
Dynamics of Two Species with
Density-Dependent Interactions in a

Mutualistic Context

Chloë Mian

Supervised by Charline Smadi (INRAE Grenoble), Sylvain Billiard
(Université de Lille), Violaine Llaurens (Collège de France)

Chaire MMB, Aussois
June 2025



A Density-Dependent Interaction

Figure 1: Experimental results and fitted curve showing the net
benefit gained by plants with mycorrhizae in relation to their density1.
▶ How do variations in population density affect the

nature and intensity of mutualistic interactions?
1Gange and Ayres (1999)
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Interaction Dynamics in Two Populations

Periodic Solutions of Mutualistic Models
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Model

To consider the density of both populations x and y, we
introduce2: ß

ẋ = xf (x, y)
ẏ = yg (x, y) (1)

We denote by Γf and Γg:

Γf := {(x, y) ∈ R+ × R+, f (x, y) = 0}

and
Γg := {(x, y) ∈ R+ × R+, g (x, y) = 0},

with Γf ̸= ∅ and Γg ̸= ∅.
2Brauer and Castillo-Chavez (2012), May (1972), Hale and Valdovinos

(2021)
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Examples®
ẋ = x

(
cx − x − ax(y − bx)2) rx

ẏ = y
(
cy − y − ay(x − by)2) ry

(Zhang (2003))
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Ä
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ẏ = y
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(Neuhauser and al. (2004))®
ẋ = x(rx0 + (rx1 − rx0) (1 − exp (−kxy)) − axx)
ẏ = y(ry0 + (ry1 − ry0) (1 − exp (−kyx)) − ayy)

(Graves and al. (2006)){
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(Holland and DeAngelis (2010))
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Key Assumptions

▶ Mutualism and Parasitism: ∂f
∂y > 0 and ∂g

∂x > 0
represent a region of strict mutualism. ∂f

∂y < 0 or ∂g
∂x < 0

represent a region of parasitism.

▶ Intraspecific Competition: ∂f
∂x < 0 and ∂g

∂y < 0 describe
negative feedback within each species.

▶ Intraspecific Cooperation: ∂f
∂x > 0 and ∂g

∂y > 0 describe
positive feedback within each species.

▶ Dynamic Transitions: The signs of ∂f
∂y and ∂g

∂x are not
fixed and may change with species densities.
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Mutualism

Definition 1
A system of differential equations of the form (1) will be said to
be mutualistic if, in the phase portrait of R+ × R+, there is at
least a region where ∂g

∂x > 0 and at least a region where ∂f
∂y > 0.

These two regions may be disjoint.
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Examples

(a) Throughout the domain,
∂f
∂y

> 0.
(b) Non-overlapping mutualistic
effects.

Figure 2: Examples of strict mutualism and disjoint regions of
mutualistic influence. Strict mutualism occurs where both partial
derivatives are positive and overlap.
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Hypothesis

Hypothesis H1
The functions f and g each define a single additional isocline,
beyond those at x = 0 and y = 0: a vertical isocline for f and a
horizontal isocline for g. The zeros (x, y) of f (resp. of g) form
a single continuous curve.

Hypothesis H2
Γf and Γg delimit regions of strict constant sign of f and g.
Moreover we impose that the signs of f (respectively of g)
change on either side of the curve Γf (respectively of the curve
Γg).
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{
ẋ = xf (x, y) = x

Ä
e1y − d1

Ä
(x − a1)b1 + c1

ää
ẏ = yg (x, y) = y

Ä
e2x − d2

Ä
(y − a2)b2 + c2

ää (2)

with ai, ci, di, ei positive constants, bi positive integers.

Figure 3: Example of a mutualism model exhibiting different types of
equilibrium points. White points represent repulsive points, black
points attractive points and gray points saddle points.
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Hypothesis

Hypothesis H3
No more than two isoclines intersect at any given point.

In particular, H3 implies that (0, 0) /∈ Γf ∪ Γg.

Hypothesis H4
We exclude the boundary cases where the equilibrium points are
formed by two isoclines that only touch at that point but do not
cross, and the case where the isoclines are coincident.
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Alternating Fixed Points with Indices +1 and –1

Theorem 1
Let a dynamical system in R+ × R+ be described by (1), with
functions f and g satisfying hypotheses H1 to H4. Then, in the
positive quadrant, the equilibrium points of the system alternate
along the isoclines between having an index of +1 and an index
of −1.
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(a) Local structure of the phase
portrait around an index +1
equilibrium.

(b) Local structure of the phase
portrait around an index −1
equilibrium.

Figure 4: Two possible local configurations of the phase portrait near
an equilibrium point, corresponding to the two admissible clockwise
sign changes of the vector field across adjacent regions.

14



(a) Zhang (2003) (b) Neuhauser and al. (2004)

(c) Graves and al. (2006) (d) Holland and al. (2010)

Figure 5
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Limit Cycle and Center3

(a) Lotka–Volterra Center. (b) Van der Pol Limit Cycle.

Figure 6: Phase portraits illustrating two types of periodic dynamics.

