or when placed in the context of a wild-
type community (by adding individuals of the test species to the
associated control line community). These are attempts to falsify
the hypothesis:

H1: The adaptive response of the artificially selected
ecosystems relies on the presence of multiple concurrently
selected species.

With the observations:

O1: A species from within the community exists that in
monoculture gives performance that equals or exceeds that
of the selected community.

O2: A species from within the community exists that in the
context of a wild-type community gives performance that
equals or exceeds that of the selected community.

O3: A species from within the community exists that both
as a monoculture population and in the context of a
wild-type community gives performance that equals or
exceeds that of the selected community.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Selection iterations

Φ

L
H
R

Fig. 1. Artificial ecosystem selection produces a strong adaptive response.
Mean ! ! 1 SE plotted. Here, 57 runs were performed by using propagule
sampling with the default experimental settings (see Methods). Data are plotted
for directed selection for either increase (high line, H) or decrease (low line, L) in
distance of abiotic environment from target state, !, as well as for a random
selectioncontrol line(R)thatshowsbehavior intheabsenceofartificialecosystem
selection. Directed selection is stopped after iteration 30, at which point all
ecosystem-level selection is random.

Table 1. Mean performance (!) scores from artificial
ecosystem selection experiments for control line,
low-selected, and high-selected communities

Sampling Tprop Pmut Runs

!

Control Low High

Propagule 2000 0.01 46 0.67 0.19 0.94
5000 0.01 57 0.66 0.16 0.93

10000 0.01 60 0.62 0.19 0.94
20000 0.01 75 0.71 0.29 0.89
5000 0 43 0.56 0.28 0.91
5000 0.03 87 0.62 0.25 0.92
5000 0.05 42 0.56 0.32 0.86
5000 0.1 73 0.57 0.42 0.84
All All 483 0.63 0.27 0.90

Migrant 5000 0.01 49 0.73 0.19 0.96

Results for the propagule sampling method, with varying propagation time
Tprop and mutation rate Pmut, and for the migrant-pool sampling method at
the default values.

8920 ! www.pnas.org"cgi"doi"10.1073"pnas.0610038104 Williams and Lenton
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Engineering complex communities by directed evolution
Nature Ecology & Evolution (2021)

SDM
N&V: Ecological recipes for selecting community function
Nature Ecology & Evolution (2021)
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Fig. 1 | Migrant-pool and propagule strategies are limited in their ability to find new, high-functioning microbial communities. a, We constructed a 
Python package, ecoprospector, which allows us to artificially select arbitrarily large and diverse in silico communities. The experimental design of a 
selection protocol (for example, number of communities, growth medium, method of artificial selection, function under selection and so on) is entered 
in a single input.csv file (Methods). Communities are grown in serial batch culture, where each transfer into a new habitat is referred to as a community 
‘generation’. Within each batch incubation, species compete for nutrients from the supplied medium. At the end of the incubation period, communities 
are selected according to the specified, protocol-specific selection scheme, and the selected group is used to seed the communities in the offspring 
generation. Once the protocol is carried out to completion, ecoprospector outputs a simple text format for later analysis on community function and 
composition. b, Illustration of previously used migrant-pool and propagule selection schemes (AS) as well as the corresponding randomized controls 
(RS)29,43. We also consider a no-selection ‘control’ scheme (NS). All protocols are applied at the end of each community generation and are implemented 
using a matrix representation depicted in Supplementary Fig. 1. c,d, A representative outcome of one community-level selection experiment, where we 
adapted the selection protocol from the migrant-pool strategy in ref. 30. A metacommunity was seeded by inoculating ninoc!=!106 randomly drawn cells 
from a species pool into each of 96 identical habitats and allowing them to grow (Methods). The metacommunity was then subject to 20 rounds of 
selection (generations) and allowed to stabilize without selection for another 20 generations. The function maximized under selection F is additive on 
species contributions, whose per-capita species contribution to function is randomly generated (see main text). In each selection round, the top 20% 
of communities with highest F (AS; red) or a randomly chosen set (RS; blue) are selected and mixed into a single pool, which is then used to seed all 
communities in the next generation by randomly sampling 106 cells into them. The NS protocol (green) simply propagates the communities in batch mode 
without selection. The changes in overall function over the generations in average F (c) and in maximum function Fmax (d) are shown. e, Selection strategies 
were adapted from 12 experimental protocols in previous studies (see Supplementary Table 1 and Methods). All were applied to standard metacommunity 
sizes (96 communities), for the same number of generations (20 selection generations + 20 stabilization generations). All protocols have a significantly 
greater mean function in the AS than in the NS line (two-sided paired t-test, P!<!0.01) as well as the RS lines (Supplementary Fig. 4). f, The difference 
in Fmax between the AS and NS lines (Q). All protocols show a mean Q!<!0 (two-sided Welch’s t-test, P!<!0.01), indicating that they did not succeed at 
improving the function of the best stabilized community in the ancestral population.
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1. Two-species communities

2. Many-species communities

Evolution of collective function in:

See also Wenying Shou and van Vliet & Doebeli
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How does heredity of collective (community) traits evolve?



Nested population structure

Individual
(gene, cell, organism)

Collective
(chromosome, body, society, community)

Major evolutionary transitions

Evolutionary transitions in individuality

1995 2009



Evolution by natural selection

Necessary conditions for evolution by natural selection (Lewontin, 1970)

Variation  Inheritance  Demographic differences

S. De Monte and P.B. Rainey
Nascent multicellular life and the emergence of individuality
J. Biosciences 2014

‘Heritable variance in fitness’



Selection for community composition



How is balanced state maintained 
across collective generations?

Selection for community composition



Nested Darwinian populations



Nested Darwinian populations

Growth
(particle ecology)



Selection on collective

phenotype (50%)

Nested Darwinian populations



Nested Darwinian populations

Collective reproduction



Collective reproduction
(with particle mutations)

Nested Darwinian populations
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Particle-level

Nested Darwinian populations



Particle traits (of the biological system):

Growth rates ri

Intra- and Inter-specific interactions aij 

Lotka-Volterra competitive equations

Within-collective particle ecology



Collective parameters:

T duration of a collective generation

B    bottleneck size

These are the parameters an 
experimenter can modify
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Particle ecology across collective generations



# of red cells

# 
of

 b
lu

e 
ce

lls

Collective parameters:

T duration of a collective generation

B    bottleneck size

These are the parameters an 
experimenter can modify
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‘Developmental’ growth function G:
colour of an adult collective as a 
function of newborn colour

Time-discrete dynamics of collective colour

An analogy:
particle parameters: genotype
collective colour: phenotype
growth function: genotype-to-phenotype map

Sources of stochastic phenotype variation: sampling at birth, particle-level demography



Selection for community composition



Number of collective generations

No collective-level selection

%
 of red particles

In the absence of selection, stochastic sampling leads to monochromatic lineages.



Number of collective generations

Colour selection without particle trait evolution

%
 of red particles

Target colour is maintained by ‘stochastic correction’
Eörs Szathmáry and J. Maynard Smith
The Major Transitions in Evolution. Oxford, 1995



Stochastic corrector

Eörs Szathmáry and J. Maynard Smith
The Origins of Life, Oxford University Press, 1999

PROS

Collective colour is maintained in spite of differences in growth rate thanks 
to stochastic fluctuations at birth

CONS

Small populations with too large bottlenecks may not avoid extinction

Inefficient process: most collectives get discarded at each generation

The target colour is rapidly lost if selection is discontinued



The particles of any colour can produce ‘mutants’ with different traits.
If the mutant increases in frequency, it substitutes the resident.

Colour selection with particle trait (slow) evolution



The particles of any colour can produce ‘mutants’ with different traits.
If the mutant increases in frequency, it substitutes the resident.

Colour selection with particle trait (slow) evolution



Permanence of the collective phenotype across collective generations

Collective colour has become heritable



Permanence of the collective phenotype across collective generations

Permanence of the collective phenotype in the absence of selection

Collective colour has become heritable



Evolution of a ‘Developmental Corrector’

Growth and interaction rates evolve (if unconstrained) so that:
 1. Particle growth increases: interactions/ecology become important     

within a collective generation
 2. Interactions become increasingly asymmetric
 3. Colour becomes increasingly heritable in spite of fluctuations at birth
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Developmental 
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Evolution of a ‘Developmental Corrector’

The target colour 
becomes a fixed point of 
the growth function
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Figure 2. Evolutionary dynamics of collectives and particles. A population of D=1, 000 collectives was
allowed to evolve for 10, 000 generations under the stochastic birth-death model described in the main text (see
Appendix A for details on the algorithm used for the numerical simulations). Initially, each collective
wascomposed of B = 15 particles of two types: red (r = 6, aintra = 0.8_K , ainter = 0.15_K) and blue
(r = 4, aintra = 0.3, ainter = 0.15), with K = 1, 500. The proportions at generation 0 were randomly drawn from a
uniform distribution. At the beginning of every successive collective generation, each o�spring collective was
seeded with founding particles sampled from its parent. Particles were then grown for a duration of T = 1.
When the adult stage was attained, 200 (⇢ = 20%) collectives were extinguished, allowing opportunity for extant
collectives to reproduce. Collectives were marked for extinction either uniformly at random (neutral regime,
panels A,B,C), or based on departure of the adult colour from the optimal purple colour (x< = 0.5) (selective
regime, D,E,F). Panels A and C, respectively, show how the distribution of the red to blue ratio within collectives
changes in the absence and presence of selection on collective colour. The �rst 30 collective generations (before
the grey line) are magni�ed in order to make apparent early rapid changes. In the absence of collective-level
selection purple collectives are lost in fewer than 10 generations leaving only red collectives.sout sout Growth
rate of red particles shows little change through the subsequent 10,000 generations (C). Selection for
purple-coloured collectives instead drives evolutionary change in particle growth rate (D). In the neutral regime,
inter-colour evolution of competition traits are driven by drift (E), whereas with collective level selection density
dependent interactions between particles of di�erent colours rapidly achieve evolutionarily stable values (F).
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Figure 2. Evolutionary dynamics of collectives and particles. A population of D=1, 000 collectives was
allowed to evolve for 10, 000 generations under the stochastic birth-death model described in the main text (see
Appendix A for details on the algorithm used for the numerical simulations). Initially, each collective
wascomposed of B = 15 particles of two types: red (r = 6, aintra = 0.8_K , ainter = 0.15_K) and blue
(r = 4, aintra = 0.3, ainter = 0.15), with K = 1, 500. The proportions at generation 0 were randomly drawn from a
uniform distribution. At the beginning of every successive collective generation, each o�spring collective was
seeded with founding particles sampled from its parent. Particles were then grown for a duration of T = 1.
When the adult stage was attained, 200 (⇢ = 20%) collectives were extinguished, allowing opportunity for extant
collectives to reproduce. Collectives were marked for extinction either uniformly at random (neutral regime,
panels A,B,C), or based on departure of the adult colour from the optimal purple colour (x< = 0.5) (selective
regime, D,E,F). Panels A and C, respectively, show how the distribution of the red to blue ratio within collectives
changes in the absence and presence of selection on collective colour. The �rst 30 collective generations (before
the grey line) are magni�ed in order to make apparent early rapid changes. In the absence of collective-level
selection purple collectives are lost in fewer than 10 generations leaving only red collectives.sout sout Growth
rate of red particles shows little change through the subsequent 10,000 generations (C). Selection for
purple-coloured collectives instead drives evolutionary change in particle growth rate (D). In the neutral regime,
inter-colour evolution of competition traits are driven by drift (E), whereas with collective level selection density
dependent interactions between particles of di�erent colours rapidly achieve evolutionarily stable values (F).
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Figure 2. Evolutionary dynamics of collectives and particles. A population of D=1, 000 collectives was
allowed to evolve for 10, 000 generations under the stochastic birth-death model described in the main text (see
Appendix A for details on the algorithm used for the numerical simulations). Initially, each collective
wascomposed of B = 15 particles of two types: red (r = 6, aintra = 0.8_K , ainter = 0.15_K) and blue
(r = 4, aintra = 0.3, ainter = 0.15), with K = 1, 500. The proportions at generation 0 were randomly drawn from a
uniform distribution. At the beginning of every successive collective generation, each o�spring collective was
seeded with founding particles sampled from its parent. Particles were then grown for a duration of T = 1.
When the adult stage was attained, 200 (⇢ = 20%) collectives were extinguished, allowing opportunity for extant
collectives to reproduce. Collectives were marked for extinction either uniformly at random (neutral regime,
panels A,B,C), or based on departure of the adult colour from the optimal purple colour (x< = 0.5) (selective
regime, D,E,F). Panels A and C, respectively, show how the distribution of the red to blue ratio within collectives
changes in the absence and presence of selection on collective colour. The �rst 30 collective generations (before
the grey line) are magni�ed in order to make apparent early rapid changes. In the absence of collective-level
selection purple collectives are lost in fewer than 10 generations leaving only red collectives.sout sout Growth
rate of red particles shows little change through the subsequent 10,000 generations (C). Selection for
purple-coloured collectives instead drives evolutionary change in particle growth rate (D). In the neutral regime,
inter-colour evolution of competition traits are driven by drift (E), whereas with collective level selection density
dependent interactions between particles of di�erent colours rapidly achieve evolutionarily stable values (F).
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Evolution as gradient climbing 

(when time scales are well separated)
Appendix 3—figure 1. Asymptotic colour of the particle ecology as a function of inter-colour com-
petition traits. These equilibria correspond to the limit of the fixed points of the G! function when

particle-level and collective-level time scales are well separated ( r ! 1

T
), derived in proposition 3.

