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VAR(1) in a stationary setting

The First-order Vector Autoregressive (VAR(1)) model: x1 = ϵ1,
xt = ΛTxt−1 + ϵt for t > 1,
ϵt ∼ N (0,Ω)

where Λ ∈ Rn×n is a deterministic matrix. Assume Ω = ωIn. If the eigenvalues of
Λ are all smaller than 1 in absolute value, then as t goes to infinity, xt converges
in distribution to

x∞ ∼ N (0,Σ) ,

where Σ = (σij) ∈ Rn×n satisfies

Σ = ΛTΣΛ + ωIn.

Assume Σ is known, can we recover the support of Λ, i.e. the underlying graph
structure G?
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Graphical model

(a) The graphical VAR(1) model (b) The encoded graph G
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Motivation

Why VAR(1)?
The fluctuation process around the solution of the Lotka-Volterra (LV) equations1:

xt =
√
n (ηn

t − η∗
t )

When n → +∞, xt converges to a centered Gaussian process.

Robert May’s model2:
dxt
dt

= ΛTxt .

VAR(1) is simply a random version of May’s model.

VAR(1) is suitable for a subject rarely explored.

1. Akjouj, Imane, et al. ”Complex systems in ecology: a guided tour with large Lotka–Volterra models and
random matrices.” Proceedings of the Royal Society A 480.2285 (2024): 20230284.

2. May, R. M. Will a large complex system be stable? Nature 238, 5364 (1972), 413–414.
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Motivation

Why the stationary regime? / Why not time-series analysis?
Central topic: reconstruct the dynamic interaction network from the abundance
data captured in the ecosystem.

Sampling insufficiency problem1

Time-series sampling is too costly and are often sacrificed in practice. Instead, the
limited resources are used to cover as much ground as possible.

Example: Study of a global ocean cross-domain plankton co-occurrence network
with one-time-samplings of 200 stations2.

Results from time-series analysis are inapplicable.

1. Legendre, Pierre, Miquel De Cáceres, and Daniel Borcard. ”Community surveys through space and time:

testing the space–time interaction in the absence of replication.” Ecology 91.1 (2010): 262-272.

2. Chaffron, S., et al. ”Environmental vulnerability of the global ocean epipelagic plankton
community interactome. Sci Adv. 7 (35): eabg1921.” 2021.
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Related work

Recall
Σ = ΛTΣΛ + ωIn.

Majority of previous work → time series.

Young’s condition1 - counting the parameters

A necessary condition for identifiability is that the number of non-zero off-diagonal
elements of Λ be no more than n(n − 3)/2 and that n ≥ 5.

Drawback of Young’s condition:

Too weak;

Lack of interpretability;

Not a sufficient condition.

1. Young, William Chad, Ka Yee Yeung, and Adrian E. Raftery. ”Identifying dynamical time series model

parameters from equilibrium samples, with application to gene regulatory networks.” Statistical modelling 19.4

(2019): 444-465.
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Identifiability framework in algebraic statistics
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Parametrization

G = (V ,EG ): the graph corresponding to the support of Λ of a VAR(1) model.

Parameter space

Define:

MG := {Λ = (λij) ∈ Mn (R) | ρ(Λ) < 1, and λij = 0 if (i , j) /∈ EG} ,

where ρ(·) is the spectral radius. The parameter space is then MG × R+.

Parametrization map

ϕG : MG × R+ → Mn (R)
(Λ, ω) 7→ Σ, s.t. Σ = ΛTΣΛ + ωIn.

ϕG is well defined because when
(
In2 − ΛT ⊗ ΛT

)−1
is invertible,

Σ = ΛTΣΛ + ωIn ⇔ vec (Σ) =
(
In2 − ΛT ⊗ ΛT

)−1
vec (ωIn) .
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Statistical model

ϕG : (Λ, ω) 7→ Σ, s.t. Σ = ΛTΣΛ + ωIn.

The stationary VAR(1) model

By abuse of notation, define the stationary VAR(1) model MG corresponding to
a graph G as the following set of matrices:

MG =
{
Σ | Σ = ΛTΣΛ + ωIn,Λ ∈ MG , ω ∈ R+

}
.

