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Work in progress in collaboration with Y.-T. Chen.
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MRCA and bottleneck in an elementary size-varying population model
The model

Model for constant size population

o Finite population: Moran process (1958) or Wright-Fishenodel
(1930-1931).

o Infinite population: Fleming-Viot (1979) process.

o Coalescent (genealogical) tree (Moran process and itstanfin
population limit): Kingman (1982).

@ Coalescent tree with multiple collisions: Pitman (1999 &agitov
(1999) (finite population: Cannings’ model (1974); infinitepulation:
Fleming-Viot historical process from Dawson-Perkins (199
Bertoin-Le Gall (2003) stochastic flows).

o Representation for the genealogy of the Fleming-Viot pseassing the
look-down process from Donnelly-Kurtz (1999).
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MRCA and bottleneck in an elementary size-varying population model
The model

Wright-Fisher model

Genealogy witiN = 5 individuals over 10 generations.
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MRCA and bottleneck in an elementary size-varying population model
The model

Wright-Fisher model

Genealogy witiN = 20 individuals over 60 generations.
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MRCA and bottleneck in an elementary size-varying population model
The model

Model for random size population

@ Finite population: Galton-Watson process (1873).
@ Infinite population.

e Population size is a Continuous State Branching processa Ji1958).
o Population genealogy given by Dawson (1975)- Watanabe8)196
historical super-process.
o Quadratic case (2 individuals merge together)
¢ Conditionally on having a constant population size, the Bmw\Watanabe
super-process is a Fleming-Viot process: Etheridge-M&t681).
@ Use atime change (with speed proportional to the inverskeopbpulation
size) to get Fleming-Viot process from a Dawson-Watanalpersprocess:
Perkins (1991).
o In thea-stable case, see Birkner-Blath-Capaldo-Etheridge{stoh
Schweinsberg-Wakolbinger (2005), a time change of therspimeess
genealogical tree gives a coalescent tree.

@ See also Kaj-Krone (2003) or Jagers-Sagitov (2004) forradmedom
size population models (finite to infinite population), waene
recovers the Kingman coalescent through a random time ehang
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MRCA and bottleneck in an elementary size-varying population model
The model

Model for stationary random size population
Let Z; be the size of the population at tinhe
@ Neutral populatior—- BRANCHING PROCESS. But:

o Galton-Watson process or CSBP (or Dawson-Watanabe p)aedubit
eitherextinction (lim— 4. Z: = 0) or exponential explosion
(limi— 400 Zt/p" exists and is non trivial for some > 1).

o Critical (Z: constant in mean) @ub-critical (Z; decreasing in mean)
case provides a.s. extinctioBuper-critical (Z; increasing in mean) case
provides explosion with positive probability.

o The starting time of the process plays an important roletbudistribution
for a current population is not clear.

@ Instead, one can use:

¢ The Yaglom (1947) distribution, that is the limit distrilbn of Z; in the
sub-critical or critical case conditionally diz; > 0} ast — +oco. See
also the theory ofjuasi-stationary distributions.

o TheQ-process, that is the limit distribution o¥; in the sub-critical or
critical case conditionally on non-extinction (that is ilsh case
conditionally on{Zi;t > 0} asT — +0). See Roelly-Rouault (1989),
see also Lambert (2007).
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MRCA and bottleneck in an elementary size-varying population model
The model

Mathematical model fobranching process
@ Branching mechanism:

P(\) = @\ + SN2 + / m(de) (e =1+ \0),
(0,+00)
a€R, >0 a”df(o,+oo) 7(dl) £ A 02 < +oo.
o We assumeg > O orm # O.
@ ¢ is convexC> on (0, +o00), ¥'(0) € [—o0, +00),
Mo 400 W(A)/A = +o00.
o 1)-CSBP(Z;,t > 0) is a Markov process s.Ey = x underPy and

A dv
Ey[e %] = e and / — =t
uny Y(V)

o Excursion measuréN[1 — e 4] = limy_o 2 E,[1 — e7*4] = u(A\, t).
o E,[Z] = xe ¥'(Ot, So the CSBP is sub-critical if’ (0) > 0, critical if
1'(0) = 0 or super-critical iy’ (0) < 0.
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MRCA and bottleneck in an elementary size-varying population model
The model

Williams’ decomposition an@-process
We consider the sub-critical case with strong extinctioe: inf{t; Z; = 0}

dv
finite a.s. or equalentl;/ < +00. We set

¥(v)
c(t) =N[r > 1] thatis Py(r <t) =e XV,

@ Williams’ decomposition (Abraham-D (2009)): cond. enr= h,
e one individual is alive up to timh,
e atrates Bdt it gives birth to a population starting with an infinitesimal
mass and distributed &§dz; r < h — ],
o at rateddt it gives birth to a population distributed &s[dZ; 7 < h —1],
where the initial maséis distributed ag e "~V 7 (de).
@ Q-process: fix and leth — +oo to get an immortal individual which
¢ atrates Bdt gives birth to a population starting with an infinitesimalssa
and distributed a®l[dZ],
o at ratedit gives birth to a population distributed Bg[dZ], where the
initial mass¢ is distributed ag 7 (d¢).

