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Modelling evolutionary dynamics in asexuals

» General objectives:

- To predict the evolution of asexual organisms such as viruses,
bacteria, some insect and fungi species, or cancer lineages in response to a
treatment

- To understand complex interplay of selection, mutation and
environmental changes in asexuals

» Challenge: Better management strategies of resistance emergence,
World Health Organization describes antibiotic resistance as one of the

biggest threats to global health, food security, and development today.
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Modelling evolutionary dynamics in asexuals

 ANR Project RESISTE: Evolutionary rescue, stochastic effects and interactions with

environmental stress. Partnership with Montpellier Institute of Evolutionary Sciences

(experimental evolution of bacteria, theoretical models)
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Evolutionary rescue

When a population that initially declines because of exposure to an environment
outside of its ecological niche can avoid extinction, via genetic adaptation. [Lynch

and Lande 1993, Gomulkiewicz and Holt 1995]

Monitoring a rescue in live

Experimental illustration:
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Environmental changes (from the point of view of the
pathogen):

May be abrupt: host shift in a pathogen, antibiotic treatment (in vitro), ...
May also be more progressive: temperature change, increase in salinity ...
May have more or less periodic trajectories: time course of drug plasma

concentrations
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Modelling the phenotype-fitness relationship:
Isotropic Fisher’s Geometrical Model with 1 optimum

Phenotype x € R" at n traits. Unique fitness optimum O.

- optimum
Growth rate r(X) il

phenotype x

Growth rate r (= fitness) of genotype x:

Ix—OJ®
-

T(X) = 'max —




Modelling the phenotype-fitness relationship:
Isotropic Fisher’s Geometrical Model with 1 optimum

- optimum
Growthrate r(X) il

Gaussian FGM: mutation dx ~ N(0,\ I,,). phenotype x

Mutation rate U
|x — O
5 .

Induces epistasis: the distribution of fitness effects of mutations depends on the
current phenotype

r(X) = maz —

Consistent with various empirical patterns of mutation fitness effects in fungus,
bacteria and viruses [Martin and Lenormand 2006, Schoustra and Hwang 2016]



Abrupt environmental change
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Arbitrarily moving optimum

Moving optimum O(t) = Og + 6(t) u

d(t) arbitrary function with 6(0) =0

u : unit vector in R”

Growth rate r (¢, x)

Growth rate r(t,x) (= fitness) of phenotype x:

_— optimum

e./j

r(t,X) = Tmaz —

x— 0>

2

phenotype x



FGM + Wright-Fisher IBM with constant population size

/ Generation t

N individuals

Fitnesses ¢

Phenotypes: x; € R"

\ / Reproduction/selectiom

N individuals are
sampled with
replacement in the
previous generation

B

_xi— o))

max 2 .

Fitness of the indiv. :
r;=(rf,...,rN)

|

o

[ Nb offspring:

~ Multi(N, exp(r))

|

J

Generation t+¢&
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Mutation

~

p
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Ldx; ~ N (0,11)
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Convergence towards an integro-differential equation

gy = % Z,fil 0x,: phenotype distribution of the population at time t.

Lemma (Forien, R, 2020) Fix 7" > 0. Assume that ey — 0 and &3, N —
+00 as N — co. The process (¢;',t € [0,T]) converges in distribution to the
solution of the deterministic equation:

Oq(t,x) =U (J*q—q)+q(t,x) (r(t,x) = 7)), t € (0,T), x € R",

with

T(t) = /n r(t,x)q(t,x) dx,

and J the isotropic Gaussian kernel with variance A.

Can be obtained by simple adaptations of [Fournier, Méléard, 2004; Champag-
nat, Ferriere, Méléard, 2006], to take into account discrete time - fixed popula-

tion size.
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Existing results

» Fixed optimum (= abrupt change) [Martin and Roques 2016] isotropic FGM
dimension n, [Alfaro and Carles 2017, Alfaro and Veruete 2019]: 1D diffusion
approximation, full trajectory; [Gil, Hamel, Martin, Roques] Dynamics of fitness
distribution w/o diffusion approximation; [Hamel, Lavigne, Martin, