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Biological Framework and Motivation
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Biological Framework and Motivation

One mutant cell introduced in a large resident population at equilibrium.
TGF- protein has a regulatory effect that inhibits the proliferation of resident cells.
Individual birth and death rates:

dr(zr, M) = du(zr, 2Mm) =d,
_ ( _$M+JCR

bu(xzr, xm) =

bR(xR,fL'M (1 - (Y$M+$R>+a

B is the maximum division rate, where 8 > d.

a > 1 models the inhibitory effect on resident cell growth through TGF-
proteins.

C: carrying capacity

br(zg,0) = d, where x}; > 0, represents the number of resident cells at equilibrium.
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Stochastic Invasion Model

@ Bi-type Birth-Death Process
Consider
N (t) = (Ng (), Nip (1) = (g, na),

K is a scaling parameter and

(ngr,na) = (nr+ 1,np)  with rate ngbr(nr/K,ny /K)
(ng,nap) = (ng — 1,npr)  with rate nrdr(nr/K,na /K)
(nr,np) — (nrynar + 1) with rate npy by (ne/K, ny /K)
(ng,nan) — (nry,nar — 1) with rate ny dpy(ng/K,npy /K)

@ Deterministic System Approximation of N¥(¢)/K

(1) = [bar(ar(t), 2ae (1) — d
wlt) = [br(za(t), 2a (1)) - d]zn ().
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One-Dimensional Model

Let NX = n be the population size at time ¢, where K is a scaling parameter.
The process follows these transition dynamics:

n—n+1 with rate nb(n/K)

n—mn—1 with rate nd(n/K)

where
b(x) = ax +d, ( individual birth rate)
d(x) =d, ( individual death rate).

o NE(0) =1,

@ a > 0 has an excitatory effect.
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Context, Challenges, and Objectives

We start from a quasi-critical regime.

We study invasion dynamics (i.e., the transition from 1 to K).

Problem: the probability of invasion tends to 0.
Solution: We study the law E* (F((NSK)ogsStﬂNtK > O).

Challenges: We identify three regimes:
e one close to 1 : [1,VK],
o intermediate regime : [VK, K'/2%¢],
e one close to K : [KY/*+ K].
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Invasion Dynamics: Analysis and Results
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Invasion Dynamics: Analysis and Results

Invasion Dynamics: Analysis and Results

Hitting Time Analysis
Consider the hitting time
T, =inf{t >0 : NS =n}.

We quantify the following probabilities:
Q Pxe) (TO <TL\FJ> 5 1, fora < 1/2.

K—oco

° IPNE<T({(<TK) — 1, with [ €]0,1[.

K—oo

Q Pks (TOK < ng) 2. 0, for B> 1/2.
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Invasion Dynamics: Analysis and Results
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Invasion Dynamics: Analysis and Results ~ Trajectory Analysis

Trajectory Analysis (From 1 to v K)

Probability change of measure
Consider Y X defined by its semigroup:

K

]. I o Ng
PY [(@) = B { Jia-n(%

s N K F(NK )} 7

where f is a bounded continuous function.

Lemma

The law of (NX)o<s<; conditioned on survival is characterized by

Ez( F((YSK)OSSSt)K >
Y exp( [ (d—b)( Y5 )ds

E” (F((Nf)ogsgtﬂNtK > 0) -

“( 1 )
VK exp( [ (d—b) (X)) ds

K
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Trajectory Analysis (From 1 to v K)

We will now explore the study of

» Generator of AW" :

AV f(w) = 2df'(w) + o f () + T £ (w)
2
+ wdf” (w) + 2;?11)_a 17 (w) + %f” (w)+o (KIQ)
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Trajectory Analysis (From 1 to v K)

For o = % we obtain the following Feller diffusion :
th = (2d + aWt)dt + V QthdBt

Back to the original process

]Ez< (F(WK>§) )

NE 5 (exp [ aW K dv
Ew((F(%) )|N5ft>0):Ex W, ( pl w d))
WtK(exp I aWUKdv>

To be continued! "
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Trajectory Analysis from K1/2t¢ to K

Dynamical System Approximation

Let 2 be the solution of the ODE:

v (t) = 2 (1) (b — d)(zk (1),

where zx may depend on K through its initial condition.

We introduce, for 0 < zx(0) < vk,

K =inf{t>0 : xx(t) =vK}.
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Invasion Dynamics: Analysis and Results ~ Trajectory Analysis

Trajectory Analysis from K/2*¢ to K

Consider XX (t) = % is the population density.

Theorem

For all n > 0,

XE(t)
T (1)

c— K

1
P g L S
(SUP n KY2zr(0)2

t<rK

—1‘>n>§

@ We deduce that, starting from the initial condition zx(0) = K14+ we
can reach the order of K.

@ We repeat the same process until we reach the limit £ ~'/2 for
X5(0), (K2 for N¥(0)).
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Trajectory analysis from (K'/? to K1/2+)

NE = | K2,

Let us introduce the process:
CtK = K—1/2le((1/2t,
and define ({;); as the solution of the stochastic differential equation:
d¢ = aC?dt +1/2b(; dBy.
Consider
T(K€):=inf{t>0 : {(t) =K},
We have

. ,
A glw) — ASg(w)| < CETV2 (142%) (19w + 119" 1) -
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Invasion Dynamics: Analysis and Results  Trajectory Analysis

Conclusion
Probability of Invasion Approximated Model Dynamics
P x| (TD > TL\FJ) — 0, fora<1/2. | E* (F((N‘.K)g<5<¢ )INE > o) dW, = (2d + aW,)dt + v/2dW,dB,
Pz (To > TK) = /, with [ €]0,1[. (K= K-V2NE, dC, = aCldt + /200G dB,.
e
P o) (TU < TK> — 1, for B> 1/2. E&io] X () = 2x (8) (b — d) 2k (¢)),
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Thank You!
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