MG is

the image of the parametrization map ϕG ,

the set of all possible covariance matrices of the stationary distribution
corresponds to a graph G .

Bixuan Liu VAR(1)
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Global identifiability

Given a finite family of VAR(1) models {Mi}Ki=1 and associated graphs

{Gi = (V ,EGi )}
K
i=1, where K ∈ N∗, then this family of models are identifiable if

for any distinct pair (i1, i2) of values of i , Mi1 and Mi2 are identifiable.

Global identifiability

Two stationary VAR(1) models M1 and M2 are globally identifiable if

M1 ∩M2 = ∅.

Global identifiability is too strong.

Fix ω = 1,

Λ1 =

 0.50 0.70 0.00
0.00 0.90 0.00
0.00 0.80 0.40

 , Λ2 =

 0.50 0.67 −0.01
0.00 0.94 0.02
0.00 0.00 0.38


⇒ Σ =

 1.33 0.85 0.00
0.85 22.85 0.60
0.00 0.60 1.19

 .
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Supervised by: Stéphane Robin and Viet Chi Tran [0.5em] Aussois, June 19th, 2025
12 / 26



Generic identifiability

MG admits an algebraic dimension.

Generic identifiability

Two stationary VAR(1) models M1 and M2 are generically identifiable if

dim (M1 ∩M2) < max {dim (M1) , dim (M2)} .

Models with different dimensions are generically identifiable.

If we can calculate the dimension of the model, we can focus on the
identifiability of models with the same dimension.
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Model dimension and the Jacobian matrix

Recall the parametrization map:

ϕG : (Λ, ω) 7→ Σ, s.t. Σ = ΛTΣΛ + ωIn.

Jacobian matrix
The Jacobian matrix of the model is

JG =

(
∂ (ϕG )j
∂θi

)
, 1 ≤ i ≤ EG + 1, 1 ≤ j ≤ n(1 + n)

2
,

where EG is the number of edges in G , (ϕG )j ’s are the distinct entries of Σ, and
θi ’s are the entries of Λ and ω.

Proposition

dim (MG ) = rank (JG )

Proof: It’s sufficient to prove that ϕG is a rational map.
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Supervised by: Stéphane Robin and Viet Chi Tran [0.5em] Aussois, June 19th, 2025
14 / 26



Jacobian matroid

How to deal with models with the same dimension?

Linear matroid

Let A ∈ Mm×n (R) be a matrix, then the matroid defined by the column
independence of A is the pair {E , I}, where E = {1, · · · , n}, representing the n
columns of A, and

I =
{
S ⊆ E | AS are linearly independent

}
,

where AS represents the set of columns of A corresponding to the coordinates S .

Jacobian matroid

The Jacobian matroid of the stationary VAR(1) model MG , denoted as J (MG ),
is the matroid defined by the column independence of the Jacobian matrix.
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Characterization with Jacobian matroids

Proposition1

Let M1 and M2 be two stationary VAR(1) models. Assume that
dim (M1) ≥ dim (M2). If there exists a subset S of the coordinates such that

S ∈ J (M2) \J (M1) ,

then dim (M1 ∩M2) < min {dim (M1) , dim (M2)}.

A direct result: if dim (M1) = dim (M2), then the condition can be transformed to

S ∈ J (M1) \J (M2) or S ∈ J (M2) \J (M1) .

1. Sullivant, Seth. Algebraic statistics. Vol. 194. American Mathematical Society, 2023.
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Identifiability Results
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Maximal class - definition with illustration

The Strongly Connected Components (SCCs) of the graph are:

{1, 2, 3} , {4}, {5}, {6},

The SCCs with in-degree zero ({1, 2, 3} and {5}) are defined as the sources. The
set of maximal classes is:

{{1, 2, 3, 4, 6} , {4, 5, 6}} ,

where the nodes in bold are sources of the respective maximal classes.
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Model dimension

Theorem 11: model dimension

Let MG be a stationary VAR(1) model where G does not contain multi-edges,
then

rank(JG ) = min {nr , n′c} , (1)

where

nr = EG + 1;

n′c = | {{a, b} | a, b ∈ [n] , a, b belong to the same maximal class} |.