Other interaction parameters are a00 ¼ 0:7 and a11 ¼ 0:8, and the result is independent of growth
rates. The grey area indicates bistability. This figure extends Appendix 2—figure 5.

Exploitative interactions
Consider first that a01<0<a10, so that red individuals (type 0) are the exploiters (predators or para-
sites) and blue individuals (type 1) are the exploited (prey or hosts). This corresponds to the bottom-
right quadrant of Appendix 3—figure 1.

When the exploiter competes with the exploited more than with other exploiters (a00<a10), the
stable equilibrium for Appendix 2 Equation 1 is monochromatic red (see Appendix 2 Proposition 3).
However, when the the competitive interaction is stronger among exploiters (a00>a10), the coexis-
tence equilibrium is stable and correspond to a colour of a11#a01

TrðAÞ#CoTrðAÞ (see Appendix 2 Proposition 3).

In the coexistence region of the bottom-left quadrant, the collective colour can take up values in the

range a11
a11þa00

; 1
h i

bounded on one side by the extinction of the exploited type, and on the other side

by the ratio of carrying capacity obtained when there is no competitive interactions. This range does

not contain the target colour bf ¼ 0:5 in the example illustrated in Appendix 3—figure 1 because

the exploiter has a higher carrying capacity than the exploited 1

a11
< 1

a00

! "
. It is thus impossible to

achieve the target colour bf ¼ 0:5 in the lower right quadrant. Unless the nature of ecological interac-
tions changes, over evolutionary times the population of collectives will move towards the absence
of interactions. Here, collectives of colour close to the optimum can still manifest in the stochastic
individual-based model as the effect of sampling at dilution and fluctuations during growth, but the
average colour will remain off target.

In the upper left quadrant, where a10<0<a01, blue individuals (type 0) are the exploiters (predators
or parasites) and red individuals are the exploited (prey or hosts). In the coexistence region (i.e.,

Doulcier et al. eLife 2020;9:e53433. DOI: https://doi.org/10.7554/eLife.53433 37 of 39
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Conclusions on the two-species model

Collective-level selection acting on two particle types:

1. Optimizes collective function despite within-collective conflicts

2. Makes such function heritable, increasing efficiency of natural selection 
    at the collective level

3. Improves stability of such function through evolution of interactions

G. Doulcier, A. Lambert, SDM, P. Rainey
Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity
eLife 2020



The evolution of structure in species-rich communities
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A. Community ecology

Generalized disordered Lotka-Volterra model

DRAFT

was mutations in single interaction parameters, we chose to57

consider ’community-level’ mutations through a modification58

of the statistical properties of the interaction matrix. Looking59

at ’community-level’ mutations for their meaningful e�ects on60

community function is in line with the idea of considering com-61

munities as organisms at a superior level of organization, which62

is increasingly put forward to describe natural communities –63

be them host-associated or free-living microbes (35–38). This64

choice allows us to derive an analytical description for how65

communities evolve while community-level properties change66

smoothly along an evolutionary trajectory. With such equa-67

tions, we address in general terms what changes in community68

structure are associated to the evolution of collective function,69

what is the pace of community evolution, and how these de-70

pend on the selection protocol. Here it remains to say in71

a sentence the main results of the work. TO DO IT72

LATER73

Results74

Model for selection of species-rich communities. We model a75

population of n communities that undergo cycles of selection76

and reproduction, corresponding to the classic protocol used77

in experimental evolution (4, 9, 11), as explained in Figure 1.78

Communities go through successive cycles of ecological growth79

from an initial ’newborn’ state, selection and reproduction.80

The ecological dynamics of species within any of those cy-81

cles is described as a function of a continuous time variable82

t. Reproduction occurs via monoparental seeding of the next83

community generation (’propagule’ reproduction, according84

to (9) and (11)). The successive community generations (also85

referred to simply as ’generations’) are indexed with a discrete86

variable · . Selection is applied at the community level by let-87

ting the probability that a community reproduce depend upon88

a collective function, typically evaluated at t = T , with T the89

duration of one generation. The evolutionary dynamics that90

we aim to describe consists in the change of the community91

composition – and of the corresponding function – across mul-92

tiple generations. For simplicity, we consider that ecological93

and evolutionary dynamics are decoupled, so that within one94

generation the community contains only the species that were95

present at birth. In the following, we first detail the model96

for the ecological dynamics within one community generation,97

and then the rules for community reproduction and mutation.98

Ecological dynamics. Each community is composed of S99

species whose abundances (Ni)i=1,...,S are described by con-100

tinuous variables. The ecological dynamic reflects both self-101

limitation of growth of one single species and growth modu-102

lation through pair-wise interactions with other species. It103

is described by the generalized Lotka-Volterra equations, a104

classic model for the study of the dynamics of species-rich com-105

munities, see e.g. (39). The variation in time of the abundance106

of species i œ 1, . . . , S in one community is:107

dNi

dt
= Ni

Ki

A
Ki ≠ Ni ≠

ÿ

j ”=i

–ijNj

B
, [1]108

where the constants (Ki)i are the carrying capacities (the109

maximum abundances the species achieve in isolation) and110

the interaction coe�cients –ij of the matrix – represent the111

e�ect of species j on the growth of species i.112

113
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Fig. 1. Structure of the model for the evolution of species-rich
communities. Each community i in a population of n (here, n = 4) communities
is represented by a circle and is composed of a set of individuals (represented by
the dots), belonging to different species (represented by colour), initially sampled by
a same metacommunity. The intensity of the circle shade indicates the value of a
community-level function (for instance the total number of individuals). The m = 2
communities that maximize that function are selected for reproduction. Newborn
communities are generated by copying the state (vector of species abundances),
but modifying the parameters of the interactions among species, as detailed in the
text. In the course of a community generation, these changes can result in ecological
variations of community composition and of its selected function.

Species interactions. Following May’s disorder approach (18), 114

we choose initial communities with random interactions. 115

Specifically, as done in (22), the coe�cients (–ij) are drawn 116

by a multi-variate normal distribution of parameters: 117

E(–ij) = µ/S

Var(–ij) = ‡2/S

Corr(–ij , –ji) = “.

[2] 118

Here, µ represents the total interaction strength faced by 119

one species from all its partners, whereas ‡ measures the di- 120

versity of interactions. The scaling of the moments with 1
S is 121

chosen so that the moments of the distribution do not diverge 122

or vanish for communities with many species�. The param- 123

eter “ œ [≠1, 1] determines the symmetry of the ecological 124

interactions. Competition and mutualism are characterized by 125

symmetric e�ects on growth, and correspond to the case “ = 1. 126

In this case, as –ij < 0 accounts for a beneficial interaction, a 127

negative µ indicates prevalence of mutualism, whereas a posi- 128

tive one indicates prevalence of competition. On the opposite, 129

exploitative interactions like predator-prey and parasitic inter- 130

actions are characterized by parameters whose deviations from 131

the mean µ are skew-symmetric, corresponding to “ = ≠1. 132

Intermediate values correspond to cases where the community 133

can contain di�erent kinds of asymmetry. As a start, we con- 134

sider “ = 0, for which –ij and –ji are uncorrelated random 135

variables, and discuss generalizations to arbitrary values later. 136

Composition of newborn communities. In the limit of large num- 137

ber S of species, the asymptotic ecological dynamics of such 138

complex communities depends only on the statistics µ, ‡ and 139

“ of the interaction strength distribution (22, 24, 32). We will 140

initialize our communities in the region (µ > ≠1 and ‡ not 141

�The results we present below are robust with respect to other choices of the probability law of the
–ij ’s, as long as their first and their second moments exist.
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In this case, as –ij < 0 accounts for a beneficial interaction, a 127

negative µ indicates prevalence of mutualism, whereas a posi- 128

tive one indicates prevalence of competition. On the opposite, 129

exploitative interactions like predator-prey and parasitic inter- 130

actions are characterized by parameters whose deviations from 131

the mean µ are skew-symmetric, corresponding to “ = ≠1. 132

Intermediate values correspond to cases where the community 133

can contain di�erent kinds of asymmetry. As a start, we con- 134

sider “ = 0, for which –ij and –ji are uncorrelated random 135

variables, and discuss generalizations to arbitrary values later. 136

Composition of newborn communities. In the limit of large num- 137

ber S of species, the asymptotic ecological dynamics of such 138

complex communities depends only on the statistics µ, ‡ and 139

“ of the interaction strength distribution (22, 24, 32). We will 140

initialize our communities in the region (µ > ≠1 and ‡ not 141

�The results we present below are robust with respect to other choices of the probability law of the
–ij ’s, as long as their first and their second moments exist.
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.
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Phase diagram for random matrixes
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Ecological communities with Lotka-Volterra dynamics. 
Phys. Rev. E (2017)Figure 1: Phase diagram of the dynamics of the Lotka-Volterra equations, superposed with the

contour plot of the log of the mean population in the limit S ! 1, in the space (µ, �) with � = 0
and all carrying capacities equal to one.
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1 Phase diagram

Figure 1 shows the phase diagram of the random Lotka-Volterra model presented in the main text
in the space (µ, �) when � = 0 as derived in [?]. In the unbounded growth phase, some population
sizes diverge in finite time: this is pathological of the Lotka-Volterra equations. The chaotic phase
is characterized by a chaotic dynamics with multiple unstable equilibria. In the unique-equilibrium
phase, the community converges toward a unique ecological equilibrium, independently of the initial
conditions. In light of this result, we decided to draw our initial interaction matrix in the unique-
equilibrium phase as the ecological equilibrium is well defined. In the last two phases, a long-term
value of the mean population can be computed, depending only on µ, � and �: the contour plot
of the log of the mean population is represented in Figure 1.

2 First order perturbation theory of Lotka-Volterra equa-
tions

The Lotka-Volterra equations at equilibrium are:

0 = Ni

2

4Ki �Ni �

X

j

↵ijNj

3

5 = Ni [Ki � [(I+ ↵)N]i] (1)

1
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was mutations in single interaction parameters, we chose to57

consider ’community-level’ mutations through a modification58

of the statistical properties of the interaction matrix. Looking59

at ’community-level’ mutations for their meaningful e�ects on60

community function is in line with the idea of considering com-61

munities as organisms at a superior level of organization, which62

is increasingly put forward to describe natural communities –63

be them host-associated or free-living microbes (35–38). This64

choice allows us to derive an analytical description for how65

communities evolve while community-level properties change66

smoothly along an evolutionary trajectory. With such equa-67

tions, we address in general terms what changes in community68

structure are associated to the evolution of collective function,69

what is the pace of community evolution, and how these de-70

pend on the selection protocol. Here it remains to say in71

a sentence the main results of the work. TO DO IT72

LATER73

Results74

Model for selection of species-rich communities. We model a75

population of n communities that undergo cycles of selection76

and reproduction, corresponding to the classic protocol used77

in experimental evolution (4, 9, 11), as explained in Figure 1.78

Communities go through successive cycles of ecological growth79

from an initial ’newborn’ state, selection and reproduction.80

The ecological dynamics of species within any of those cy-81

cles is described as a function of a continuous time variable82

t. Reproduction occurs via monoparental seeding of the next83

community generation (’propagule’ reproduction, according84

to (9) and (11)). The successive community generations (also85

referred to simply as ’generations’) are indexed with a discrete86

variable · . Selection is applied at the community level by let-87

ting the probability that a community reproduce depend upon88

a collective function, typically evaluated at t = T , with T the89

duration of one generation. The evolutionary dynamics that90

we aim to describe consists in the change of the community91

composition – and of the corresponding function – across mul-92

tiple generations. For simplicity, we consider that ecological93

and evolutionary dynamics are decoupled, so that within one94

generation the community contains only the species that were95

present at birth. In the following, we first detail the model96

for the ecological dynamics within one community generation,97

and then the rules for community reproduction and mutation.98

Ecological dynamics. Each community is composed of S99

species whose abundances (Ni)i=1,...,S are described by con-100

tinuous variables. The ecological dynamic reflects both self-101

limitation of growth of one single species and growth modu-102

lation through pair-wise interactions with other species. It103

is described by the generalized Lotka-Volterra equations, a104

classic model for the study of the dynamics of species-rich com-105

munities, see e.g. (39). The variation in time of the abundance106

of species i œ 1, . . . , S in one community is:107

dNi

dt
= Ni

Ki

A
Ki ≠ Ni ≠

ÿ

j ”=i

–ijNj

B
, [1]108

where the constants (Ki)i are the carrying capacities (the109

maximum abundances the species achieve in isolation) and110

the interaction coe�cients –ij of the matrix – represent the111

e�ect of species j on the growth of species i.112

113

Selected
i = 1

i = 2

i = 3

i = 4

⌧ = 1

Ecological
dynamic

i = 1
Reproduction

i = 2

i = 3

i = 4

Mutateinteractions

⌧ = 2

1

Fig. 1. Structure of the model for the evolution of species-rich
communities. Each community i in a population of n (here, n = 4) communities
is represented by a circle and is composed of a set of individuals (represented by
the dots), belonging to different species (represented by colour), initially sampled by
a same metacommunity. The intensity of the circle shade indicates the value of a
community-level function (for instance the total number of individuals). The m = 2
communities that maximize that function are selected for reproduction. Newborn
communities are generated by copying the state (vector of species abundances),
but modifying the parameters of the interactions among species, as detailed in the
text. In the course of a community generation, these changes can result in ecological
variations of community composition and of its selected function.

