

Mathematical modeling of age-structured natural populations

- Age-structured natural populations can be modeled using **stochastic individual-based models** (Fournier and Méléard, 2004; Tran, 2008; ...).
- A large class of structured population models, including:
 - interactions,
 - non-stationary phenomena (shocks, varying environments, ...),
 - changing individual characteristics.
- **Advantages:**
 - Theoretical framework: pathwise representations, large-population approximations by partial differential equations, ...
 - Exact efficient simulation (R library `IBMPopSim`, Giorgi and Lemaire) : allows the computation of population indicator (health, viability, ...)

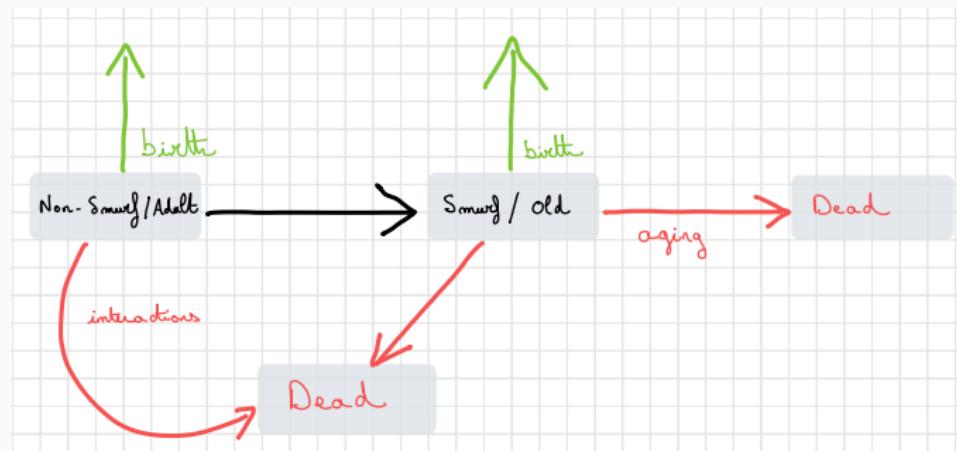
First goal: build model of aging in natural populations and explore parameter spaces/ compatibility with experimental measurements.

Modelling aging in the wild

Individuals $I = (\tau^b, \tau^d, x)$ characterized by their

- date of birth τ^b (age $a(t) = t - \tau^b$)
- date of death τ^d (∞ if alive)
- smurf phenotype $x = NS$ or S .

Events



A first model

Transition rates

$$\mathbb{P}(\text{event } e \text{ occurs to an individual } I \in (t, t + \mathfrak{t}] | \mathcal{F}_t) \simeq \lambda_t^e(I, Z_t) \mathfrak{t}.$$

- Demographic rates for $I = (\tau^b, \tau^d, x) \in \mathbb{R}^+ \times \mathbb{R}^+ \times \{NS, S\}$:

- **Death rate:**

$$\lambda^d(t, I, Z_t) = d \mathbf{1}_{\{x=S\}} + c_d N_t^{NS}.$$

- **Birth rate:**

$$\lambda^b(t, I) = b_{NS} \mathbf{1}_{\{x=NS\}} + b_S \mathbf{1}_{\{x=S\}}, \quad b_S \ll b_{NS}.$$

- Transition NS to S: *Do interactions accelerate ageing?*

$$\lambda^s(t, I, Z_t) = k_S(a(t)) + c_s N_t^{NS}.$$

- Arrivals in the population at constant rate μ .

Numerical results

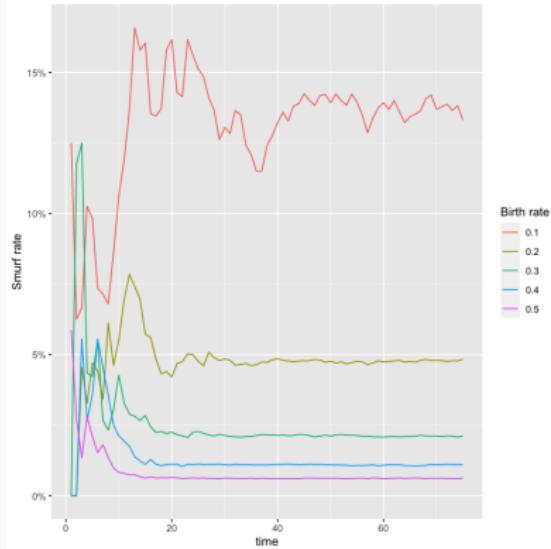


Figure 1: Smurf rate

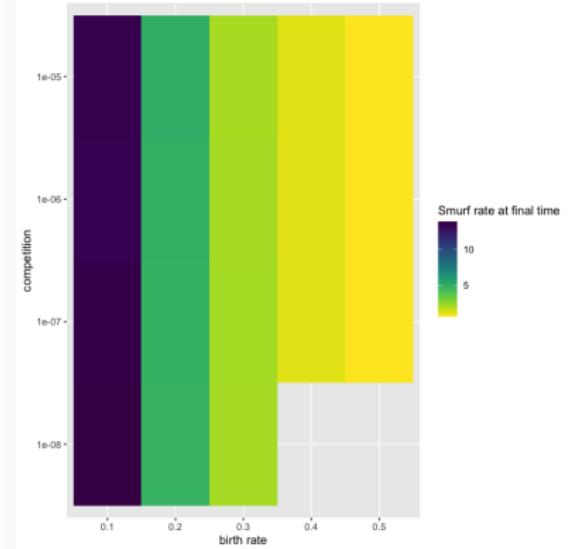


Figure 2: Smurf rate (birth rate vs c_d)

