Assessing ageing in natural populations
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No time for ageing in the wild

Our expectations about aging in wild populations have been influenced by the classic evolutionary theories of aging
and empirical shortcomings. The general hypothesis was that life in the wild is short, and hard, and that genes
governing late life processes in the wild do not matter because few survive to old age. Evolutionary theories of
aging suggest that aging exists because of the declining force of selection on late age-specific traits (Hamilton 1966,
Medawar 1952, Williams 1957). Medawar (1952) suggested that aging could only be demonstrated in “captive,”
protected environments, in which animals are protected from natural hazards and can thus survive to ages never
seen in the wild. This expectation, that aging cannot be found in the wild, has been quoted for the past 50 years
(Kirkwood & Austad 2000), and empirically there were few demographic studies of individuals of known age to
contradict this assertion. Recent theoretical work (Baudisch 2005, Williams et al. 2006) challenges some of these
classic expectations, and long-term empirical studies of marked individuals demonstrate that the aging phenotype
is an important phase of the life history in wild populations.
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Intuitive definition of ageing
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Classical approach for studying ageing
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Hallmarks of ageing in a continuous ageing process
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Hallmarks of ageing in a continuous ageing process
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Hallmarks of ageing in a continuous ageing process
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Studying ageing as a two-phase, discontinuous process
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A Simple Assay To Identify Individuals About To Die Of Natural Causes
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Smurfness is an age-dependent phenotype
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Smurfness is a « physiological age »-dependent phenotype
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Every individuals turns Smurf prior to death
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The 2-Phase Model Of Ageing
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Hallmarks of ageing in the 2-Phase Model
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Hallmarks of ageing in the 2-Phase Model
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Hallmarks of ageing in the 2-Phase Model
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Hallmarks of ageing in the 2-Phase Model
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Hallmarks of ageing in the 2-Phase Model
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A broadly relevant model of ageing
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An evolutionarily conserved End-Of-Life phenotype

The 2-Phase Model of Ageing is evolutionarily conserved

Drosophila
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An evolutionarily conserved End-Of-Life phenotype

The 2-Phase Model of Ageing is evolutionarily conserved

Drosophila Nematode
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An evolutionarily conserved End-Of-Life phenotype

The 2-Phase Model of Ageing is evolutionarily conserved

Drosophila Nematode Killifish Zebrafish
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An evolutionarily conserved End-Of-Life phenotype

The 2-Phase Model of Ageing is evolutionarily conserved

Drosophila Nematode Killifish Zebrafish
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A “public” path to death: mice

Dr. Céline Cansell
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Smurfness in mice
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A “public” path to death: mice
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A “public” path to death: mice
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Proposing a simple birth-death model
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Evolution of the system
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No time for ageing in the wild!?

Our expectations about aging in wild populations have been influenced by the classic evolutionary theories of aging
and empirical shortcomings. The general hypothesis was that life in the wild is short, and hard, and that genes
governing late life processes in the wild do not matter because few survive to old age. Evolutionary theories of
aging suggest that aging exists because of the declining force of selection on late age-specific traits (Hamilton 1966,
Medawar 1952, Williams 1957). Medawar (1952) suggested that aging could only be demonstrated in “captive,”
protected environments, in which animals are protected from natural hazards and can thus survive to ages never
seen in the wild. This expectation, that aging cannot be found in the wild, has been quoted for the past 50 years
(Kirkwood & Austad 2000), and empirically there were few demographic studies of individuals of known age to
contradict this assertion. Recent theoretical work (Baudisch 2005, Williams et al. 2006) challenges some of these
classic expectations, and long-term empirical studies of marked individuals demonstrate that the aging phenotype
is an important phase of the life history in wild populations.
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Searching for wild flies
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A two-phase ageing process present in wild populations
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A two-phase ageing process present in wild populations
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estimate the “health” of natural
populations
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Modeling ageing in wild populations
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Modeling ageing in wild populations
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A novel framework for studying ageing
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Changing paradigm
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Changing paradigm
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Changing paradigm
Classic framework 2-phase ageing framework
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Our approach separates chronology and physiology

Percent survival

1004

504

Understanding the increase in

=
o

©
N

Proportion of Smurfs
=)
o

o
AN
1

age-dependent risks

o

’ L L} L] 1
10 20 30 40 50
Age (days)

42


#

Our approach separates chronology and physiology
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There is a Smurf-specific signature

PC2: 13% variance
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