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MRCA and bottleneck in an elementary size-varying population model

Outline

1 The model
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3 Last coalescent event and speed of coming down from infinity

Work in progress in collaboration with Y.-T. Chen.

J.-F. Delmas (Cermics) January 2010 Ecole Polytechnique 2 / 16



MRCA and bottleneck in an elementary size-varying population model

The model

Model for constant size population

Finite population: Moran process (1958) or Wright-Fisher’s model
(1930-1931).

Infinite population: Fleming-Viot (1979) process.

Coalescent (genealogical) tree (Moran process and its infinite
population limit): Kingman (1982).

Coalescent tree with multiple collisions: Pitman (1999) and Sagitov
(1999) (finite population: Cannings’ model (1974); infinitepopulation:
Fleming-Viot historical process from Dawson-Perkins (1991),
Bertoin-Le Gall (2003) stochastic flows).

Representation for the genealogy of the Fleming-Viot process using the
look-down process from Donnelly-Kurtz (1999).
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MRCA and bottleneck in an elementary size-varying population model

The model

Wright-Fisher model

Genealogy withN = 5 individuals over 10 generations.
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MRCA and bottleneck in an elementary size-varying population model

The model

Wright-Fisher model
Genealogy withN = 20 individuals over 60 generations.
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MRCA and bottleneck in an elementary size-varying population model

The model

Model for random size population
Finite population: Galton-Watson process (1873).

Infinite population.
Population size is a Continuous State Branching process: Jirina (1958).
Population genealogy given by Dawson (1975)- Watanabe (1968)
historical super-process.
Quadratic case (2 individuals merge together)

Conditionally on having a constant population size, the Dawson-Watanabe
super-process is a Fleming-Viot process: Etheridge-March(1991).
Use a time change (with speed proportional to the inverse of the population
size) to get Fleming-Viot process from a Dawson-Watanabe super-process:
Perkins (1991).

In theα-stable case, see Birkner-Blath-Capaldo-Etheridge-Möhle-
Schweinsberg-Wakolbinger (2005), a time change of the super-process
genealogical tree gives a coalescent tree.

See also Kaj-Krone (2003) or Jagers-Sagitov (2004) for other random
size population models (finite to infinite population), where one
recovers the Kingman coalescent through a random time change.
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MRCA and bottleneck in an elementary size-varying population model

The model

Model for stationary random size population
Let Zt be the size of the population at timet.

Neutral population=⇒ BRANCHING PROCESS. But:
Galton-Watson process or CSBP (or Dawson-Watanabe process) exhibit
eitherextinction (limt→+∞ Zt = 0) or exponential explosion
(limt→+∞ Zt/ρt exists and is non trivial for someρ > 1).
Critical (Zt constant in mean) orsub-critical (Zt decreasing in mean)
case provides a.s. extinction.Super-critical (Zt increasing in mean) case
provides explosion with positive probability.
The starting time of the process plays an important role but its distribution
for a current population is not clear.

Instead, one can use:
The Yaglom (1947) distribution, that is the limit distribution of Zt in the
sub-critical or critical case conditionally on{Zt > 0} ast → +∞. See
also the theory ofquasi-stationary distributions.
TheQ-process, that is the limit distribution ofZt in the sub-critical or
critical case conditionally on non-extinction (that is in most case
conditionally on{Zt+T > 0} asT → +∞). See Roelly-Rouault (1989),
see also Lambert (2007).
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MRCA and bottleneck in an elementary size-varying population model

The model

Mathematical model forbranching process
Branching mechanism:

ψ(λ) = αλ+ βλ2 +

∫

(0,+∞)

π(dℓ) (e−λℓ−1 + λℓ),

α ∈ R, β ≥ 0 and
∫

(0,+∞)
π(dℓ) ℓ ∧ ℓ2 < +∞.

We assumeβ > 0 orπ 6= 0.
ψ is convex,C∞ on (0,+∞), ψ′(0) ∈ [−∞,+∞),
limλ→+∞ ψ(λ)/λ = +∞.
ψ-CSBP(Zt, t ≥ 0) is a Markov process s.t.Z0 = x underPx and

Ex[e
−λZt ] = e−xu(λ,t) and

∫ λ

u(λ,t)

dv
ψ(v)

= t.

Excursion measure:N[1− e−λZt ] = limx→0
1
x Ex[1− e−λZt ] = u(λ, t).

Ex[Zt] = x e−ψ
′(0)t. So the CSBP is sub-critical ifψ′(0) > 0, critical if

ψ′(0) = 0 or super-critical ifψ′(0) < 0.
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MRCA and bottleneck in an elementary size-varying population model

The model

Williams’ decomposition andQ-process
We consider the sub-critical case with strong extinction:τ = inf{t; Zt = 0}

finite a.s. or equivalently
∫ +∞ dv

ψ(v)
< +∞. We set

c(t) = N[τ > t] that is Px(τ ≤ t) = e−xc(t) .

Williams’ decomposition (Abraham-D (2009)): cond. onτ = h,
one individual is alive up to timeh,
at rates 2βdt it gives birth to a population starting with an infinitesimal
mass and distributed asN[dZ; τ ≤ h − t],
at ratesdt it gives birth to a population distributed asEℓ[dZ; τ ≤ h − t],
where the initial massℓ is distributed asℓ e−ℓc(h−t) π(dℓ).

Q-process: fixt and leth → +∞ to get an immortal individual which
at rates 2βdt gives birth to a population starting with an infinitesimal mass
and distributed asN[dZ],
at ratesdt gives birth to a population distributed asEℓ[dZ], where the
initial massℓ is distributed asℓ π(dℓ).
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MRCA and bottleneck in an elementary size-varying population model

The model

Q-process and stationary distribution

TheQ process has a stationary distribution. We consider theQ-process
(Z̄t, t ∈ R) under its stationary measure.