- Parameters: $c_s = 0$ (no acceleration of ageing due to environmental stress), $\mu = 9$, $b_s = 0$, $c_d = 10^{-6}$ (Figure 1).

Numerical results: impact of c_s

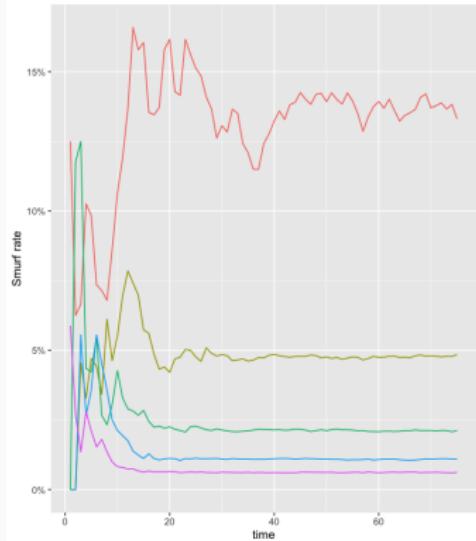


Figure 3: Smurf rate $c_s = 0$

Parameters: $c_d = 10^{-6}$, $\mu = 9$.

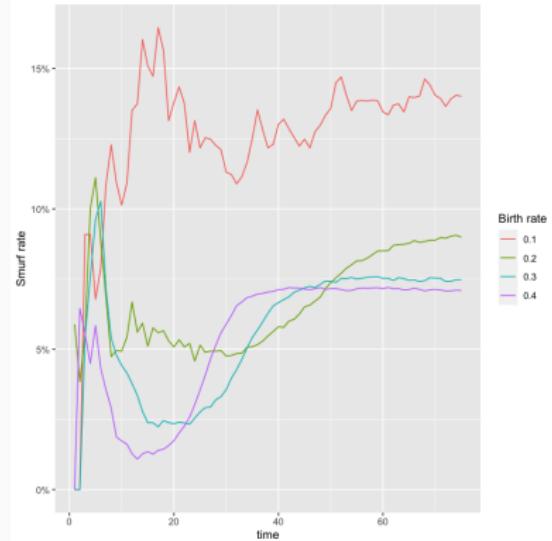


Figure 4: Smurf rate $c_s = 10^{-7}$

Numerical results

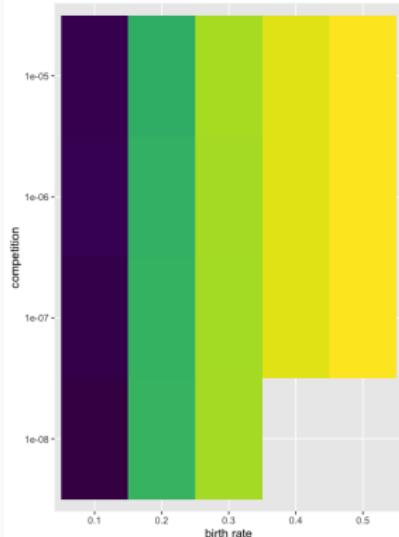


Figure 5: Smurf rate (birth rate vs c_d , $c_s = 0$)

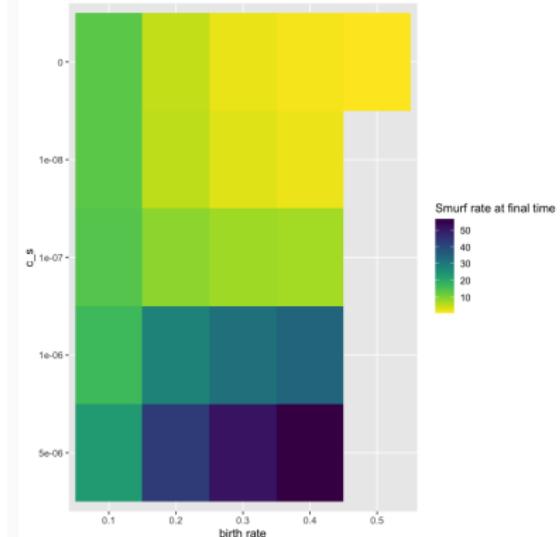


Figure 6: Smurf rate (birth rate vs c_s , $c_d = 10^{-6}$)