Species interactions. Following May’s disorder approach (18), 114

we choose initial communities with random interactions. 115

Specifically, as done in (22), the coe�cients (–ij) are drawn 116

by a multi-variate normal distribution of parameters: 117

E(–ij) = µ/S

Var(–ij) = ‡2/S

Corr(–ij , –ji) = “.

[2] 118

Here, µ represents the total interaction strength faced by 119

one species from all its partners, whereas ‡ measures the di- 120

versity of interactions. The scaling of the moments with 1
S is 121

chosen so that the moments of the distribution do not diverge 122

or vanish for communities with many species�. The param- 123

eter “ œ [≠1, 1] determines the symmetry of the ecological 124

interactions. Competition and mutualism are characterized by 125

symmetric e�ects on growth, and correspond to the case “ = 1. 126

In this case, as –ij < 0 accounts for a beneficial interaction, a 127

negative µ indicates prevalence of mutualism, whereas a posi- 128

tive one indicates prevalence of competition. On the opposite, 129

exploitative interactions like predator-prey and parasitic inter- 130

actions are characterized by parameters whose deviations from 131

the mean µ are skew-symmetric, corresponding to “ = ≠1. 132

Intermediate values correspond to cases where the community 133

can contain di�erent kinds of asymmetry. As a start, we con- 134

sider “ = 0, for which –ij and –ji are uncorrelated random 135

variables, and discuss generalizations to arbitrary values later. 136

Composition of newborn communities. In the limit of large num- 137

ber S of species, the asymptotic ecological dynamics of such 138

complex communities depends only on the statistics µ, ‡ and 139

“ of the interaction strength distribution (22, 24, 32). We will 140

initialize our communities in the region (µ > ≠1 and ‡ not 141

�The results we present below are robust with respect to other choices of the probability law of the
–ij ’s, as long as their first and their second moments exist.
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.

Fraboul et al. PNAS | November 22, 2021 | vol. XXX | no. XX | 5



B. ‘Ancestral’ community

Figure 1: Phase diagram of the dynamics of the Lotka-Volterra equations, superposed with the
contour plot of the log of the mean population in the limit S ! 1, in the space (µ, �) with � = 0
and all carrying capacities equal to one.
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1 Phase diagram

Figure 1 shows the phase diagram of the random Lotka-Volterra model presented in the main text
in the space (µ, �) when � = 0 as derived in [?]. In the unbounded growth phase, some population
sizes diverge in finite time: this is pathological of the Lotka-Volterra equations. The chaotic phase
is characterized by a chaotic dynamics with multiple unstable equilibria. In the unique-equilibrium
phase, the community converges toward a unique ecological equilibrium, independently of the initial
conditions. In light of this result, we decided to draw our initial interaction matrix in the unique-
equilibrium phase as the ecological equilibrium is well defined. In the last two phases, a long-term
value of the mean population can be computed, depending only on µ, � and �: the contour plot
of the log of the mean population is represented in Figure 1.

2 First order perturbation theory of Lotka-Volterra equa-
tions

The Lotka-Volterra equations at equilibrium are:

0 = Ni

2

4Ki �Ni �

X

j

↵ijNj

3

5 = Ni [Ki � [(I+ ↵)N]i] (1)

1

Initial condition: random, competitive, stable community



C. Community-level mutations

The mutant matrix is similar to the parental, and maintains the same expectations
 
phenotypic effects of mutations are stochastic and unbiased

𝜖 ≪ 1 mutations have small effects on total abundance

Mutations of interactions

Mutations are small random unbiased perturbations of the interaction matrix.

↵ij = mean[↵] + std[↵] bij

↵̂ij = mean[↵] + std[↵] b̂ij

b̂ij =
bij + " ⌘ijp

1 + "2

• E(⌘ij) = 0

• Var(⌘ij) = 1

• Corr(⌘ij , ⌘ji ) = �

" is the strength of the mutations.

µ, � and � are statistically preserved in the absence of selection (neutral regime).

12
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the region where the system has a unique, stable coexistence138

equilibrium (see Section 1 of SI). Such equilibrium community139

is a global attractor that is independent of the initial com-140

munity composition, as long as all species are present (22).141

Nonetheless, the transient dynamic leading to such an attrac-142

tor depends on the initial state of the community, and can have143

important evolutionary implications (11). In order to avoid144

such long-term e�ects of ecological transients, generations are145

chosen su�ciently long for the community to approach equilib-146

rium. In order to speed up simulations, newborn communities147

are initialized with the same composition Ni of their parent148

community. This way, the equilibrium position is attained149

very quickly, and evolution changes adiabatically its position.150

Numerical simulations where at each generation all species151

were introduced at low abundance (not shown) indicate that152

this assumption does not qualitatively alter the results.153

Community-level selection. In order to study the e�ect of se-154

lection for community-level properties, we rank communities155

according to a single scalar community-level property, the total156

abundance at the end of the growth phase NT =
q

i
Ni(T ).157

The m best-ranking communities are chosen to seed the fol-158

lowing generation, and the rest discarded (Fig.1). In our159

simulations, newborn communities are all copies of the single160

best community (m = 1), whose o�spring substitute all other161

less performing communities. A non-exhaustive numerical162

exploration of cases when m > 1 suggests that the qualitative163

results illustrated later are robust to this parameter.164

Community-level mutations. When an o�spring community is165

born, it acquires the same composition (both in terms of166

types and abundance of species) of the parent community. In167

the absence of variation in the community parameters, this168

guarantees that community functions are perfectly inherited.169

For evolution by natural – and artificial – selection to occur170

at the level of communities, however, there must be variation171

in the collective functions (36). In our model, variation is172

replenished at each community generation by changes in the173

interaction matrix that we call ’community-level mutations’.174

Such mutations a�ect the statistics of the interaction matrix,175

that are the only determinants of collective function in large176

communities (22, 24, 32).177

One fundamental property of mutations (at any level of178

organization) is that they should provide an unbiased variation179

of the trait under selection. To this purpose, we write the180

interaction matrix at generation · as:181

–ij(·) = mean[–(·)] + std[–(·)] bij(·) [3]182

where:

mean[–] = 1
S2

ÿ

ij

–ij ; std[–] =
Û

1
S2

ÿ

ij

(–ij ≠ mean[–])2

are the empirical mean and standard deviation of the matrix –,183

and the reduced matrix b has empirical mean 0 and empirical184

variance 1.185

We define the mutated interaction matrix as:186

–ij(· + 1) = mean[–(·)] + std[–(·)] b̂ij(·) [4]187

with:188

b̂ij(·) = bij(·) + Á÷ij(·)
Ô

1 + Á2
, [5]189

Fig. 2. Changes of species abundance along an evolutionary tra-
jectory. Selection for increased total abundance leads to an increase in the abun-
dances of most species (grey lines), and, as a consequence, of their average
abundance (blue line), that is proportional to the selected function. See Material and
Methods for the details of the numerical simulations.

where ÷(·) is a Gaussian random matrix of expected value 0, 190

variance 1 and symmetric correlation “. The reduced matri- 191

ces at two successive generations have the same expectations. 192

Community mutations therefore statistically preserve the mean 193

and the variance of the interaction matrix, so that total abun- 194

dance is on average constant. In the absence of selection, thus, 195

community function will not improve. Statistical fluctuations 196

at finite S, however, make the empirical mean and variance of 197

÷ di�erent from zero and one, respectively. Hence, newborn 198

communities have a range of di�erences in their interactions, 199

providing the variation in community function selection acts 200

upon. The variation of the selected function corresponding 201

to such a mutation of the interaction matrix is also of or- 202

der Á. Considering small mutational steps Á, we will be able 203

to describe the evolutionary dynamics as a quasi-continuous 204

process. 205

Selection for larger community abundance favors mutualism 206

and imprints a structure on the interaction matrix. We now 207

present and discuss the salient features of the evolutionary 208

dynamics obtained by numerically simulating the model pre- 209

viously introduced. We illustrate with a specific example the 210

general behavior later addressed analytically. The simulation 211

algorithm and parameters are detailed in the Materials and 212

Methods. 213

Community response to selection. Unsurprisingly, and as pre- 214

viously observed when selection was imposed on collective 215

functions (9, 10, 37, 38), communities evolve so that their 216

total abundance gradually increases (Fig. 2). Interestingly, 217

although this goal could be achieved by just one species, the 218

ecosystem systematically responds as a whole with a simul- 219

taneous raise in the abundance of a large fraction of species, 220

while the rest goes extinct. As a consequence, the diversity 221

of the community „, measured as the number of co-existing 222

species divided by the initial number of species, decreases, but 223

does not collapse (Fig. 6 of SI). Such increase accelerates on 224

longer time scales, and the ecological dynamics is pushed in a 225

region where the system eventually diverges. 226
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the region where the system has a unique, stable coexistence138

equilibrium (see Section 1 of SI). Such equilibrium community139

is a global attractor that is independent of the initial com-140

munity composition, as long as all species are present (22).141

Nonetheless, the transient dynamic leading to such an attrac-142

tor depends on the initial state of the community, and can have143

important evolutionary implications (11). In order to avoid144

such long-term e�ects of ecological transients, generations are145

chosen su�ciently long for the community to approach equilib-146

rium. In order to speed up simulations, newborn communities147

are initialized with the same composition Ni of their parent148

community. This way, the equilibrium position is attained149

very quickly, and evolution changes adiabatically its position.150

Numerical simulations where at each generation all species151

were introduced at low abundance (not shown) indicate that152

this assumption does not qualitatively alter the results.153

Community-level selection. In order to study the e�ect of se-154

lection for community-level properties, we rank communities155

according to a single scalar community-level property, the total156

abundance at the end of the growth phase NT =
q

i
Ni(T ).157

The m best-ranking communities are chosen to seed the fol-158

lowing generation, and the rest discarded (Fig.1). In our159

simulations, newborn communities are all copies of the single160

best community (m = 1), whose o�spring substitute all other161

less performing communities. A non-exhaustive numerical162

exploration of cases when m > 1 suggests that the qualitative163

results illustrated later are robust to this parameter.164

Community-level mutations. When an o�spring community is165

born, it acquires the same composition (both in terms of166

types and abundance of species) of the parent community. In167

the absence of variation in the community parameters, this168

guarantees that community functions are perfectly inherited.169

For evolution by natural – and artificial – selection to occur170

at the level of communities, however, there must be variation171

in the collective functions (36). In our model, variation is172

replenished at each community generation by changes in the173

interaction matrix that we call ’community-level mutations’.174

Such mutations a�ect the statistics of the interaction matrix,175

that are the only determinants of collective function in large176

communities (22, 24, 32).177

One fundamental property of mutations (at any level of178

organization) is that they should provide an unbiased variation179

of the trait under selection. To this purpose, we write the180

interaction matrix at generation · as:181

–ij(·) = mean[–(·)] + std[–(·)] bij(·) [3]182

where:

mean[–] = 1
S2

ÿ

ij

–ij ; std[–] =
Û

1
S2

ÿ

ij

(–ij ≠ mean[–])2

are the empirical mean and standard deviation of the matrix –,183

and the reduced matrix b has empirical mean 0 and empirical184

variance 1.185

We define the mutated interaction matrix as:186

–ij(· + 1) = mean[–(·)] + std[–(·)] b̂ij(·) [4]187

with:188

b̂ij(·) = bij(·) + Á÷ij(·)
Ô

1 + Á2
, [5]189

Fig. 2. Changes of species abundance along an evolutionary tra-
jectory. Selection for increased total abundance leads to an increase in the abun-
dances of most species (grey lines), and, as a consequence, of their average
abundance (blue line), that is proportional to the selected function. See Material and
Methods for the details of the numerical simulations.

where ÷(·) is a Gaussian random matrix of expected value 0, 190

variance 1 and symmetric correlation “. The reduced matri- 191

ces at two successive generations have the same expectations. 192

Community mutations therefore statistically preserve the mean 193

and the variance of the interaction matrix, so that total abun- 194

dance is on average constant. In the absence of selection, thus, 195

community function will not improve. Statistical fluctuations 196

at finite S, however, make the empirical mean and variance of 197

÷ di�erent from zero and one, respectively. Hence, newborn 198

communities have a range of di�erences in their interactions, 199

providing the variation in community function selection acts 200

upon. The variation of the selected function corresponding 201

to such a mutation of the interaction matrix is also of or- 202

der Á. Considering small mutational steps Á, we will be able 203

to describe the evolutionary dynamics as a quasi-continuous 204

process. 205

Selection for larger community abundance favors mutualism 206

and imprints a structure on the interaction matrix. We now 207

present and discuss the salient features of the evolutionary 208

dynamics obtained by numerically simulating the model pre- 209

viously introduced. We illustrate with a specific example the 210

general behavior later addressed analytically. The simulation 211

algorithm and parameters are detailed in the Materials and 212

Methods. 213

Community response to selection. Unsurprisingly, and as pre- 214

viously observed when selection was imposed on collective 215

functions (9, 10, 37, 38), communities evolve so that their 216

total abundance gradually increases (Fig. 2). Interestingly, 217

although this goal could be achieved by just one species, the 218

ecosystem systematically responds as a whole with a simul- 219

taneous raise in the abundance of a large fraction of species, 220

while the rest goes extinct. As a consequence, the diversity 221

of the community „, measured as the number of co-existing 222

species divided by the initial number of species, decreases, but 223

does not collapse (Fig. 6 of SI). Such increase accelerates on 224

longer time scales, and the ecological dynamics is pushed in a 225

region where the system eventually diverges. 226
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C. Community-level mutations

The mutant matrix is similar to the parental, and maintains the same expectations
 
phenotypic effects of mutations are stochastic and unbiased

𝜖 ≪ 1 mutations have small effects on total abundance

Mutations of interactions

Mutations are small random unbiased perturbations of the interaction matrix.