MC = {{1, 2, 3, 4}, {3, 5}} ;
nr =EG + 1 = 5 + 4 + 1 = 10;

n′c =5 +

(
4
2

)
+

(
2
2

)
= 12.

Therefore,
dim (MG ) = rank (JG ) = min {nr , n′c} = 10.

1. Liu, Bixuan. ”Identifiability of VAR (1) model in a stationary setting.” arXiv preprint arXiv:2504.03466
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Maximal class characterization

Theorem 21: Models with the same dimension

Let M1 and M2 be two stationary VAR(1) models s.t. dim (M1) = dim (M2).
Then M1 and M2 are generically identifiable if G1 and G2 have different maximal
classes.

Theorem 31: Models with unknown dimensions

Let M1 and M2 be two stationary VAR(1) models. Then M1 and M2 are
generically identifiable if

1 there exist i , j ∈ [n] s.t. i , j belong to the same maximal class in G1, but do
not in G2, and

2 there exist s, t ∈ [n] s.t. s, t belong to the same maximal class in G2, but do
not in G1.

1. Liu, Bixuan. ”Identifiability of VAR (1) model in a stationary setting.” arXiv preprint arXiv:2504.03466

(2025).
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Supervised by: Stéphane Robin and Viet Chi Tran [0.5em] Aussois, June 19th, 2025
20 / 26



Summary of identifiability results

M1 and M2 are generically identifiable if

Condition Example

G1 and G2 do
not contain
multi-edges

dim (M1) = dim (M2),
and MC1 ̸= MC2

G1 G2

dim (M1) ̸= dim (M2) G1 G2

G1 or G2

contains multi-
edges

Theorem 3 is satisfied G1 G2
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Summary of identifiability results

M1 and M2 do not satisfy the identifiability criteria in this paper if

Condition Example

G1 and G2 do
not contain
multi-edges

dim (M1) = dim (M2)
and MC1 = MC2

G1 G2

G1 or G2

contains multi-
edges

Theorem 3 is not satis-
fied

G1 G2 is any
graph
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Thank you for your attention!
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Bipartite graphs with prior classification

Proposition

Any directed bipartite graphs are (generically) identifiable if the nodes are
primarily classified.

Figure: Example of ecological networks1

The maximal classes are:

{{1, 6, 7}, {2, 6, 7, 8, 9}, {3, 6, 7, 8, 9, 10}, {4, 6}, {5, 6}} .

If we already know that species 1− 5 are
resources, and species 6− 10 are
consumers, then each maximal class
contains exactly one resource and all the
consumers it feeds, thus the whole graph
is identifiable.

1. Ings, Montoya, Bascompte, Blüthgen, Brown, Dormann, Woodward, Journal of animal ecology, 2009
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Bipartite graphs without prior classification

Figure: Example of ecological networks1

The maximal classes are:

{{1, 6, 7}, {2, 6, 7, 8, 9}, {3, 6, 7, 8, 9, 10}, {4, 6}, {5, 6}} .

If we do not know who are the resources,
or who are the consumers, then we may
not be able to recover the whole graph.
But we know that each maximal class
contains exactly one resource and all the
consumers it feeds.

1. Ings, Montoya, Bascompte, Blüthgen, Brown, Dormann, Woodward, Journal of animal ecology, 2009
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Resilience of the network

Maximal classes can sometimes indicate the resilience of the network.

Proposition

If two maximal classes are disjoint, the nodes from one maximal class are
completely unrelated to the ones from the other.

Figure: Example of ecological networks1

Maximal classes of A:

{{1, 2, 3}, {4, 5, 6}} .

Maximal classes of B:

{{1, 2, 3, 6}, {3, 4, 5, 6}} .

In this case, A is more resilient than B.

1. Ings, Montoya, Bascompte, Blüthgen, Brown, Dormann, Woodward, Journal of animal ecology, 2009

Bixuan Liu VAR(1)
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