### Non irreducible infinite-dimensional SIS model

Kacem Lefki (LAMA)

Under the supervision of Jean-François Delmas (CERMICS) and Pierre-André Zitt (LAMA)

19 juin 2025



Kacem Lefki 19 juin 2025 1 / 28

### Outline

- 1 Infinite-dimensional SIS model
- 2 The matrix case
- 3 Atoms in infinite dimension
- 4 Characterization of equilibria



Kacem Lefki 19 juin 2025 2 / 28

### Outline

- Infinite-dimensional SIS model
- 2 The matrix case
- Atoms in infinite dimension
- 4 Characterization of equilibria

3 / 28

#### Framework

Heterogeneous SIS model (temporary infection + no immunity on recovery) with a *trait* (or *feature*) set  $\Omega$  such that:

- $(\Omega, \mathcal{F}, \mu)$ : measured space.
- $\bullet$   $\mu$  is a finite measure giving the population trait distribution.
- Individuals with the same trait have the same behavior.
- Individuals have the same trait over time.
- No birth and death.



Kacem Lefki

### Framework

Heterogeneous SIS model (temporary infection + no immunity on recovery) with a *trait* (or *feature*) set  $\Omega$  such that:

- $(\Omega, \mathcal{F}, \mu)$ : measured space.
- $\bullet$   $\mu$  is a finite measure giving the population trait distribution.
- Individuals with the same trait have the same behavior.
- Individuals have the same trait over time.
- No birth and death.

#### Examples:

- $\Omega = \{M, W\}$  (for STIs).
- $\Omega \subset \mathbb{R}^d$  (position).
- $\Omega \subset \mathbb{R}_+$  (age).
- Any cartesian product of the above examples.



Kacem Lefki

## Transmission equation

#### (Deterministic) Infinite-dimensional SIS model:

$$\partial_t u(t,x) = (1-u(t,x)) \int_{\Omega} k(x,y) u(t,y) \mu(\mathrm{d} y) - \gamma(x) u(t,x)$$

#### with:

- u(t,x): proportion of infected individuals at time t among individuals with trait x.
- k(x,y): infection rate from individuals with trait y to individuals with trait x.
- $\gamma(x)$ : recovery rate ( $\gamma$  is assumed bounded).



5 / 28

## Transmission equation

### (Deterministic) Infinite-dimensional SIS model:

$$\partial_t u(t,x) = (1-u(t,x)) \int_{\Omega} k(x,y) u(t,y) \mu(\mathrm{d} y) - \gamma(x) u(t,x)$$

with:

- u(t,x): proportion of infected individuals at time t among individuals with trait x.
- k(x,y): infection rate from individuals with trait y to individuals with trait x.
- $\gamma(x)$ : recovery rate ( $\gamma$  is assumed bounded).

For an initial condition  $h \in L^{\infty}$  with  $0 \le h \le 1$ , the ODE has a unique global solution on  $\mathbb{R}_+$ , it satisfies  $\forall t \in \mathbb{R}_+, \forall x \in \Omega, 0 \le u(t, x) \le 1$ .

 Kacem Lefki
 19 juin 2025
 5 / 28

## Equilibria

Let  $g \in L^{\infty}$  with  $0 \le g \le 1$ . g is an equilibrium when

$$0 = (1 - g(x)) \int_{\Omega} k(x, y) g(y) \mu(\mathrm{d}y) - \gamma(x) g(x).$$



6 / 28

## Equilibria

Let  $g \in L^{\infty}$  with  $0 \le g \le 1$ . g is an equilibrium when

$$0 = (1 - g(x)) \int_{\Omega} k(x, y) g(y) \mu(\mathrm{d}y) - \gamma(x) g(x).$$

- g = 0: disease-free equilibrium.
- $g \neq 0$ : endemic equilibrium.



Kacem Lefki 19 juin 2025 6 / 28

## A first long-time behavior result

 $\underline{R_0}$ : basic reproduction number (= expected number of individuals infected by a single infected individual).

Kacem Lefki 19 juin 2025 7 / 28

## A first long-time behavior result

 $\underline{R_0}$ : basic reproduction number (= expected number of individuals infected by a single infected individual).