↵ij = mean[↵] + std[↵] bij

↵̂ij = mean[↵] + std[↵] b̂ij

b̂ij =
bij + " ⌘ijp

1 + "2

• E(⌘ij) = 0

• Var(⌘ij) = 1

• Corr(⌘ij , ⌘ji ) = �

" is the strength of the mutations.

µ, � and � are statistically preserved in the absence of selection (neutral regime).
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the region where the system has a unique, stable coexistence138

equilibrium (see Section 1 of SI). Such equilibrium community139

is a global attractor that is independent of the initial com-140

munity composition, as long as all species are present (22).141

Nonetheless, the transient dynamic leading to such an attrac-142

tor depends on the initial state of the community, and can have143

important evolutionary implications (11). In order to avoid144

such long-term e�ects of ecological transients, generations are145

chosen su�ciently long for the community to approach equilib-146

rium. In order to speed up simulations, newborn communities147

are initialized with the same composition Ni of their parent148

community. This way, the equilibrium position is attained149

very quickly, and evolution changes adiabatically its position.150

Numerical simulations where at each generation all species151

were introduced at low abundance (not shown) indicate that152

this assumption does not qualitatively alter the results.153

Community-level selection. In order to study the e�ect of se-154

lection for community-level properties, we rank communities155

according to a single scalar community-level property, the total156

abundance at the end of the growth phase NT =
q

i
Ni(T ).157

The m best-ranking communities are chosen to seed the fol-158

lowing generation, and the rest discarded (Fig.1). In our159

simulations, newborn communities are all copies of the single160

best community (m = 1), whose o�spring substitute all other161

less performing communities. A non-exhaustive numerical162

exploration of cases when m > 1 suggests that the qualitative163

results illustrated later are robust to this parameter.164

Community-level mutations. When an o�spring community is165

born, it acquires the same composition (both in terms of166

types and abundance of species) of the parent community. In167

the absence of variation in the community parameters, this168

guarantees that community functions are perfectly inherited.169

For evolution by natural – and artificial – selection to occur170

at the level of communities, however, there must be variation171

in the collective functions (36). In our model, variation is172

replenished at each community generation by changes in the173

interaction matrix that we call ’community-level mutations’.174

Such mutations a�ect the statistics of the interaction matrix,175

that are the only determinants of collective function in large176

communities (22, 24, 32).177

One fundamental property of mutations (at any level of178

organization) is that they should provide an unbiased variation179

of the trait under selection. To this purpose, we write the180

interaction matrix at generation · as:181

–ij(·) = mean[–(·)] + std[–(·)] bij(·) [3]182

where:

mean[–] = 1
S2

ÿ

ij

–ij ; std[–] =
Û

1
S2

ÿ

ij

(–ij ≠ mean[–])2

are the empirical mean and standard deviation of the matrix –,183

and the reduced matrix b has empirical mean 0 and empirical184

variance 1.185

We define the mutated interaction matrix as:186

–ij(· + 1) = mean[–(·)] + std[–(·)] b̂ij(·) [4]187

with:188

b̂ij(·) = bij(·) + Á÷ij(·)
Ô

1 + Á2
, [5]189

Fig. 2. Changes of species abundance along an evolutionary tra-
jectory. Selection for increased total abundance leads to an increase in the abun-
dances of most species (grey lines), and, as a consequence, of their average
abundance (blue line), that is proportional to the selected function. See Material and
Methods for the details of the numerical simulations.
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and the variance of the interaction matrix, so that total abun- 194
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providing the variation in community function selection acts 200

upon. The variation of the selected function corresponding 201

to such a mutation of the interaction matrix is also of or- 202

der Á. Considering small mutational steps Á, we will be able 203

to describe the evolutionary dynamics as a quasi-continuous 204

process. 205

Selection for larger community abundance favors mutualism 206
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although this goal could be achieved by just one species, the 218

ecosystem systematically responds as a whole with a simul- 219

taneous raise in the abundance of a large fraction of species, 220

while the rest goes extinct. As a consequence, the diversity 221

of the community „, measured as the number of co-existing 222

species divided by the initial number of species, decreases, but 223

does not collapse (Fig. 6 of SI). Such increase accelerates on 224

longer time scales, and the ecological dynamics is pushed in a 225

region where the system eventually diverges. 226
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and the variance of the interaction matrix, so that total abun- 194
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upon. The variation of the selected function corresponding 201
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der Á. Considering small mutational steps Á, we will be able 203

to describe the evolutionary dynamics as a quasi-continuous 204

process. 205

Selection for larger community abundance favors mutualism 206
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present and discuss the salient features of the evolutionary 208

dynamics obtained by numerically simulating the model pre- 209
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algorithm and parameters are detailed in the Materials and 212
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viously observed when selection was imposed on collective 215

functions (9, 10, 37, 38), communities evolve so that their 216

total abundance gradually increases (Fig. 2). Interestingly, 217

although this goal could be achieved by just one species, the 218

ecosystem systematically responds as a whole with a simul- 219

taneous raise in the abundance of a large fraction of species, 220

while the rest goes extinct. As a consequence, the diversity 221

of the community „, measured as the number of co-existing 222

species divided by the initial number of species, decreases, but 223

does not collapse (Fig. 6 of SI). Such increase accelerates on 224

longer time scales, and the ecological dynamics is pushed in a 225

region where the system eventually diverges. 226
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too large) where the system has a unique, stable coexistence142

equilibrium. Such equilibrium community is a global attractor143

that is independent of the initial community composition, as144

long as all species are present (22). Nonetheless, the transient145

dynamics leading to such an attractor depends on the initial146

state of the community, and can have important evolutionary147

implications (11). In order to avoid such long-term e�ects of148

ecological transients, we will consider that generations last149

long enough that the community approaches its equilibrium.150

In order to speed up simulations and simplify analytical treat-151

ment, moreover, newborn communities are initialized with the152

same composition Ni of their parent community, so that the153

equilibrium position changes adiabatically in the course of evo-154

lution. Numerical simulations where all species were allowed155

to reinvade (or immigrate) at each generation indicate that156

this assumption is not restrictive, and results are qualitatively157

the same.158

Community-level selection. In order to study the e�ect of se-159

lection acting on community-level properties, we rank and160

select communities according to the value of a single scalar161

community-level property (contrary to the ’neutral’ case where162

each community leaves one o�spring independently of its com-163

position). The property we choose is the total abundance at164

the end of the growth phase NT =
q

i
Ni(T ). Being related to165

the total biomass of the community, total abundance appears166

as a function of interest to evaluate ecosystem services. In167

the following generation, the m best-ranking communities are168

chosen and the rest discarded (Fig.1). In our simulations,169

newborn communities are all seeded by the best community170

(m = 1), whose o�spring substitute all other less performing171

communities. A non-exhaustive numerical exploration of cases172

when m > 1 suggested that the qualitative results illustrated173

later are robust to this parameter.174

Community-level mutations. When an o�spring community is175

born, it takes up the same composition (both in terms of176

types and abundance of species) of the parent community.177

In the absence of variation in the community parameters,178

this guarantees that community functions are inherited. In179

order for evolution by natural selection to occur at the level of180

communities, however, there must be variation in the collective181

functions (40). In our model, variation is replenished at each182

community generation by changes in the interaction matrix183

that we call ’community-level mutations’. Such mutations184

a�ect the statistics of the interaction matrix, that are the185

only determinants of collective function in large communities186

(22, 24, 32).187

One fundamental property of mutations is that they should188

provide an unbiased variation of the trait under selection.189

Community mutations thus need to preserve the mean and190

variance of the interaction matrix in a neutral regime, so that191

total abundance is on average constant in absence of selection.192

To this purpose, we write the interaction matrix at generation193

· as:194

–ij(·) = mean[–(·)] + std[–(·)] bij(·), [3]195

where mean[–] = 1
S2

q
ij

–ij and std[–] =196 Ò
1

S2
q

ij
(–ij ≠ mean[–])2 are the empirical mean and197

standard deviation of the matrix –, and the reduced matrix b198

has empirical mean 0 and empirical variance 1.199

Fig. 2. Changes of species abundance along an evolutionary tra-
jectory. Selection for increased total abundance leads to an increase in the abun-
dances of most species (grey lines), and as a consequence of their average abun-
dance (blue line), that is proportional to the selected function. The parameters of the
simulation are described in the Methods section.

At generation · + 1, the mutated interaction matrix is: 200

–ij(· + 1) = mean[–(·)] + std[–(·)] bij(· + 1), [4] 201

where the matrix b(·) is substituted by a matrix that has the 202

same statistics: 203

bij(· + 1) = bij(·) + Á÷ij
Ô

1 + Á2
, [5] 204

where ÷ is a Gaussian random matrix of expected value 0, 205

variance 1 and symmetric correlation “. Because at finite S 206

the empirical mean and variance of ÷ are di�erent from zero 207

and one, respectively, newborn communities have a range of 208

di�erences in their interactions that result in variations of 209

the community function of the order of ‘. This parameter ‘ 210

thus quantifies the magnitude of the mutational steps. For 211

simplicity, we consider small values of ‘. In some cases, this 212

allows us to treat community evolution as a continuous process. 213

Selection for larger community abundance favors mutualism 214

and imprints a structure in the interaction matrix. We now 215

present and discuss the salient features of the evolutionary 216

dynamics model introduced above obtained by numerical sim- 217

ulation. We first focus on an case illustrative of the general 218

behavior later addressed by an analytical approach. 219

Community response to selection. As shown in Fig. 2, commu- 220

nities do respond to selection for increased total abundance, 221

similarly to what observed for a number of di�erent collective 222

functions explored previously (9, 10, 41, 42). Although the 223

goal could be achieved by just one species, the ecosystem 224

systematically responds as a whole with a simultaneous raise 225

in the abundance of a large fraction of species, while the rest 226

goes extinct. As a consequence, the diversity of the community 227

„, measured as the number of co-existing species divided by 228

the initial number of species, decreases, but does not collapse 229

(Fig. 6). 230

On a long time scale, the ecological dynamics is pushed 231

in a region where the equilibrium becomes unstable and the 232

system eventually diverges. 233
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Evolution of interaction statistics
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Fig. 3. Changes of the statistics of the interaction matrix along
an evolutionary trajectory. The interaction matrix of the best community
evolves so that the average interaction strength decreases linearly in time (A, cyan
line), their variance increases (A, red line). Such changes correspond to a modification
of the structure of the interaction matrix –, that manifest in the spectrum of its
eigenvalues, represented by the real part of the eigenvalues (B) and in the complex
plane (C). The appearance of an isolated negative eigenvalue (green line and dot)
corresponds to the emergence of a mutualistic collective mode.

