Propagation of exchangeability and moment duality

Ariel Offenstadt

Ecole de printemps de la chaire MMB

Joint work with : Arno Siri Jégousse (Universidad Nacional Autónoma de México), Adrian Gonzalez Casanova (Arizona State University)

18/06/2025

→ □ ト → □ ト → 三 ト → 三 → つへの

Ariel Offenstadt 18/06/2025 1/26

Contents

- Exchangeability
- Propagation of exchangeability
- Moment duality
- 4 An application

Exchangeability

A random vector $(X_1, ..., X_n)$ is exchangeable if

$$(X_1,...,X_n)\stackrel{\mathcal{D}}{=} (X_{\pi(1)},...,X_{\pi(n)}) \text{ for } \pi \in \mathcal{S}_n$$

Example :
$$\mathbb{P}(X_1 = 1, X_2 = 1) = \mathbb{P}(X_1 = 0, X_2 = 0) = \frac{1}{2}$$
. $X_1, X_2 \sim \mathcal{B}(\frac{1}{2})$ but not independent !

ightarrow Exchangeability allows to get rid of independence

Propagation of exchangeability

Model: initial types

Infinite countable population with types in $\{0,1\}$ initially given by $(X_i^{(0)})_{i\in\mathbb{N}}$ exchangeable.

 $(X_5^{(0)})$

Gen 0

Model: discrete generations

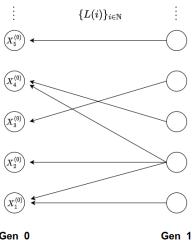
Discrete non-overlapping generations.

Gen 1

6/26

Model: ancestors picking

Choice of parents given by $\{L(i)\}_{i\in\mathbb{N}}$, with L(i) potential ancestors of individual i.



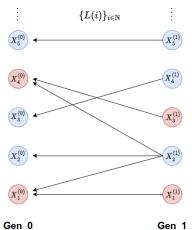
Gen 0 Gen 1

7/26

Ariel Offenstadt 18/06/2025

Model: type inheritance

For
$$i \in \mathbb{N}$$
, set $X_i^{(1)} = \inf_{j \in L(i)} X_j^{(0)}$.



 Ariel Offenstadt
 18/06/2025
 8 / 26

How to propagate exchangeability?

Definition 1: Propagation of exchangeability

We say that the random function L propagates exchangeability if whenever $(X_i^{(0)})_{i\in\mathbb{N}}$ is exchangeable, also $(X_i^{(1)})_{i\in\mathbb{N}}$ is exchangeable.

Examples in finite population:

- ullet Wright-Fisher model o i.i.d. choice of parents
- ullet Cannings model o exchangeable choice of parents

Theorem

Set $L: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ with $L(S) = \bigcup_{i \in S} L(i)$.

Definition 2: Forgetfulness

We say that L is forgetful if $|L(S)| \stackrel{d}{=} |L(S')|$ for all samples $S, S' \subset \mathbb{N}$ such that |S| = |S'|.

Theorem 1

L propagates exchangeability if and only if L is forgetful

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Examples

• **Discrete** Λ -**lookdown**: Select a subgroup $G \in \mathcal{P}(\mathbb{N})$ and set $R := \inf G$. If $i \in G$, $L(i) = \{R\}$, else L(i) is the smallest *free* individual.

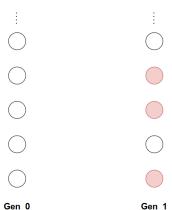
• **Branching**: $\{\xi_i\}_{i\in\mathbb{N}}$ i.i.d. \mathbb{N}_0 -valued random variables. Define $\{L(i)\}_{i\in\mathbb{N}}$ by the rule: $j\in L(i)$ if and only if

$$\sum_{l=1}^{i-1} \xi_l < j \le \sum_{l=1}^{i} \xi_l$$

.

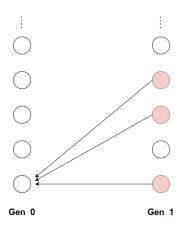
Example 1 : discrete Λ -lookdown

Select a subgroup $G \in \mathcal{P}(\mathbb{N})$ and set $R := \inf G$.