In our model, we consider  $R_0 = \rho \left( (k(x,y)/\gamma(y))_{x,y \in \Omega} \right)$ .

Kacem Lefki 19 juin 2025 7 / 28

## A first long-time behavior result

 $\underline{R_0}$ : basic reproduction number (= expected number of individuals infected by a single infected individual).

In our model, we consider  $R_0 = \rho \left( (k(x,y)/\gamma(y))_{x,y \in \Omega} \right)$ .

## Theorem (Delmas, Dronnier, Zitt (2021))

Under some integrability assumptions on k and  $\gamma$ , we have:

- If  $R_0 \leq 1$ :
  - g = 0 is the only equilibrium.
  - $u(t,x) \rightarrow g = 0$ .
- If  $R_0 > 1$ , there exists (at least) an endemic equilibrium.
- If  $R_0 > 1$  and k is irreducible:
  - There exists a unique endemic equilibrium g\*.
  - Unless u(0) = 0,  $u(t,x) \rightarrow g^*$ .

Kacem Lefki 19 juin 2025 7/28

## Some questions

- What is an irreducible kernel?
- What if k is not irreducible ? Uniqueness ? Convergence ?

8 / 28

### Outline

- Infinite-dimensional SIS model
- 2 The matrix case
- Atoms in infinite dimension
- 4 Characterization of equilibria

9 / 28

## Graph associated to a matrix

In this section,  $\Omega$  is a finite set.

Transmission graph associated to k (who may infect who ?):

- Vertices: Ω
- Edges: An edge from j to i when  $k_{i,j} > 0$ .

10 / 28

## Graph associated to a matrix

In this section,  $\Omega$  is a finite set.

Transmission graph associated to k (who may infect who ?):

- Vertices: Ω
- Edges: An edge from j to i when  $k_{i,j} > 0$ .



Figure: West Nile Virus (Bowman et al. (2005))

Kacem Lefki 19 juin 2025 10 / 28

## **Irreducibility**

We say that k is *irreducible* if, for every two different vertices, there is a path from one of them to the other (= strongly connected graph).



Figure: West Nile Virus (Bowman et al. (2005))

#### Atom

For 
$$A \subset \Omega$$
, let  $k_A = (k(x, y))_{x,y \in A}$ .

The atoms of k are the maximal subsets A of  $\Omega$  such the graph of  $k_A$  is irreducible (= strongly connected components).



Figure: West Nile Virus (Bowman et al. (2005))

Kacem Lefki 19 juin 2025 12 / 28

### Outline

- Infinite-dimensional SIS model
- The matrix case
- 3 Atoms in infinite dimension
- 4 Characterization of equilibria

13 / 28

## Main issue

Now,  $\boldsymbol{\Omega}$  may be infinite.



14 / 28

### Main issue

Now,  $\Omega$  may be infinite.

Main issue: the "path" description does not hold.



14 / 28

#### Main issue

Now,  $\Omega$  may be infinite.

Main issue: the "path" description does not hold.

Solution: We use the density of edges leaving a set.

14 / 28

### Irreducible kernel

We say that  $A \subset \Omega$  measurable is *invariant* when

$$\int_{A^c\times A} k(x,y)\mu(\mathrm{d} x)\mu(\mathrm{d} y)=0.$$

Intuitively, A does not infect  $A^c$ .

Kacem Lefki 19 juin 2025 15 / 28

### Irreducible kernel

We say that  $A \subset \Omega$  measurable is *invariant* when

$$\int_{A^c \times A} k(x, y) \mu(\mathrm{d}x) \mu(\mathrm{d}y) = 0.$$

Intuitively, A does not infect  $A^c$ .

We say that k is *irreducible* when its only invariant sets are  $\emptyset$  and  $\Omega$ .

Kacem Lefki 19 juin 2025 15 / 28

#### Atoms

We say that a measurable set  $A \subset \Omega$  is *irreducible* when  $k_A = (k(x,y))_{x,y \in A}$  is irreducible.



16 / 28

#### Atoms

We say that a measurable set  $A \subset \Omega$  is *irreducible* when  $k_A = (k(x, y))_{x,y \in A}$  is irreducible.