Evolution of the statistics of interactions. Useful insights on the234

evolutionary dynamics can be gained by analyzing the evo-235

lution of the statistics of the interaction matrix – such as236

its scaled mean µ(·) = mean[–(·)]/S and standard deviation237

‡(·) = std[–(·)]/
Ô

S.238

As shown in Fig 3 A, its mean decreases, indicating that239

interactions become – on average – progressively more mutual-240

istic. At the same time, its variance increases, so that diversity241

of interactions within the community is enhanced. The results242

obtained for disordered communities with an infinite number243

of species are helpful to rationalize these findings. In fact, as244

shown in (22), in this case the total population size NT is a245

function of µ and ‡ alone. Thus, one can see selection as a246

process in which the empirical moments of – change across247

community generations so as to climb the gradient of NT (µ, ‡).248

We plot in Fig. 4 this fitness-like function and super-impose249

the evolutionary trajectory of Fig. 2. Although the interpre-250

tation as a gradient-climbing process leads to qualitatively251

correct results, the evolutionary dynamics deviate from that252

predicted for a purely random matrix with the same moments253

as those observed along the trajectory. The total abundance,254

indeed, is larger and diversity „ smaller (Fi. ... SI) than255

the corresponding random model. This clearly shows that256

evolution shapes the interaction matrix – and selection makes257

it deviate from its initial random form (eq. 2).258

Emergent community structure. In order to understand the259

emergent structure of the interaction matrix, we study its260

eigenvalues. The spectrum of the random initial interaction261

matrix is, in the complex plane, a circle of radius ‡ centered262

in the origin, corresponding to the random component of the263

interactions (43), plus an isolated positive eigenvalue (blue264

in Fig. 3 B and C) of value µ and associated eigenvector265

1 = (1, . . . , 1), which reflects the average strength of compet-266

itive interactions. The initial e�ect of selection is to reduce267

this value. After some time, however, an isolated negative268

eigenvalue ⁄ (green in Fig. 3 B and C) emerges from the circle269

and detaches from it linearly in time. Numerical simulations270

indicate that it is a general feature of the model, as it occurs271

Fig. 4. Purely random interactions cannot explain the evolution
of total community abundance. Variation of the interaction moments µ(·),
‡(·), and of the total abundance log(NT (·)) (red line) along an evolutionary
trajectory. The abundance of a random interaction matrix 2 with moments µ, ‡
(surface) is plotted for comparison. The white line is the predicted total abundance if
the matrix of moments µ(·), ‡(·) was completely random, indicating that along the
trajectory the matrix becomes progressively structured.

for all parameter sets we explored, including di�erent values 272

of “ – with the notable exception of “ = ≠1. Apart from 273

this isolated component, the matrix remains fully random. 274

In fact, the circle of eigenvalues doesn’t change much during 275

evolution. This phenomenon is strongly reminiscent of the 276

BBP transition (44) studied in the context of signal processing 277

and random matrix theory. In that case, by increasing the 278

signal-to-noise ratio the signal emerges as an isolated rank-one 279

component from the noisy matrix. In our case, selection adds 280

to the random part a new rank-one term which can be written 281

as ⁄qT r, where q and r are the left and right eigenvectors 282

relative to the isolated eigenvalue ⁄. 283

The structure that evolution imprints on the interaction 284

matrix can be visualized by displaying the entries of – along 285

the evolutionary trajectory illustrated in Figs. 2 and 3. Figure 286

5 represents the interaction matrix for early and late stages 287

of community evolution. Species are ordered in terms of their 288

carrying capacity from larger to smaller. At the beginning 289

of evolution, there is no visible structure in the interaction 290

matrix, except the diagonal that has zero entries. After 2200 291

generations, it is clear that species who have become more 292

mutualistic, thus have more negative interaction coe�cients, 293

are mostly those that initially had higher carrying capacity. 294

Moreover, mutualistic interactions tend to be directed more 295

often towards the species with larger carrying capacities. This 296

is a direct manifestation of the emergence of the isolated 297

eigenvalue with eigenvectors correlated to K. Besides this 298

structure, the matrix remains visually random. Indeed, as 299

already stressed, selection does not reduce the variability of 300

interaction strengths associated to the random component. 301

In summary, selecting ecosystems with larger total abun- 302

dances leads the initial purely random interaction matrix –ij to 303

be summed up with an emergent term that makes interactions 304

globally more mutualistic. An increase in total abundance is 305

thus achieved by species developing positive interactions, such 306

as for instance cross-feeding, rather than increasing the abun- 307

dance of one single member of the community. The mechanism 308
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Fig. 3. Changes of the statistics of the interaction matrix along
an evolutionary trajectory. The interaction matrix of the best community
evolves so that the average interaction strength decreases linearly in time (A, cyan
line), their variance increases (A, red line). Such changes correspond to a modification
of the structure of the interaction matrix –, that manifest in the spectrum of its
eigenvalues, represented by the real part of the eigenvalues (B) and in the complex
plane (C). The appearance of an isolated negative eigenvalue (green line and dot)
corresponds to the emergence of a mutualistic collective mode.

Evolution of the statistics of interactions. Useful insights on the234

evolutionary dynamics can be gained by analyzing the evo-235

lution of the statistics of the interaction matrix – such as236

its scaled mean µ(·) = mean[–(·)]/S and standard deviation237

‡(·) = std[–(·)]/
Ô

S.238

As shown in Fig 3 A, its mean decreases, indicating that239

interactions become – on average – progressively more mutual-240

istic. At the same time, its variance increases, so that diversity241

of interactions within the community is enhanced. The results242

obtained for disordered communities with an infinite number243

of species are helpful to rationalize these findings. In fact, as244

shown in (22), in this case the total population size NT is a245

function of µ and ‡ alone. Thus, one can see selection as a246

process in which the empirical moments of – change across247

community generations so as to climb the gradient of NT (µ, ‡).248

We plot in Fig. 4 this fitness-like function and super-impose249

the evolutionary trajectory of Fig. 2. Although the interpre-250

tation as a gradient-climbing process leads to qualitatively251

correct results, the evolutionary dynamics deviate from that252

predicted for a purely random matrix with the same moments253

as those observed along the trajectory. The total abundance,254

indeed, is larger and diversity „ smaller (Fi. ... SI) than255

the corresponding random model. This clearly shows that256

evolution shapes the interaction matrix – and selection makes257

it deviate from its initial random form (eq. 2).258

Emergent community structure. In order to understand the259

emergent structure of the interaction matrix, we study its260

eigenvalues. The spectrum of the random initial interaction261

matrix is, in the complex plane, a circle of radius ‡ centered262

in the origin, corresponding to the random component of the263

interactions (43), plus an isolated positive eigenvalue (blue264

in Fig. 3 B and C) of value µ and associated eigenvector265

1 = (1, . . . , 1), which reflects the average strength of compet-266
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Fig. 4. Purely random interactions cannot explain the evolution
of total community abundance. Variation of the interaction moments µ(·),
‡(·), and of the total abundance log(NT (·)) (red line) along an evolutionary
trajectory. The abundance of a random interaction matrix 2 with moments µ, ‡
(surface) is plotted for comparison. The white line is the predicted total abundance if
the matrix of moments µ(·), ‡(·) was completely random, indicating that along the
trajectory the matrix becomes progressively structured.

for all parameter sets we explored, including di�erent values 272

of “ – with the notable exception of “ = ≠1. Apart from 273

this isolated component, the matrix remains fully random. 274

In fact, the circle of eigenvalues doesn’t change much during 275

evolution. This phenomenon is strongly reminiscent of the 276

BBP transition (44) studied in the context of signal processing 277

and random matrix theory. In that case, by increasing the 278

signal-to-noise ratio the signal emerges as an isolated rank-one 279

component from the noisy matrix. In our case, selection adds 280

to the random part a new rank-one term which can be written 281

as ⁄qT r, where q and r are the left and right eigenvectors 282

relative to the isolated eigenvalue ⁄. 283

The structure that evolution imprints on the interaction 284

matrix can be visualized by displaying the entries of – along 285

the evolutionary trajectory illustrated in Figs. 2 and 3. Figure 286

5 represents the interaction matrix for early and late stages 287

of community evolution. Species are ordered in terms of their 288

carrying capacity from larger to smaller. At the beginning 289

of evolution, there is no visible structure in the interaction 290

matrix, except the diagonal that has zero entries. After 2200 291

generations, it is clear that species who have become more 292

mutualistic, thus have more negative interaction coe�cients, 293

are mostly those that initially had higher carrying capacity. 294

Moreover, mutualistic interactions tend to be directed more 295

often towards the species with larger carrying capacities. This 296

is a direct manifestation of the emergence of the isolated 297

eigenvalue with eigenvectors correlated to K. Besides this 298

structure, the matrix remains visually random. Indeed, as 299

already stressed, selection does not reduce the variability of 300

interaction strengths associated to the random component. 301

In summary, selecting ecosystems with larger total abun- 302

dances leads the initial purely random interaction matrix –ij to 303

be summed up with an emergent term that makes interactions 304

globally more mutualistic. An increase in total abundance is 305

thus achieved by species developing positive interactions, such 306

as for instance cross-feeding, rather than increasing the abun- 307

dance of one single member of the community. The mechanism 308
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Emergence of a negative eigenvalue: global mutualistic interaction term 
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Fig. 3. Changes of the statistics of the interaction matrix along an evolutionary trajectory. The interaction matrix – of the best community
evolves so that the average interaction strength decreases linearly in time (A, cyan), while its variance increases (A, red). Such changes correspond to a modification in
structure, manifest in the spectrum of its eigenvalues. The change of their real part across community generations (B) reveals the appearance of an isolated negative real
eigenvalue (green). A snapshot of the spectrum in the complex plane (C) at generation · = 1900 represented by the dotted line in (B) reveals that, apart from the emergence
of this mutualistic collective mode, the matrix retains its initial random structure.

Evolution of the statistics of interactions. Additional insights227

on how selection a�ects the community can be gained by228

analyzing the evolution of the statistics of the interaction229

matrix – such as its scaled mean µ(·) = mean[–(·)]/S and230

standard deviation ‡(·) = std[–(·)]/
Ô

S.231

As shown in Fig. 3 A, the mean decreases, indicating that232

interactions become – on average – progressively more mu-233

tualistic. At the same time, their variance increases, so that234

diversity of interactions within the community is enhanced.235

The results obtained for disordered communities with an infi-236

nite number of species are helpful to rationalize these findings.237

In fact, as shown in (22), their total population size NT is a238

function of µ and ‡ alone. Thus, one could envision selection239

as a process in which the empirical moments of – change240

across community generations so as to climb the gradient of241

the fitness function NT (µ, ‡). This explanation, however, falls242

short of explaining quantitatively the numerical results, as we243

show in Fig. 4 by plotting NT (µ, ‡) for purely random com-244

munities together with the evolutionary trajectory of Fig. 2.245

Indeed, the evolutionary dynamics deviates from the gradient-246

climbing process predicted for a disordered matrix with the247

same moments as those observed along the trajectory. This248

clearly shows that evolution shapes the interaction matrix –249

and selection makes it deviate from its initial random form250

(eq. 2). By imprinting a structure on –, selection produces251

communities characterized by higher values of the total abun-252

dance than those obtainable for purely disordered interaction253

matrices.254

Emergent community structure. In order to understand the255

emergent structure of the interaction matrix, we study its256

eigenvalues. The spectrum of the random initial interaction257

matrix is, in the complex plane, a circle of radius ‡ centered258

in the origin, corresponding to the random component of the259

interactions (39), plus an isolated positive eigenvalue (blue260

in Fig. 3 B and C) of value µ and associated eigenvector261

1 = (1, . . . , 1), which reflects the average strength of compet-262

itive interactions. The initial e�ect of selection is to reduce263

this value. After some time, however, an isolated negative264

eigenvalue ⁄ (green in Fig. 3 B and C) emerges from the circle265

and detaches from it linearly in time. Numerical simulations266

indicate that it is a general feature of the model, as it occurs267

for all parameter sets we explored, including di�erent values268

Fig. 4. Purely random interactions cannot explain the evolution
of total community abundance. Variation of the interaction moments µ(·),
‡(·), and of the total abundance log(NT (·)) (red line) along an evolutionary
trajectory. The abundance of a random interaction matrix 2 with moments µ, ‡
(surface) is plotted for comparison. The white line is the predicted total abundance if
the matrix of moments µ(·), ‡(·) was completely random, indicating that along the
trajectory the matrix becomes progressively structured.
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Fig. 3. Changes of the statistics of the interaction matrix along an evolutionary trajectory. The interaction matrix – of the best community
evolves so that the average interaction strength decreases linearly in time (A, cyan), while its variance increases (A, red). Such changes correspond to a modification in
structure, manifest in the spectrum of its eigenvalues. The change of their real part across community generations (B) reveals the appearance of an isolated negative real
eigenvalue (green). A snapshot of the spectrum in the complex plane (C) at generation · = 1900 represented by the dotted line in (B) reveals that, apart from the emergence
of this mutualistic collective mode, the matrix retains its initial random structure.
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As shown in Fig. 3 A, the mean decreases, indicating that232

interactions become – on average – progressively more mu-233

tualistic. At the same time, their variance increases, so that234

diversity of interactions within the community is enhanced.235

The results obtained for disordered communities with an infi-236

nite number of species are helpful to rationalize these findings.237

In fact, as shown in (22), their total population size NT is a238

function of µ and ‡ alone. Thus, one could envision selection239

as a process in which the empirical moments of – change240

across community generations so as to climb the gradient of241

the fitness function NT (µ, ‡). This explanation, however, falls242

short of explaining quantitatively the numerical results, as we243

show in Fig. 4 by plotting NT (µ, ‡) for purely random com-244

munities together with the evolutionary trajectory of Fig. 2.245

Indeed, the evolutionary dynamics deviates from the gradient-246

climbing process predicted for a disordered matrix with the247

same moments as those observed along the trajectory. This248

clearly shows that evolution shapes the interaction matrix –249

and selection makes it deviate from its initial random form250

(eq. 2). By imprinting a structure on –, selection produces251

communities characterized by higher values of the total abun-252

dance than those obtainable for purely disordered interaction253

matrices.254

Emergent community structure. In order to understand the255

emergent structure of the interaction matrix, we study its256

eigenvalues. The spectrum of the random initial interaction257

matrix is, in the complex plane, a circle of radius ‡ centered258

in the origin, corresponding to the random component of the259

interactions (39), plus an isolated positive eigenvalue (blue260

in Fig. 3 B and C) of value µ and associated eigenvector261

1 = (1, . . . , 1), which reflects the average strength of compet-262

itive interactions. The initial e�ect of selection is to reduce263

this value. After some time, however, an isolated negative264

eigenvalue ⁄ (green in Fig. 3 B and C) emerges from the circle265

and detaches from it linearly in time. Numerical simulations266

indicate that it is a general feature of the model, as it occurs267

for all parameter sets we explored, including di�erent values268

Fig. 4. Purely random interactions cannot explain the evolution
of total community abundance. Variation of the interaction moments µ(·),
‡(·), and of the total abundance log(NT (·)) (red line) along an evolutionary
trajectory. The abundance of a random interaction matrix 2 with moments µ, ‡
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Selection imprints a structure on the interactions