Example 1 : discrete Λ -lookdown

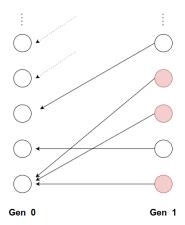
Select a subgroup $G \in \mathcal{P}(\mathbb{N})$ and set $R := \inf G$. If $i \in G$, $L(i) = \{R\}$, else L(i) is the smallest *free* individual.



Ariel Offenstadt 18/06/2025 13 / 26

Example 1 : discrete Λ -lookdown

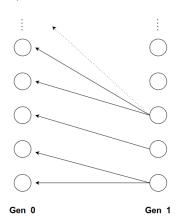
Select a subgroup $G \in \mathcal{P}(\mathbb{N})$ and set $R := \inf G$. If $i \in G$, $L(i) = \{R\}$, else L(i) is the smallest *free* individual.



4□ > 4□ > 4□ > 4 = > = 900

Example 2: branching

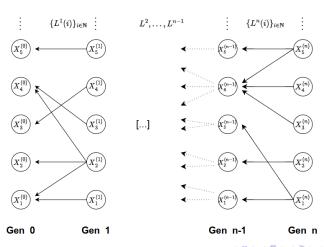
Set $j \in L(i)$ if and only if $\sum_{l=1}^{i-1} \xi_l < j \le \sum_{l=1}^{i} \xi_l$ where $\{\xi_i\}_{i \in \mathbb{N}}$ i.i.d. in \mathbb{N}_0 . $\xi_1 = 2, \xi_2 = 1, \xi_3 = 3, \dots$



Moment duality

Forward process

 \to Construct a $\{0,1\}^{\mathbb{N}}$ -valued discrete process started at $(X_i^{(0)})_{i\in\mathbb{N}}$ with $\{L^{(k)}\}_{k\in\mathbb{N}}$ i.i.d.



Ariel Offenstadt 18/06/2025 17/26

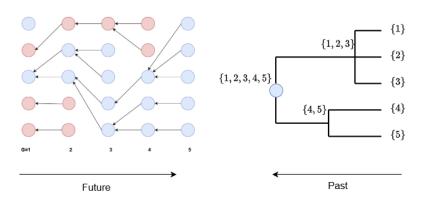
Forward process

If L is forgetful, then for every $k \in \mathbb{N}$, the sequence $(X_i^{(k)})_{i \in \mathbb{N}}$ is exchangeable.

By De Finetti's theorem, for every $k \in \mathbb{N}$, there exists Θ_k random variable in [0,1] s.t. :

- $\bullet_k \stackrel{a.s.}{=} \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^N X_j^{(k)}$
- ② Conditionally on Θ_k , the $X_i^{(k)}$ are i.i.d with law $\mathcal{B}(\Theta_k)$
- \rightarrow The process $(\Theta_k)_{k>0}$ is Markov by construction.

Duality



Backward process and moment duality

Definition 3: Backward process

Define the \mathbb{N} -valued Markov process $(A_k)_{k\geq 0}$ as the block-counting process associated with L:

for
$$n, m \in \mathbb{N}$$
, $\mathbb{P}(A_1 = m | A_0 = n) = \mathbb{P}(|L(\{1, ..., n\})| = m)$

Theorem 2

Assuming L is forgetful, the forward and backward processes are moment dual, i.e.

$$\mathbb{E}_{x}[\Theta_{k}^{n}] = \mathbb{E}_{n}[x^{A_{k}}]$$

with $\Theta_0 = x$, $A_0 = n$.

4014814515 5 000

Ariel Offenstadt 18/0

An application

Construction of lookdown models

Combine Theorems 1&2: Construct a discrete forward process dual to a known backward process induced by the appropriate L function.

Lookdown models (Donnelly & Kurtz 1999): Countable representation of famous diffusions.

- → Kingman coalescent : already exists but easier proof.
- \rightarrow Ξ -lookdown with selection : new construction (to our knowledge)

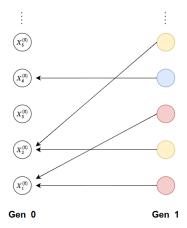
Questions

- Beyond the $\{0,1\}$ case ?
- Inventory of possible L functions ?
- 3 Links with graph theory?

THANK YOU!

Example: **Ξ-lookdown**

Divide \mathbb{N} into groups $G_1, G_2, G_3...$ Then if $i \in G_j$, set $L(i) = \{\inf G_j\}$



Approximation Poisson