Large population approximation

Generalisation and large population approximation

- $n_{NS}(a, t)$: population density of non smurf of age a at time t .
- $n_S(u, t)$: population density of smurf of "smurf age" u at time t .

$$\begin{cases} (\partial_a + \partial_t)n_{NS}(a, t) = -c_d(N_{NS}(t), N_S(t))n_{NS}(a, t) \\ \quad - (k_s(a) + c_s(N_{NS}(t), N_S(t)))n_{NS}(a, t), \\ (\partial_a + \partial_t)n_S(u, t) = (-k_d(u) - \tilde{c}_d(N_{NS}(t), N_S(t)))n_S(u, t), \\ n_{NS}(0, t) = \int_0^\infty (b_{NS}(a)n_{NS}(a, t) + b_S(a)n_S(a, t))da, \\ n_S(0, t) = \int_0^\infty (k_s(a) + c_s(N_{NS}(t), N_S(t)))n_{NS}(a, t)da \end{cases}$$

- With, $N_x(t) = \int_0^\infty n_x(a, t)da$, $x = NS$ or S .

Study of existence, steady state and stability (L. Breuil)

Non parametric inference of individual transition and death rate

A first question How can we estimate "individual" rates functions k_S and k_d ?

- Going back to lab data:

- INDIVIDUAL DATA Cohort of 1159 of females *drosophila melanogaster* (age of 10 days) in **individual vials**.
- Observations: $(\tau_{NS}^i, \tau_S^i)_{i=1, \dots, m}$, i.i.d.

$$\mathbb{P}(\tau^{NS} \geq t) = e^{- \int_0^t k_S(u) du}, \quad \mathbb{P}(\tau^S \geq a) = e^{- \int_0^a k_d(u) du}$$

Non-parametric kernel estimation using **associated kernels**

- Associates kernels overcome boundary bias estimation issue of standard kernels.
- Asymptotic expansion of MISE, CLT, adaptive bandwidth choice.

Nonparametric hazard rate estimation with associated kernels and minimax bandwidth choice,
Breuil, K., preprint (2025)

Smurf transition rate and death rate

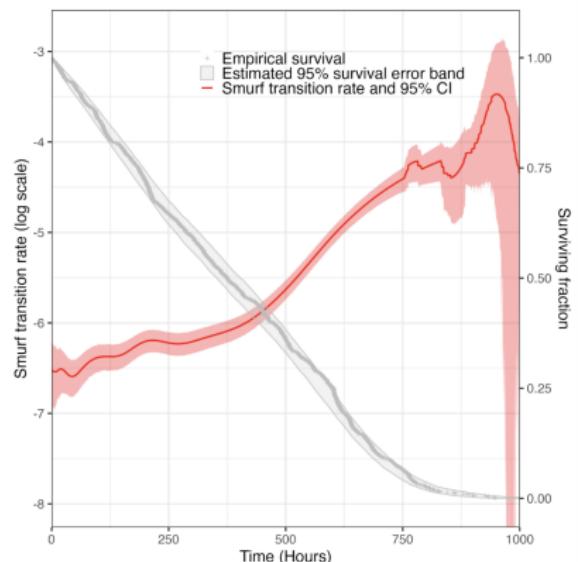


Figure 7: Smurf transition rate

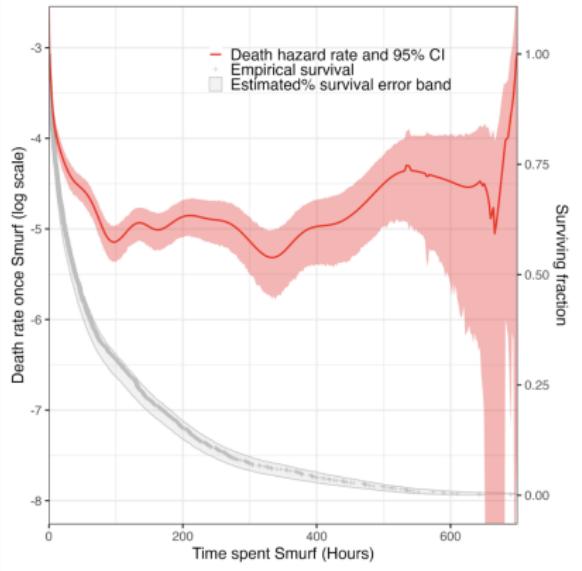


Figure 8: Death rate once smurf

*Two-phase ageing model : a comprehensive statistical analysis,
Breuil, Doumic, K. and M. Rera, in preparation.*

Perspectives

Coming back to natural populations (with overlapping generations)

- Inference with population data instead of individual data.
- Impact of interactions/competition on aging:
 - Study of drosophila population in simulated/controlled natural environment (ECOTRON).
 - Inference and statistical test for impact of environmental stress on aging.
- Estimation of demographic indicators with observations of the number (or proportion) of Smurf/Non-Smurf individuals over time?

An interdisciplinary research project that started thanks to the Chaire MMB and is supported by the ERC project SINGER, the IMPT and the ANR project *MATURE*.

Thank you!