DRAFT

Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2000 (right) for the same simulation as Fig. 2. Only the
species that have positive abundance at generation 2000 are shown.

of “ – with the notable exception of “ = ≠1, that we discuss269

later. Apart from this isolated component, the matrix remains270

fully random. In fact, the circle of eigenvalues doesn’t change271

much during evolution. This phenomenon is strongly remi-272

niscent of the BBP transition (40) studied in the context of273

signal processing and random matrix theory. In that case, by274

increasing the signal-to-noise ratio the signal emerges as an275

isolated rank-one component from the noisy matrix. In our276

case, selection adds to the random part a new rank-one term277

which can be written as ⁄qT r, where q and r are the left and278

right eigenvectors relative to the isolated eigenvalue ⁄.279

The structure that evolution imprints on the interaction280

matrix can be visualized by displaying the entries of – along281

the evolutionary trajectory presented in Figs. 2 and 3. Fig.282

5 represents the interaction matrix for early and late stages283

of community evolution. Species are ordered in terms of their284

carrying capacity from larger to smaller. At the beginning285

of evolution, there is no visible structure in the interaction286

matrix, except the diagonal that has zero entries. After 2000287

generations, it is clear that species who have become more288

mutualistic, thus have more negative interaction coe�cients,289

are mostly those that initially had higher carrying capacity.290

This is a direct manifestation of the emergence of the isolated291

eigenvalue, as we find that its eigenvectors are correlated to292

both K and to the equilibrium abundance. Aside from this293

structure, the matrix remains random. Indeed, subtracting294

⁄qT r from –, we retrieve a purely random matrix, indicating295

that selection has little e�ect on the random component of296

the spectrum.297

In summary, selecting ecosystems with larger total abun-298

dance leads the initial purely random interaction matrix –ij to299

be summed up with an emergent term that makes interactions300

globally more mutualistic. An increase in total abundance301

is thus achieved by species developing positive interactions,302

such as for instance cross-feeding, rather than increasing the303

abundance of one single member of the community. Simula-304

tions for a number of di�erent parameter values and for other305

target functions (Section 9 of SI) suggest that the mechanism306

illustrated above, by which the interaction matrix evolves into307

a random part plus a rank one perturbation is generic.308

Analytical description of the evolutionary trajectory. The gen-309

erality of the evolutionary dynamics observed in numerical310

simulations can be addressed by developing an appropriate311

analytical description. In this section we provide equations312

for the evolution of the interaction matrix. The emergence of313

structure can then be understood in a simple case where these 314

equation are solvable exactly. We sketch here the derivation 315

of di�erence equations for the total abundance and the inter- 316

action matrix in the case “ = 0, and point the reader to the 317

Material and Methods and the SI for details on the general 318

derivation. 319

Given a community with interaction matrix –(·) and equi- 320

librium N(·) at a given generation · , we aim to identify what 321

will be the interaction matrix –(· + 1) of the selected o�spring 322

community. Such matrix is the one giving the largest possible 323

total abundance at equilibrium. The vector of abundances at 324

equilibrium depends both on the interspecific and intraspecific 325

interactions and is the solution of Nı(·) = (Iı + –ı(·))≠1Kı, 326

where –ı(·) and Nı are the interaction matrix and the vector 327

of abundances reduced to extant species (the same notation is 328

used for other matrices and vectors below). In order to obtain 329

the dynamical equation for the evolution of the interaction 330

matrix we proceed as follows: mutations are, for ‘ π 1, equiv- 331

alent to small random perturbations of the carrying capacities, 332

so we use linear response theory to obtain the change they 333

induce in the equilibrium abundances. The total abundance of 334

each of the n communities is therefore modified by a random 335

contribution that we can fully characterize. The selection pro- 336

cess, then, singles out the largest contribution, i.e. the largest 337

among several independent random variables, a problem that 338

we solve using extreme value statistics (41). The outcome of 339

the computation is the equation for the evolution of the total 340

abundance NT (·) across one collective generation: 341

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î, [6] 342

where v(·) is a nonlinear function of the interaction matrix 343

–(·): vı(·) = (Iı+–ı(·)€)≠11ı and is zero for extinct species. 344

This vector is the gradient of the total abundance at equilib- 345

rium with respect to the carrying capacities: v(·) = ˆNT
ˆK (·) 346

and represents the response of the selected community func- 347

tion to a perturbation of individual species’ carrying capacity 348

Ki. The random variable Mn(·) (drawn independently at 349

each generation) follows the statistic of the maximum value 350

of n Gaussian variables (41), with expected value Mn (see 351

the distribution of Mn in Fig. 2 of SI). Eq. 6 explains why 352

evolution tends to improve the value of the target community 353

function. Indeed, the product of the norms is always positive, 354

and so is Mn for su�ciently large n. However, the capacity 355

of a community to change in response to a given selective 356

pressure can vary, as quantified by the vector v. 357

The change in the interaction matrix across one collective 358

generation can be in turn decomposed in a directional term 359

– contributing to the evolution of NT – and its complement 360

Bij , that acts as a random fluctuation†. The interactions thus 361

evolve according to: 362

–ij(· +1) = –ij(·)≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4
.

[7] 363

This expression has a simple interpretation: among the Gaus- 364

sian random mutations of the interaction matrix, only those 365

in the special direction associated to the function NT matter. 366

†Formally, this amounts to decomposing ÷ij in two parts: one along the direction (in

the space of the S2 indices)
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î , and a remainder Bij = ÷ij ≠
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î

q
k,l

vk(·)
Îv(·)Î ÷kl

Nl(·)
ÎN(·)Î .
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Equations for the quasi-equilibrium total abundance
(𝛾 = 0)

𝑀! ∝ log(𝑛)

DRAFT

Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2000 (right) for the same simulation as Fig. 2. Only the
species that have positive abundance at generation 2000 are shown.

of “ – with the notable exception of “ = ≠1, that we discuss269

later. Apart from this isolated component, the matrix remains270

fully random. In fact, the circle of eigenvalues doesn’t change271

much during evolution. This phenomenon is strongly remi-272

niscent of the BBP transition (40) studied in the context of273

signal processing and random matrix theory. In that case, by274

increasing the signal-to-noise ratio the signal emerges as an275

isolated rank-one component from the noisy matrix. In our276

case, selection adds to the random part a new rank-one term277

which can be written as ⁄qT r, where q and r are the left and278

right eigenvectors relative to the isolated eigenvalue ⁄.279

The structure that evolution imprints on the interaction280

matrix can be visualized by displaying the entries of – along281

the evolutionary trajectory presented in Figs. 2 and 3. Fig.282

5 represents the interaction matrix for early and late stages283

of community evolution. Species are ordered in terms of their284

carrying capacity from larger to smaller. At the beginning285

of evolution, there is no visible structure in the interaction286

matrix, except the diagonal that has zero entries. After 2000287

generations, it is clear that species who have become more288

mutualistic, thus have more negative interaction coe�cients,289

are mostly those that initially had higher carrying capacity.290

This is a direct manifestation of the emergence of the isolated291

eigenvalue, as we find that its eigenvectors are correlated to292

both K and to the equilibrium abundance. Aside from this293

structure, the matrix remains random. Indeed, subtracting294

⁄qT r from –, we retrieve a purely random matrix, indicating295

that selection has little e�ect on the random component of296

the spectrum.297

In summary, selecting ecosystems with larger total abun-298

dance leads the initial purely random interaction matrix –ij to299

be summed up with an emergent term that makes interactions300

globally more mutualistic. An increase in total abundance301

is thus achieved by species developing positive interactions,302

such as for instance cross-feeding, rather than increasing the303

abundance of one single member of the community. Simula-304

tions for a number of di�erent parameter values and for other305

target functions (Section 9 of SI) suggest that the mechanism306

illustrated above, by which the interaction matrix evolves into307

a random part plus a rank one perturbation is generic.308

Analytical description of the evolutionary trajectory. The gen-309

erality of the evolutionary dynamics observed in numerical310

simulations can be addressed by developing an appropriate311

analytical description. In this section we provide equations312

for the evolution of the interaction matrix. The emergence of313

structure can then be understood in a simple case where these 314

equation are solvable exactly. We sketch here the derivation 315

of di�erence equations for the total abundance and the inter- 316

action matrix in the case “ = 0, and point the reader to the 317

Material and Methods and the SI for details on the general 318

derivation. 319

Given a community with interaction matrix –(·) and equi- 320

librium N(·) at a given generation · , we aim to identify what 321

will be the interaction matrix –(· + 1) of the selected o�spring 322

community. Such matrix is the one giving the largest possible 323

total abundance at equilibrium. The vector of abundances at 324

equilibrium depends both on the interspecific and intraspecific 325

interactions and is the solution of Nı(·) = (Iı + –ı(·))≠1Kı, 326

where –ı(·) and Nı are the interaction matrix and the vector 327

of abundances reduced to extant species (the same notation is 328

used for other matrices and vectors below). In order to obtain 329

the dynamical equation for the evolution of the interaction 330

matrix we proceed as follows: mutations are, for ‘ π 1, equiv- 331

alent to small random perturbations of the carrying capacities, 332

so we use linear response theory to obtain the change they 333

induce in the equilibrium abundances. The total abundance of 334

each of the n communities is therefore modified by a random 335

contribution that we can fully characterize. The selection pro- 336

cess, then, singles out the largest contribution, i.e. the largest 337

among several independent random variables, a problem that 338

we solve using extreme value statistics (41). The outcome of 339

the computation is the equation for the evolution of the total 340

abundance NT (·) across one collective generation: 341

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î, [6] 342

where v(·) is a nonlinear function of the interaction matrix 343

–(·): vı(·) = (Iı+–ı(·)€)≠11ı and is zero for extinct species. 344

This vector is the gradient of the total abundance at equilib- 345

rium with respect to the carrying capacities: v(·) = ˆNT
ˆK (·) 346

and represents the response of the selected community func- 347

tion to a perturbation of individual species’ carrying capacity 348

Ki. The random variable Mn(·) (drawn independently at 349

each generation) follows the statistic of the maximum value 350

of n Gaussian variables (41), with expected value Mn (see 351

the distribution of Mn in Fig. 2 of SI). Eq. 6 explains why 352

evolution tends to improve the value of the target community 353

function. Indeed, the product of the norms is always positive, 354

and so is Mn for su�ciently large n. However, the capacity 355

of a community to change in response to a given selective 356

pressure can vary, as quantified by the vector v. 357

The change in the interaction matrix across one collective 358

generation can be in turn decomposed in a directional term 359

– contributing to the evolution of NT – and its complement 360

Bij , that acts as a random fluctuation†. The interactions thus 361

evolve according to: 362

–ij(· +1) = –ij(·)≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4
.

