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*Onset of Cancer Cell *Proliferation and Invasion
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Introduction Biological Framework and Motivation

Biological Framework and Motivation

One mutant cell introduced in a large resident population at equilibrium.
TGF- protein has a regulatory effect that inhibits the proliferation of resident cells.
Individual birth and death rates:

dR(xR, xM ) = dM (xR, xM ) = d,

bM (xR, xM ) = β
(
1− xM+xR

C

)
+
,

bR(xR, xM ) = β
(
1− αxM+xR

C

)
+
,

β is the maximum division rate, where β > d.

α > 1 models the inhibitory effect on resident cell growth through TGF-
proteins.

C: carrying capacity

bR(x
∗
R, 0) = d, where x∗

R > 0, represents the number of resident cells at equilibrium.
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Introduction Biological Framework and Motivation

Stochastic Invasion Model

1 Bi-type Birth-Death Process
Consider

NK(t) = (NK
R (t), NK

M (t)) = (nR, nM ),

K is a scaling parameter and

(nR, nM ) → (nR + 1, nM ) with rate nR bR(nR/K, nM/K)

(nR, nM ) → (nR − 1, nM ) with rate nR dR(nR/K, nM/K)

(nR, nM ) → (nR, nM + 1) with rate nM bM (nR/K, nM/K)

(nR, nM ) → (nR, nM − 1) with rate nM dM (nR/K, nM/K)

2 Deterministic System Approximation of NK(t)/Kx′
M (t) =

[
bM (xR(t), xM (t))− d

]
xM (t),

x′
R(t) =

[
bR(xR(t), xM (t))− d

]
xR(t).
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Introduction One-Dimensional Model

One-Dimensional Model

Let NK
t = n be the population size at time t, where K is a scaling parameter.

The process follows these transition dynamics:

n → n+ 1 with rate n b(n/K)

n → n− 1 with rate nd(n/K)

where {
b(x) = ax+ d, ( individual birth rate)
d(x) = d, ( individual death rate).

NK(0) = 1,

a > 0 has an excitatory effect.
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Introduction One-Dimensional Model

Context, Challenges, and Objectives

We start from a quasi-critical regime.

We study invasion dynamics (i.e., the transition from 1 to K).

Problem: the probability of invasion tends to 0.

Solution: We study the law Ex
(
F ((NK

s )0≤s≤t)|NK
t > 0

)
.

Challenges: We identify three regimes:

one close to 1 : [1,
√
K],

intermediate regime : [
√
K,K1/2+ϵ],

one close to K : [K1/2+ϵ,K].

.
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Invasion Dynamics: Analysis and Results

Invasion Dynamics: Analysis and Results

Hitting Time Analysis

Consider the hitting time

Tn = inf{t > 0 : NK
t = n}.

We quantify the following probabilities:

1 P⌊Kα⌋

(
TK
0 < TK

⌊
√
K⌋

)
−→

K→∞
1, for α < 1/2.

2 P⌊
√
K⌋

(
TK
0 < TK

K

)
−→

K→∞
l, with l ∈]0, 1[.

3 P⌊Kβ⌋

(
TK
0 < TK

K

)
−→

K→∞
0, for β > 1/2.
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Invasion Dynamics: Analysis and Results

Cell number evolution
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Trajectory Analysis (From 1 to
√
K)

Probability change of measure
Consider Y K defined by its semigroup:

PY
t f(x) =

1

x
Ex

[
e−

∫ t
0
(d−b)(

NK
s
K )dsNK

t f(NK
t )

]
,

where f is a bounded continuous function.

Lemma

The law of (NK
s )0≤s≤t conditioned on survival is characterized by

Ex
(
F ((NK

s )0≤s≤t)|NK
t > 0

)
=

Ex
(

F ((Y K
s )0≤s≤t)

Y K
t exp(

∫ t
0
(d−b)(

Y K
s
K )ds

)
Ex

(
1

Y K
t exp(

∫ t
0
(d−b)(

Y K
s
K ))ds

)
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Trajectory Analysis (From 1 to
√
K)

We will now explore the study of

WK
u =

1

Kα
Y K
uKα .

▶ Generator of AWK

:

AWK

f(w) = 2df ′(w) +
aw

K1−α
f ′(w) +

aw

K1−2α
f ′(w)

+ wdf”(w) +
aw2

2K1−α
f”(w) +

aw

2K
f”(w) + o

(
1

Kα

)
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Trajectory Analysis (From 1 to
√
K)

For α = 1
2 , we obtain the following Feller diffusion :

dWt = (2d+ aWt)dt+
√
2dWtdBt

Back to the original process

Ex
((

F
(NK√

Ks√
K

)
s≤t

)
|NK√

Kt
> 0

)
=

Ex
( (

F

(
WK

s

)
s≤t

)
WK

t

(
exp

∫ t
0
aWK

v dv

))
Ex

(
1

WK
t

(
exp

∫ t
0
aWK

v dv

))

To be continued!
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Trajectory Analysis from K1/2+ϵ to K

Dynamical System Approximation

Let xK be the solution of the ODE:

x′
K(t) = xK(t)(b− d)(xK(t)),

where xK may depend on K through its initial condition.

We introduce, for 0 < xK(0) < vK ,

τK := inf {t ≥ 0 : xK(t) = vK} .
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Trajectory Analysis from K1/2+ϵ to K

Consider XK(t) = NK(t)
K is the population density.

Theorem

For all η > 0,

P
(
sup
t≤τK

∣∣∣∣XK(t)

xK(t)
− 1

∣∣∣∣ > η
)
≤ 1

η
C

vK
K1/2 xK(0)2

1 We deduce that, starting from the initial condition xK(0) = K−1/4+ϵ, we
can reach the order of K.

2 We repeat the same process until we reach the limit K−1/2 for
XK(0), (K1/2 for NK(0)).
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Trajectory analysis from (K1/2 to K1/2+ϵ)

NK
0 = ⌊K1/2⌋.

Let us introduce the process:

ζKt := K−1/2NK
K1/2t,

and define (ζ̄t)t as the solution of the stochastic differential equation:

dζ̄t = a ζ̄2t dt+

√
2 b ζ̄t dBt.

Consider

T (Kϵ) := inf
{
t ≥ 0 : ζ̄(t) = Kϵ

}
,

We have ∣∣∣AζK

g(x)−Aζ̄g(x)
∣∣∣ ≤ C K−1/2

(
1 + x2

)
(||g′′||∞ + ||g′′′||∞) .
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Invasion Dynamics: Analysis and Results Trajectory Analysis

Conclusion

Probability of Invasion Approximated Model Dynamics

P⌊Kα⌋

(
TK
0 > TK

⌊
√
K⌋

)
−→

K→∞
0, for α < 1/2. Ex

(
F ((NK

s )0≤s≤t)|NK
t > 0

)
dWt = (2d+ aWt)dt+

√
2dWtdBt

P⌊
√
K⌋

(
TK
0 > TK

K

)
−→

K→∞
l, with l ∈]0, 1[. ζKt := K−1/2NK

K1/2t
dζt = a ζ̄2t dt+

√
2 b ζ̄t dBt.

P⌊Kβ⌋

(
TK
0 < TK

K

)
−→

K→∞
1, for β > 1/2. NK(t)

K x′K(t) = xK(t)(b− d)(xK(t)),
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Thank You!
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