J.-F. Delmas  (Cermics) January 2010 Ecole Polytechnique 9/16



MRCA and bottleneck in an elementary size-varying population model
The model

Q-process and stationary distribution

@ TheQ process has a stationary distribution. We considepeocess
(Z;,t € R) under its stationary measure.

o Stationary distributior=> removet in all formula: Z for Z;.

E {ef,\z} — e S ) r

with (X)) = ¥(\) — @
o Interpretation: an immortal individual gives birth to sabtical
population (can also be seen as an immigration).

@ Notice: genealogy of Fleming-Viot process given by lookvdo
process has also an immortal individual which gives birth to
sub-population with extinction.
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MRCA and bottleneck in an elementary size-varying population model
The model

Quadratic case (2 individuals merge together) |

Let (Ex, k € N*) be i.i.d. exponential r.v. with mean 1.
We have

o P(\) = pBN2+260), 6>0.
e Extinction probability for the sub-critical CSBP:

20

ct) =N[r >t = P

o Feller diffusion:

dzZ; = \/23Z; dW, + 26(1 — 6Z) dt.

o Stationary distributionz < 5 (E1+ Ep)

o E[Z] = 1/6.
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MRCA and bottleneck in an elementary size-varying population model
L Bottleneck effect at the MRCA

Time to the MRCA, population size at the MRCA

@ A=time to the MRCA of the population (at fixed tinte

Z” size of the population at the MRCA time (thatd8 = Z;_,).
Explicit formula for the distribution ofZ, A, Z*).

Conditionally onA, Z andZ* are independent.

P(A € [0,1]) = E[e Y7 and densityfa(t) = ¢/ (c(t))E[e"¢V7].
Distribution of ZA.

¢ ¢ © ¢ ¢

E {e—(u-kc(t))z}

Eler?a=1] = e

@ Bottleneck effectP(Z* < ZA=1t) > P(Z < 2).

| 27 is stoch. less tha. |
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MRCA and bottleneck in an elementary size-varying population model
L Bottleneck effect at the MRCA

Quadratic case II: Bottleneck effect

Let (Ex, k € N*) be i.i.d. exponential r.v. with mean 1. We have:
o Cond. on{A =t},

s@ 1 a@ 1
Z= — (Bt +E+E d 222 ——— Es).
20—|—C(t)( 1+Ex2+E3) an 20—|—C(t)(E4+ 5)
A 2
e EZ |A:t]:§E[Z|A:t].
I 11
o]P’(ZA<Z|A:t):]P’(E4+E5<E1+E2+E3):1—6.
_ 2 A o, 11
Al _ < A ——
E[Z]_SE[Z] and |P(Z*<Z) 6
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MRCA and bottleneck in an elementary size-varying population model
L Bottleneck effect at the MRCA

Quadratic case llI: Time to the MRCA

See also Lambert (2003) under the quasi-stationary digioi. See
Evans-Ralph (2010) for the MRCA process.

We have: _
o P(Ac [0,1]]2) = e*®Z. Cond. oz, A2 L log 1+ 2z , with
B 236 E;
E; indep. ofZ.
(d) 1 E, + E3
oA_266I09<1+ E; .

o Let A, the time to the MRCA ofi individuals taken at random and the
immortal individual:

o (n+1)ls 20
E [z”e 1{A”€[0,t]}} = (20 +As)" \ 20+ )\ )’

withs=1— e 2% and

z" o
E [Wl{Ane[o,q}} = Sn = (1_ ) Zﬁgt) .
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MRCA and bottleneck in an elementary size-varying population model
Last coalescent event and speed of coming down from infinity

Last coalescent event

Let NA + 1 the number of individuals involved in the last coalescerné
(that is the number of old families).

@ Inthe quadratic case aN” = 1.

o Inthe general case explicit distribution @&, A, N*).

E [aNA|A: t} _ g (@ —ae)

¥ (c(t))
In the stable casé(\) = cAT, ag € (0,1):
E [aNA|A - t} —1- (1-a).

©

©

If 4" (0) < +o00, thenE[NA|A = t] = 4" (0)— eV is decreasing im.
P (c(t))

Work in progress: distribution of the reduced tree. See

Duquesne-Le Gall (2002) for reduced trees in CSBP genealogy

©

©
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MRCA and bottleneck in an elementary size-varying population model
Last coalescent event and speed of coming down from infinity

Speed of coming down from infinity

See Berestycki-Berestycki-Limic (preprint) for coalesicgrocess.
Let N® + 1 the number of ancestors living at timé the past from the
current population (fos large enoughiN® = 0 and limy_.o NS = +00).

@ The following convergence holds in probability:

S
lim — =2Z.
s—0 C(9)

e In the quadratic case, we have the following fluctuations

c(s)E[Z] (N—S - Z> 9,7 Z,

c(s) s—0

whereZ’ is independent of and distributed ag.
o Work in progress: fluctuations for thestable case.
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