[7] 363

This expression has a simple interpretation: among the Gaus- 364

sian random mutations of the interaction matrix, only those 365

in the special direction associated to the function NT matter. 366

†Formally, this amounts to decomposing ÷ij in two parts: one along the direction (in

the space of the S2 indices)
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î , and a remainder Bij = ÷ij ≠
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2000 (right) for the same simulation as Fig. 2. Only the
species that have positive abundance at generation 2000 are shown.

of “ – with the notable exception of “ = ≠1, that we discuss269

later. Apart from this isolated component, the matrix remains270

fully random. In fact, the circle of eigenvalues doesn’t change271

much during evolution. This phenomenon is strongly remi-272

niscent of the BBP transition (40) studied in the context of273

signal processing and random matrix theory. In that case, by274

increasing the signal-to-noise ratio the signal emerges as an275

isolated rank-one component from the noisy matrix. In our276

case, selection adds to the random part a new rank-one term277

which can be written as ⁄qT r, where q and r are the left and278

right eigenvectors relative to the isolated eigenvalue ⁄.279

The structure that evolution imprints on the interaction280

matrix can be visualized by displaying the entries of – along281

the evolutionary trajectory presented in Figs. 2 and 3. Fig.282

5 represents the interaction matrix for early and late stages283

of community evolution. Species are ordered in terms of their284

carrying capacity from larger to smaller. At the beginning285

of evolution, there is no visible structure in the interaction286

matrix, except the diagonal that has zero entries. After 2000287

generations, it is clear that species who have become more288

mutualistic, thus have more negative interaction coe�cients,289

are mostly those that initially had higher carrying capacity.290

This is a direct manifestation of the emergence of the isolated291

eigenvalue, as we find that its eigenvectors are correlated to292

both K and to the equilibrium abundance. Aside from this293

structure, the matrix remains random. Indeed, subtracting294

⁄qT r from –, we retrieve a purely random matrix, indicating295

that selection has little e�ect on the random component of296

the spectrum.297

In summary, selecting ecosystems with larger total abun-298

dance leads the initial purely random interaction matrix –ij to299

be summed up with an emergent term that makes interactions300

globally more mutualistic. An increase in total abundance301

is thus achieved by species developing positive interactions,302

such as for instance cross-feeding, rather than increasing the303

abundance of one single member of the community. Simula-304

tions for a number of di�erent parameter values and for other305

target functions (Section 9 of SI) suggest that the mechanism306

illustrated above, by which the interaction matrix evolves into307

a random part plus a rank one perturbation is generic.308

Analytical description of the evolutionary trajectory. The gen-309

erality of the evolutionary dynamics observed in numerical310

simulations can be addressed by developing an appropriate311

analytical description. In this section we provide equations312

for the evolution of the interaction matrix. The emergence of313

structure can then be understood in a simple case where these 314

equation are solvable exactly. We sketch here the derivation 315

of di�erence equations for the total abundance and the inter- 316

action matrix in the case “ = 0, and point the reader to the 317

Material and Methods and the SI for details on the general 318

derivation. 319

Given a community with interaction matrix –(·) and equi- 320

librium N(·) at a given generation · , we aim to identify what 321

will be the interaction matrix –(· + 1) of the selected o�spring 322

community. Such matrix is the one giving the largest possible 323

total abundance at equilibrium. The vector of abundances at 324

equilibrium depends both on the interspecific and intraspecific 325

interactions and is the solution of Nı(·) = (Iı + –ı(·))≠1Kı, 326

where –ı(·) and Nı are the interaction matrix and the vector 327

of abundances reduced to extant species (the same notation is 328

used for other matrices and vectors below). In order to obtain 329

the dynamical equation for the evolution of the interaction 330

matrix we proceed as follows: mutations are, for ‘ π 1, equiv- 331

alent to small random perturbations of the carrying capacities, 332

so we use linear response theory to obtain the change they 333

induce in the equilibrium abundances. The total abundance of 334

each of the n communities is therefore modified by a random 335

contribution that we can fully characterize. The selection pro- 336

cess, then, singles out the largest contribution, i.e. the largest 337

among several independent random variables, a problem that 338

we solve using extreme value statistics (41). The outcome of 339

the computation is the equation for the evolution of the total 340

abundance NT (·) across one collective generation: 341

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î, [6] 342

where v(·) is a nonlinear function of the interaction matrix 343

–(·): vı(·) = (Iı+–ı(·)€)≠11ı and is zero for extinct species. 344

This vector is the gradient of the total abundance at equilib- 345

rium with respect to the carrying capacities: v(·) = ˆNT
ˆK (·) 346

and represents the response of the selected community func- 347

tion to a perturbation of individual species’ carrying capacity 348

Ki. The random variable Mn(·) (drawn independently at 349

each generation) follows the statistic of the maximum value 350

of n Gaussian variables (41), with expected value Mn (see 351

the distribution of Mn in Fig. 2 of SI). Eq. 6 explains why 352

evolution tends to improve the value of the target community 353

function. Indeed, the product of the norms is always positive, 354

and so is Mn for su�ciently large n. However, the capacity 355

of a community to change in response to a given selective 356

pressure can vary, as quantified by the vector v. 357

The change in the interaction matrix across one collective 358

generation can be in turn decomposed in a directional term 359

– contributing to the evolution of NT – and its complement 360

Bij , that acts as a random fluctuation†. The interactions thus 361

evolve according to: 362

–ij(· +1) = –ij(·)≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4
.

[7] 363

This expression has a simple interpretation: among the Gaus- 364

sian random mutations of the interaction matrix, only those 365

in the special direction associated to the function NT matter. 366

†Formally, this amounts to decomposing ÷ij in two parts: one along the direction (in

the space of the S2 indices)
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î , and a remainder Bij = ÷ij ≠
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î

q
k,l

vk(·)
Îv(·)Î ÷kl

Nl(·)
ÎN(·)Î .
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.
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Equations for the quasi-equilibrium interactions

DRAFT

Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2200 (right) for the same simulation as Figure 2. Only the
species that have positive abundance at generation 2200 are shown.

illustrated above, by which the interaction matrix evolves into309

a random part plus a rank one perturbation, moreover, is310

generic. A non-exhaustive simulations for a number of di�er-311

ent parameter values confirmed that selection for increased312

total abundance has qualitatively similar e�ects(SI?).313

Analytical description of the evolutionary trajectory. We now314

generalize the results found by numerical simulations by de-315

veloping an analytical approach. In particular, we provide an316

approximation to the evolutionary trajectory that can be ana-317

lytically solved, and that explains the emergence of structure318

in the interaction matrix. We sketch here the derivation of319

a di�erence equation for the interaction matrix in the case320

“ = 0, and point the reader to the Methods section and the321

SI for the detailed derivation for any “.322

Given a community with interaction matrix – and equi-323

librium N at generation · , we aim at identifying what will324

be the interaction matrix –(· + 1) of the selected o�spring325

community. Such matrix is the one giving the largest possible326

total abundance at equilibrium. We work in the small ‘ limit,327

in which mutations can be treated as a small perturbation. At328

a given generation · , the interaction matrix reduced to extant329

species is denoted –ı(·) (the same notation is used for other330

matrices and vectors below). The vector of abundances at331

equilibrium is therefore Nı(·) = (Iı + –ı(·))≠1Kı. In order332

to obtain the dynamical equation for the evolution of the in-333

teraction matrix we proceed as follows: we consider mutations334

as small random perturbations and obtain the change in the335

abundances in linear response theory. The total abundance336

of each community therefore acquires a random contribution337

that we can fully characterize. Within this framework, the338

selection process singles out the largest of these contributions,339

i.e. the largest random variable among many independent340

ones, a problem that we solve using extreme value statistics341

(45). The outcome of the computation, which is detailed in342

the Methods and SI, is the evolution equation for the total343

abundance NT (·) across one collective generation:344

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î [6]345

associated a change in the interaction matrix:346

–ij(· + 1) = –ij(·) ≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4

[7]347

where v(·) is a nonlinear function of the interaction matrix 348

–(·): vı(·) = (Iı + –ı(·)€)≠11ı and is zero for extinct 349

species. This vector is the gradient of the total abundance at 350

equilibrium with respect to the carrying capacities: v(·) = 351
ˆNT
ˆK (·) and represents the response of the selected function 352

to a perturbation of individual species’ carrying capacity Ki. 353

The change in the total abundance is multiplied by a ran- 354

dom variable Mn(·) (draw independently at each generations) 355

that depends on the number of communities under selection 356

n: it follows the statistic of the maximum value of n Gaussian 357

variables (45), with expected value Mn (see the distribution 358

of Mn in Figure 2 of SI). Mn is an increasing function of n, 359

so that increasing the number of communities contributes to 360

speeding up evolution. The growth of Mn with the number 361

of communities, however, scales as


log(n), which increases 362

slowly for large n. Expanding the number of communities 363

under selection, thus, brings diminishing returns, and for large 364

n may be of little avail to speed up evolution. An interesting 365

limiting case is when there is only one community to which 366

selection is applied. In this case, M1 is zero and thus the total 367

abundance undergoes, in the long run, unbiased changes. 368

The variation of the interaction matrix and the total abun- 369

dance across one community generation is characterized by 370

a time scale dt = Á/
Ô

S depending on the number of species 371

S and the mutation strength Á. Evolution occurs faster in 372

smaller communities and for larger mutational step. When Á 373

is small and S is large, the time-scale dt is small, so that the 374

evolution of – and NT is quasi-continuous†. 375

The terms factorized in Eq. (7) represent two compet- 376

ing e�ects a�ecting the evolutionary dynamics: directional 377

change imposed by selection and random fluctuations. The 378

first term mathematically corresponds to a rank-one matrix, 379

vi(·)Nj(·), written as the tensor product of two vectors‡. As 380

it is multiplied by Mn(·), this identifies the preferred direction 381

of the evolutionary change. The second term Bij is a Gaus- 382

sian variable of mean 0 and variance 1 under the constraint 383q
ij

viNjBij = 0. 384

For “ ”= 0, equation 7 generalizes to equation 24 of SI. The 385

two equations only di�er for the matrix component viNj being 386

replaced by a corresponding symmetric term, which preserves 387

the correlation structure of the interaction matrix. Similarly, 388

the noise term B has a symmetric correlation of value “. 389

Equation 7 (or 24 SI) is a non-linear recursive equation that 390

can’t be analytically solved in general. The key features illus- 391

trated above by numerical simulation, notably the emergence 392

of an isolated eigenvalue, can however be accounted for by an 393

analytical solution in the limit case where richness S of the 394

community is large. For simplicity, we consider here that all 395

the carrying capacities are equal (we set Ki = 1, without loss 396

of generality). When S ∫ 1, ‡(·) changes slowly with respect 397

to µ(· , consistently with the scaling evidenced in the neutral 398

regime (see ... SI). We assume here that it remains constantly 399

small. Then (see SI ... for the derivation), the evolution in 400

continuous time of the interaction matrix is: 401

–ij(·) = –ij(0) + µ(·) ≠ µ(0)
S

[8] 402

† In the limit dt æ 0, one can write equation 7 as a differential equation with all random variables
replaced by their mean value (because their variances go as dt and not

Ô
dt as in stochastic

differential equations).
‡One can check that the normalization is such that the perturbation is of order one in the large S

limit.
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Fig. 5. Evolution of the interaction matrix. Coefficients of the interac-
tion matrix – with rows and columns sorted by decreasing carrying capacities at
generations 1 (left) and 2000 (right) for the same simulation as Fig. 2. Only the
species that have positive abundance at generation 2000 are shown.