3May (1972)
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No Limit Cycle in Strict Mutualism

Theorem 2
Let a dynamical system in R+ × R+ be described by (1), with
functions f and g satisfying hypotheses H1 to H4. We assume
that the curves Γf and Γg intersect at a repulsive equilibrium
point (x∗, y∗), with ∂f

∂y (x∗, y∗) > 0 and ∂g
∂x(x∗, y∗) > 0. Then,

there exists a region R in the phase portrait containing this
point, in which the partial derivatives do not change sign, and
no limit cycle exists that surrounds this point within R.
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Limit Cycle with Parasitism

Figure 7: Phase portrait assuming extended mutualism leading to a
cyclic behaviour. 19



Limit Cycle with Parasitism

Theorem 3
Let a dynamical system in R+ × R+ be described by (1), with
functions f and g satisfying conditions 1.1-1.10. Then a limit
cycle exists inside the positive quadrant.
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{
ẋ = xf (x, y) = x

Ä
a1 − b1 (y − c1)2 − d1x

ä
ẏ = yg (x, y) = y

Ä
−a2 − b2 (y − c2)2 + d2x

ä (3)

with (ai, bi, ci, di) being positive constants.

Figure 8: Phase portrait leading to a limit cycle.
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Index Theory ß
ẋ = F (x, y)
ẏ = G (x, y) (4)

defines a vector field for which the slope:

dy

dx
= G(x, y)

F (x, y) (5)

forms an angle with the x-axis given by:

φ(x, y) = arctan
Å

G(x, y)
F (x, y)

ã
. (6)

Given this angle and a simple closed curve γ in R2, the index of
γ , denoted Ind(γ), is defined as:

Ind(γ) = 1
2π

∮
γ

dφ(x, y). (7)
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Proof of Theorem 2

(a) First possible alternation (b) Second possible alternation

Figure 9: Two possible neighborhoods of the repulsive equilibrium
point (x∗, y∗)

Let u and v be points as shown in Figure 9a, and define the
function h as follows:

h : [0, 1] → R
t 7→ f(u + t(v − u)) 26



No Limit Cycle in Strict Mutualism

Theorem 4
Let a dynamical system in R+ × R+ be described by (1), with
functions f and g satisfying hypotheses H1 to H4. We assume
that the curves Γf and Γg intersect at an attractive
equilibrium point (x∗, y∗), with ∂f

∂y (x∗, y∗) > 0 and
∂g
∂x(x∗, y∗) > 0. Then, there exists a region R2 in the phase
portrait containing this point, in which the partial derivatives do
not change sign, and no limit cycle exists that surrounds this
point within R2.
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Conditions 1.1-1.10 I

1.1 ∂f
∂x < 0: Intraspecific competition.

1.2 ∂g
∂y > 0 then ∂g

∂y < 0: At low density, species y experiences
self-cooperation rather than competition, then negative
effects do emerge.

1.3 ∂g
∂x > 0: Species x always has a positive effect on species y.

1.4 ∂f
∂y > 0 then ∂f

∂y < 0: At low density, species y has a
positive effect on species x, then the interaction shifts from
mutualism to parasitism.

1.5 f (0, y1) = 0: Above the threshold y1, the population of x
declines, regardless of whether its own density is low or
high.

1.6 g (x1, 0) = 0: The threshold x1 of species x required for
species y to persist at low density.
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Conditions 1.1-1.10 II

1.7 f (x2, 0) = 0: There exists an equilibrium at x2 where
species x can persist in the absence of species y. Beyond
x2, the species x declines due to overpopulation.

1.8 x1 < x2: The threshold density for species x to persist in
isolation (x2) is higher than the threshold where species x
can sustain y (x1). Otherwise, species y goes extinct.

1.9 (x∗, y∗) is a repulsive equilibrium point:

x∗ ∂f

∂x
(x∗, y∗) + y∗ ∂g

∂y
(x∗, y∗) > 0,

and

x∗y∗
Å

∂f

∂x
(x∗, y∗) ∂g

∂y
(x∗, y∗) − ∂f

∂y
(x∗, y∗) ∂g

∂x
(x∗, y∗)

ã
> 0.
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Conditions 1.1-1.10 III

This condition ensures that small perturbations around
(x∗, y∗) will lead to divergence, favoring oscillatory or cyclic
behavior.

1.10 The isoclines f = 0 and g = 0 have the shapes illustrated in
Figure 7.
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Conditions 2.1-2.9 I

2.1 ∂g
∂y < 0: Intraspecific competition for species y.

2.2 ∂f
∂x > 0 then ∂f

∂x < 0: At low density, species x experiences
self-cooperation rather than competition, then negative
effects emerge.

2.3 ∂f
∂y > 0: Species y always has a positive effect on species x.

2.4 ∂g
∂x < 0 then ∂g

∂x > 0: At low density, species x has a
negative effect on species y, but as its density increases, the
interaction shifts from parasitism to mutualism.

2.5 f(0, y1) = 0: Beyond the threshold y1, the population of x
grows due to mutualism, regardless of its own density.

2.6 g (0, y2) = 0: There exists an equilibrium at y2 where
species y can persist in the absence of species x. Beyond
y2, the species y declines due to overpopulation.
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Conditions 2.1-2.9 II

2.7 y1 < y2: The threshold density for species y to persist in
isolation (y2) is higher than the threshold where species y
can sustain x (y1). Otherwise, species x goes extinct.

2.8 (x∗, y∗) is a repulsive equilibrium point.
2.9 The isoclines f = 0 and g = 0 have the shapes illustrated in

Figure 10.
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Limit Cycle with Parasitism

Figure 10: Phase portrait assuming extended mutualism leading to a
cyclic behaviour. 33



Limit Cycle with Parasitism

Theorem 5
Let a dynamical system in R+ × R+ be described by (1), with
functions f and g satisfying conditions 2.1-2.10. Then a cycle
limit exists inside the positive quadrant.
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