The *atoms* of k are its maximal irreducible sets. Intuitively, the atoms are the maximal sets such that "anyone may infect anyone".



Kacem Lefki 19 juin 2025 16 / 28

### Atoms and $R_0$

Remider: We have 
$$R_0 = \rho \left( (k(x, y)/\gamma(y))_{x,y \in \Omega} \right)$$
.

For  $A \subset \Omega$  measurable, let  $R_0(A) = \rho\left((k(x,y)/\gamma(y))_{x,y\in A}\right)$  be its *intrinsic* basic reproduction number.



Kacem Lefki 19 juin 2025 17 / 28

## Atoms and $R_0$

Remider: We have 
$$R_0 = \rho \left( (k(x, y)/\gamma(y))_{x,y \in \Omega} \right)$$
.

For  $A \subset \Omega$  measurable, let  $R_0(A) = \rho\left(\left(k(x,y)/\gamma(y)\right)_{x,y\in A}\right)$  be its *intrinsic* basic reproduction number.

## Proposition (Schwartz (1961))

Under some integrability assumptions on k and  $\gamma$ :

$$R_0 = \max_{A \text{ atom}} R_0(A).$$



Kacem Lefki 19 juin 2025 17 / 28

## Atoms and $R_0$

Remider: We have 
$$R_0 = \rho \left( (k(x, y)/\gamma(y))_{x,y \in \Omega} \right)$$
.

For  $A \subset \Omega$  measurable, let  $R_0(A) = \rho\left(\left(k(x,y)/\gamma(y)\right)_{x,y\in A}\right)$  be its *intrinsic* basic reproduction number.

## Proposition (Schwartz (1961))

Under some integrability assumptions on k and  $\gamma$ :

$$R_0 = \max_{A \text{ atom}} R_0(A).$$

 $R_0$  does not depend on the value of k between atoms.

17 / 28

### Outline

- Infinite-dimensional SIS model
- The matrix case
- Atoms in infinite dimension
- 4 Characterization of equilibria

18 / 28

### Order relation on atoms

#### Order relation on atoms:

 $B \leqslant A$  when an outbreak starting in A may infect B (even through intermediate infections).



19 / 28

### Order relation on atoms

#### Order relation on atoms:

 $B \leqslant A$  when an outbreak starting in A may infect B (even through intermediate infections).



20 / 28

### Antichains of atoms

 $\{A_1, \ldots, A_n\}$  antichain of atoms when atoms are not comparable for  $\leq$ .



## Characterization of equilibria

- Supercritical atom:  $R_0(A) > 1$ .
- Supercritical antichain: Antichain with supercritical atoms.

Kacem Lefki 19 juin 2025 22 / 28

## Characterization of equilibria

- Supercritical atom:  $R_0(A) > 1$ .
- Supercritical antichain: Antichain with supercritical atoms.

## Theorem (Delmas, L., Zitt (2024))

Under some integrability assumptions on k and  $\gamma$ , there is a bijection between equilibria and supercritical antichains.



22 / 28

## Characterization of equilibria

- Supercritical atom:  $R_0(A) > 1$ .
- Supercritical antichain: Antichain with supercritical atoms.

## Theorem (Delmas, L., Zitt (2024))

Under some integrability assumptions on k and  $\gamma$ , there is a bijection between equilibria and supercritical antichains.

#### Consequence:

- When  $R_0 \leq 1$ , 0 is the only equilibrium.
- When  $R_0 > 1$ , there exists (at least) an endemic equilibrium.

Kacem Lefki

### Theorem (Delmas, L., Zitt (2024))

Under some integrability assumptions on k and  $\gamma$ , for any initial condition  $h \in L^{\infty}$  with  $0 \le h \le 1$ , u(t) converges to an equilibrium.

Kacem Lefki 19 juin 2025 23 / 28





4回 > 4回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回

24 / 28



t > 0

4回 > 4回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回 > 4 回

25 / 28







26 / 28





|ロト 4回 ト 4 E ト 4 E ト 9 Q C・

27 / 28

Thank you for your attention!

Kacem Lefki 19 juin 2025 28 / 28