of “ – with the notable exception of “ = ≠1, that we discuss269

later. Apart from this isolated component, the matrix remains270

fully random. In fact, the circle of eigenvalues doesn’t change271

much during evolution. This phenomenon is strongly remi-272

niscent of the BBP transition (40) studied in the context of273

signal processing and random matrix theory. In that case, by274

increasing the signal-to-noise ratio the signal emerges as an275

isolated rank-one component from the noisy matrix. In our276

case, selection adds to the random part a new rank-one term277

which can be written as ⁄qT r, where q and r are the left and278

right eigenvectors relative to the isolated eigenvalue ⁄.279

The structure that evolution imprints on the interaction280

matrix can be visualized by displaying the entries of – along281

the evolutionary trajectory presented in Figs. 2 and 3. Fig.282

5 represents the interaction matrix for early and late stages283

of community evolution. Species are ordered in terms of their284

carrying capacity from larger to smaller. At the beginning285

of evolution, there is no visible structure in the interaction286

matrix, except the diagonal that has zero entries. After 2000287

generations, it is clear that species who have become more288

mutualistic, thus have more negative interaction coe�cients,289

are mostly those that initially had higher carrying capacity.290

This is a direct manifestation of the emergence of the isolated291

eigenvalue, as we find that its eigenvectors are correlated to292

both K and to the equilibrium abundance. Aside from this293

structure, the matrix remains random. Indeed, subtracting294

⁄qT r from –, we retrieve a purely random matrix, indicating295

that selection has little e�ect on the random component of296

the spectrum.297

In summary, selecting ecosystems with larger total abun-298

dance leads the initial purely random interaction matrix –ij to299

be summed up with an emergent term that makes interactions300

globally more mutualistic. An increase in total abundance301

is thus achieved by species developing positive interactions,302

such as for instance cross-feeding, rather than increasing the303

abundance of one single member of the community. Simula-304

tions for a number of di�erent parameter values and for other305

target functions (Section 9 of SI) suggest that the mechanism306

illustrated above, by which the interaction matrix evolves into307

a random part plus a rank one perturbation is generic.308

Analytical description of the evolutionary trajectory. The gen-309

erality of the evolutionary dynamics observed in numerical310

simulations can be addressed by developing an appropriate311

analytical description. In this section we provide equations312

for the evolution of the interaction matrix. The emergence of313

structure can then be understood in a simple case where these 314

equation are solvable exactly. We sketch here the derivation 315

of di�erence equations for the total abundance and the inter- 316

action matrix in the case “ = 0, and point the reader to the 317

Material and Methods and the SI for details on the general 318

derivation. 319

Given a community with interaction matrix –(·) and equi- 320

librium N(·) at a given generation · , we aim to identify what 321

will be the interaction matrix –(· + 1) of the selected o�spring 322

community. Such matrix is the one giving the largest possible 323

total abundance at equilibrium. The vector of abundances at 324

equilibrium depends both on the interspecific and intraspecific 325

interactions and is the solution of Nı(·) = (Iı + –ı(·))≠1Kı, 326

where –ı(·) and Nı are the interaction matrix and the vector 327

of abundances reduced to extant species (the same notation is 328

used for other matrices and vectors below). In order to obtain 329

the dynamical equation for the evolution of the interaction 330

matrix we proceed as follows: mutations are, for ‘ π 1, equiv- 331

alent to small random perturbations of the carrying capacities, 332

so we use linear response theory to obtain the change they 333

induce in the equilibrium abundances. The total abundance of 334

each of the n communities is therefore modified by a random 335

contribution that we can fully characterize. The selection pro- 336

cess, then, singles out the largest contribution, i.e. the largest 337

among several independent random variables, a problem that 338

we solve using extreme value statistics (41). The outcome of 339

the computation is the equation for the evolution of the total 340

abundance NT (·) across one collective generation: 341

NT (· + 1) = NT (·) + Mn(·)Á‡(·)
Ô

S
Îv(·)ÎÎN(·)Î, [6] 342

where v(·) is a nonlinear function of the interaction matrix 343

–(·): vı(·) = (Iı+–ı(·)€)≠11ı and is zero for extinct species. 344

This vector is the gradient of the total abundance at equilib- 345

rium with respect to the carrying capacities: v(·) = ˆNT
ˆK (·) 346

and represents the response of the selected community func- 347

tion to a perturbation of individual species’ carrying capacity 348

Ki. The random variable Mn(·) (drawn independently at 349

each generation) follows the statistic of the maximum value 350

of n Gaussian variables (41), with expected value Mn (see 351

the distribution of Mn in Fig. 2 of SI). Eq. 6 explains why 352

evolution tends to improve the value of the target community 353

function. Indeed, the product of the norms is always positive, 354

and so is Mn for su�ciently large n. However, the capacity 355

of a community to change in response to a given selective 356

pressure can vary, as quantified by the vector v. 357

The change in the interaction matrix across one collective 358

generation can be in turn decomposed in a directional term 359

– contributing to the evolution of NT – and its complement 360

Bij , that acts as a random fluctuation†. The interactions thus 361

evolve according to: 362

–ij(· +1) = –ij(·)≠
Á‡(·)
Ô

S

3
Mn(·) vi(·)

Îv(·)Î
Nj(·)

ÎN(·)Î + Bij

4
.

[7] 363

This expression has a simple interpretation: among the Gaus- 364

sian random mutations of the interaction matrix, only those 365

in the special direction associated to the function NT matter. 366

†Formally, this amounts to decomposing ÷ij in two parts: one along the direction (in

the space of the S2 indices)
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î , and a remainder Bij = ÷ij ≠
vi(·)

Îv(·)Î
Nj (·)

ÎN(·)Î

q
k,l

vk(·)
Îv(·)Î ÷kl

Nl(·)
ÎN(·)Î .
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Evolutionary change affects differently different 
species, depending on the how their perturbations 
modify the target function.



Equations for the quasi-equilibrium interactions

Figure 3: Abundance at generation ⌧ = 2000 of non-extincted species and the coe�cients of v, both
normalized such that the mean of the coe�cients are equal to 1, with indices sorted by decreasing
carrying capacity. It is evident that N and v are strongly correlated. Their dependence on K is
weaker, but still su�cient for the structure to emerge in Fig. ... .

using Sherman–Morrison formula. With this, we can compute the abundances at equilibrium:

N(⌧) = �(⌧)1

=
1

1 + µ(⌧)
1+O(�)

(28)

The total abundance along the evolutionary trajectory depends, as well as the interaction
matrix, only on the mean interaction strength:

NT (⌧)

S
= hNi(⌧)i =

1

1 + µ(⌧)
+O(�). (29)

In the same fashion, we get that :

v(⌧) =
1

1 + µ(⌧)
1+O(�) (30)

Equation 24 for � = 0 or equation (6) of the main text then gives the recursive equation for
µ(⌧):

µ(⌧ + 1) = µ(⌧)�
p
1 + �

"Mn�
p
S

(31)

that has for solution:
µ(⌧) = µ(0)� ⌧ ·

"�
p
S
Mn

p
1 + � (32)

7 Community changes in the absence of selection

We now look at the e↵ect of our mutation procedure in absence of any selection (neutral regime).
In this subsection only, we denote for simplicity n = S(S � 1) the number of interaction terms

and every sum
P

are index on i 6= j. The notations aij and bij are not the same as before.
The process is the following:

• We have ↵(t)
ij = mt+stdta

(t)
ij withmt =

1
n

P
↵(t)
ij the empirical mean and stdt =

q
1
n

P
(↵(t)

ij �mt)2

the empirical standard deviation.

• We then define ↵(t+1)
ij = mt + stdtb

(t+1)
ij with b(t+1)

ij =
a(t)
ij +"⌘(t+1)

ijp
1+"2

.

6

Vectors become correlated: 
more abundant species are also those 
that (have) become more mutualistic



Evolutionary equations in the limit case of small 𝜎

DRAFT

and exclusively determined by its mean value:403

µ(·) = µ(0) ≠ · ·
Á‡
Ô

S
Mn


1 + “ [9]404

As illustrated in Fig. 3 A, the average interaction strength405

thus decreases linearly across collective generations. Inter-406

estingly, the speed of evolution has a simple dependence on407

the symmetry of the interaction matrix, slowing down as the408

matrix becomes more asymmetric. In the limit “ = ≠1 of409

perfectly asymmetric interactions, selection on total abun-410

dance is unable to modify the interaction matrix. Ecological411

interactions in this limit are indeed zero-sum: the increase of412

the abundance of one species implies the same decrease for413

another species, and thus has no net e�ect the selected total414

abundance.415

The total abundance along the evolutionary trajectory de-416

pends, as well as the interaction matrix, only on the mean417

interaction strength:418

NT (·)
S

= ÈNi(·)Í = 1
1 + µ(·) + O(‡). [10]419

It increases as interactions become progressively less compet-420

itive, and diverges when µ æ ≠1. Supplementary Figure 4421

shows that eqs. 8 and 9 reproduce accurately the simulated422

evolutionary dynamics of the interaction matrix for small val-423

ues of ‡(0). In this simple case, where species are almost424

equivalent, the diversity „ remains largely unchanged (and425

– ≥ –ı).426

Equation 8 shows that, along an evolutionary trajectory,427

the interaction matrix maintains its initial random compo-428

nent of order ‡(0), and is modified by the addition of the429

rank-one term µ(·)/S. As in the BBP transition (44), the430

vector space spanned by the eigenvectors associated to the431

emergent eigenvalue remains unchanged. More generally, equa-432

tion (7) tells us that selection for increased total abundance433

keeps resulting in the addition of rank-one matrices. When434

‡ is not small and K ”= 1, however, the right and left eigen-435

vectors associated to the smallest eigenvalue depend on v(·)436

and N(·), and thus change along the evolutionary trajectory.437

Therefore, the direction of the evolutionary trajectory is only438

predictable across one generation, but remains undetermined439

on long time scales, resulting in an overall unpredictability440

of what specific composition the final community is going to441

have. Nonetheless, the correlation with the vector of carrying442

capacities K of v and N (and consequently of the eigenvectors)443

imprints on the evolved interactions the structure evidenced444

in Fig. 5. The correlation of the equilibrium abundance to445

the carrying capacity moreover results, as evolution proceeds,446

in an additional irreversible e�ect on the community: species447

with smaller carrying capacity will be more likely to go extinct,448

thus a�ecting diversity to a larger extent.449

Discussion450

Recent progresses in harvesting and screening microbial com-451

munities in the lab opened the door to progress in the artificial452

selection of community-level functions of applied interest. Sig-453

nificant e�ort is currently put into developing mathematical454

models encompassing the eco-evolutionary processes involved455

in community selection, as well as into identifying key princi-456

ples to design e�cient experimental protocols (4, 5, 9, 13). A457

major obstacle to achieving this goal is the significant complex- 458

ity of models with nested populations. Even if some conceptual 459

tools are available for the simple case where communities are 460

composed by only two species (12, 14, 16), they are not easily 461

generalized to highly diverse assemblies. In the absence of 462

a general theoretical framework, numerical simulations have 463

been the primary tool to explore how community-level se- 464

lection a�ects the evolutionary trajectory. Di�erent models 465

have explored the response to di�erent selective pressures (9), 466

the role of ecological transients (11) and of non-equilibrium 467

dynamics (10), and di�erent modes of reproduction (9, 11). 468

If compelling evidence now exists that communities generally 469

respond to selection and improve the selected function, the 470

extent of such improvements and the time scale necessary 471

to achieve them vary considerably depending on the system 472

configuration, to the point that it is still unclear what choices 473

should be made to enhance community functions in practice. 474

Even less understood is how to predict the e�ect of selec- 475

tion on the underlying structure of intra- and inter-specific 476

interactions that determine the ecological dynamics of the 477

community. As shown by Williams and Lenton (9), indeed, 478

such interactions get reshaped by community-level selection 479

in ways that di�er, depending on the selection scheme. 480

In this work, we have proposed a general theoretical frame- 481

work where these questions can be addressed for communities 482

composed of a large number of species. Following previous 483

work that brought fundamental insight in community ecol- 484

ogy (18), we considered an initial population of communities 485

where inter-specific interactions were chosen at random. These 486

communities can evolve across successive community gener- 487

ations due to selection (death of a fraction of communities) 488

and community reproduction with mutation. Mutations are 489

here modelled by non-biased changes of the interaction matrix, 490

whereby multiple interaction coe�cients are simultaneously 491

modified in one community generation, a�ecting the commu- 492

nity composition at equilibrium. Such composition in turns 493

determines the function upon which selection is applied. We 494

have considered here total abundance, a function that is com- 495

patible with multiple solutions, as it can be improved both 496

by an increase in the abundance of a single species, or by a 497

coordinated increase in multiple species. As a consequence, 498

the outcome of the selection process is nontrivial. 499

We showed that the interaction matrix evolves in response 500

to selection, and that it results generically in inter-specific 501

interactions becoming progressively less competitive. We in- 502

terpret this as the evolution of facilitation, similar to what 503

was observed in a two-species model (16). Notably, the evo- 504

lutionary process imprints a structure on the interaction ma- 505

trix, as evidenced by the emergence of an isolated eigenvalue. 506

This identifies a ’collective mode’ that positively impacts the 507

abundances of all species. In the analytical description, this 508

corresponds to an order-one perturbation of the interaction 509

matrix, that otherwise retains its original, disordered nature. 510

say something also on the eigenvector? 511

The nonlinear equations for the change of the interaction 512

matrix across one collective generation account for the in- 513

terplay between the selection target and the intra-specific 514

interactions and allow to understand the emergence of the 515

imprinted structure. We provided examples of extreme cases 516

when selection is unable to drive the ecological dynamics of the 517

community towards achieving the target function. Moreover, 518
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The average interaction strength decreases 
linearly in time.

Scaling of the speed of community evolution: 
it is faster for bigger mutational steps, in smaller 
populations, for larger initial diversity, when there 
are many communities to choose from and when 
the interactions are more symmetric.

No directional change in neutral regimes and for fully symmetric interactions  



General structure of the evolved matrix

Synthetic matrix inferred from the evolved equilibrium abundances and mean interaction
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Figure 7: Evolved and synthetic matrix have similar structure of eigenstates. Comparison
between the eigenvalues of the evolved interaction matrix ↵? (blue) and of the maximum entropy
matrix �? (green) at generation ⌧ = 1500 (Top) and the coe�cient of the eigenvector of the minimal
eigenvalue (middle). Evolution of the minimum eigenvalue of both matrices for every generations
(Bottom).
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Figure 7: Evolved and synthetic matrix have similar structure of eigenstates. Comparison
between the eigenvalues of the evolved interaction matrix ↵? (blue) and of the maximum entropy
matrix �? (green) at generation ⌧ = 1500 (Top) and the coe�cient of the eigenvector of the minimal
eigenvalue (middle). Evolution of the minimum eigenvalue of both matrices for every generations
(Bottom).
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The evolved matrix resembles the most likely matrix, which has an isolated eigenvalue



Conclusions

Applying community-level selection to complex interacting ecosystems:

1. Optimizes collective function

2. Makes interactions more mutualistic

3. Imprints a structure on the evolved matrix, which remains nonetheless                   
unpredictable except in statistical terms
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