Stationary distribution=⇒ removet in all formula: Z̄ for Z̄t.

E

[

e−λZ̄
]

= e−
R

+∞

0 ψ̃′(u(λ,r)) dr,

with ψ̃(λ) = ψ(λ) − αλ.

Interpretation: an immortal individual gives birth to sub-critical
population (can also be seen as an immigration).

Notice: genealogy of Fleming-Viot process given by look-down
process has also an immortal individual which gives birth to
sub-population with extinction.
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MRCA and bottleneck in an elementary size-varying population model

The model

Quadratic case (2 individuals merge together) I

Let (Ek, k ∈ N
∗) be i.i.d. exponential r.v. with mean 1.

We have

ψ(λ) = βλ2 + 2βθλ, θ > 0.

Extinction probability for the sub-critical CSBP:

c(t) = N[τ > t] =
2θ

e2θβt −1
.

Feller diffusion:

dZ̄t =
√

2βZ̄t dWt + 2β(1− θZ̄t) dt.

Stationary distribution:̄Z
(d)
= 1

2θ (E1 + E2)

E[Z̄] = 1/θ.
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MRCA and bottleneck in an elementary size-varying population model

Bottleneck effect at the MRCA

Time to the MRCA, population size at the MRCA

A=time to the MRCA of the population (at fixed timet).

Z̄A size of the population at the MRCA time (that isZ̄A = Z̄t−A).

Explicit formula for the distribution of(Z̄,A, Z̄A).

Conditionally onA, Z̄ andZ̄A are independent.

P(A ∈ [0, t]) = E[e−c(t)Z̄] and densityfA(t) = ψ̃′(c(t))E[e−c(t)Z̄ ].

Distribution ofZ̄A.

E

[

e−µZ̄A

|A = t
]

=
E

[

e−(µ+c(t))Z̄
]

E
[

e−c(t)Z̄
] .

Bottleneck effect:P(Z̄A ≤ z|A = t) ≥ P(Z ≤ z).

Z̄A is stoch. less than̄Z.
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MRCA and bottleneck in an elementary size-varying population model

Bottleneck effect at the MRCA

Quadratic case II: Bottleneck effect

Let (Ek, k ∈ N
∗) be i.i.d. exponential r.v. with mean 1. We have:

Cond. on{A = t},

Z̄
(d)
=

1
2θ + c(t)

(E1 + E2 + E3) and Z̄A (d)
=

1
2θ + c(t)

(E4 + E5).

E[Z̄A|A = t] =
2
3

E[Z̄|A = t].

P(Z̄A < Z̄|A = t) = P(E4 + E5 < E1 + E2 + E3) =
11
16

.

E
[

Z̄A
]

=
2
3

E [Z̄] and P(Z̄A < Z̄) =
11
16

·
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MRCA and bottleneck in an elementary size-varying population model

Bottleneck effect at the MRCA

Quadratic case III: Time to the MRCA
See also Lambert (2003) under the quasi-stationary distribution. See
Evans-Ralph (2010) for the MRCA process.
We have:

P(A ∈ [0, t]|Z̄) = e−c(t)Z̄. Cond. on̄Z, A
(d)
=

1
2βθ

log

(

1 +
2θZ̄
E1

)

, with

E1 indep. ofZ̄.

A
(d)
=

1
2βθ

log

(

1 +
E2 + E3

E1

)

.

Let An the time to the MRCA ofn individuals taken at random and the
immortal individual:

E

[

Z̄n e−λZ̄ 1{An∈[0,t]}

]

=
(n + 1)!sn

(2θ + λs)n

(

2θ
2θ + λ

)

,

with s = 1− e−2βθt and

E

[

Z̄n

E [Z̄n]
1{An∈[0,t]}

]

= sn =
(

1− e−2βθt
)n
.

J.-F. Delmas (Cermics) January 2010 Ecole Polytechnique 14 / 16



MRCA and bottleneck in an elementary size-varying population model

Last coalescent event and speed of coming down from infinity

Last coalescent event

Let NA + 1 the number of individuals involved in the last coalescent event
(that is the number of old families).

In the quadratic case a.s.NA = 1.

In the general case explicit distribution of(Z̄,A,NA).

E

[

aNA

|A = t
]

= 1−
ψ̃′((1− a)c(t))

ψ̃′(c(t))
.

In the stable casẽψ(λ) = cλ1+α0, α0 ∈ (0, 1):

E

[

aNA

|A = t
]

= 1− (1− a)α0.

If ψ′′(0) < +∞, thenE[NA|A = t] = ψ′′(0)
c(t)

ψ̃′(c(t))
is decreasing int.

Work in progress: distribution of the reduced tree. See
Duquesne-Le Gall (2002) for reduced trees in CSBP genealogy.
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MRCA and bottleneck in an elementary size-varying population model

Last coalescent event and speed of coming down from infinity

Speed of coming down from infinity

See Berestycki-Berestycki-Limic (preprint) for coalescent process.
Let Ns + 1 the number of ancestors living at times in the past from the
current population (fors large enough,Ns = 0 and lims→0 Ns = +∞).

The following convergence holds in probability:

lim
s→0

Ns

c(s)
= Z̄.

In the quadratic case, we have the following fluctuations

√

c(s)E[Z̄]

(

Ns

c(s)
− Z̄

)

(d)
−−→
s→0

Z̄ − Z̄′,

whereZ̄′ is independent of̄Z and distributed as̄Z.

Work in progress: fluctuations for theα-stable case.
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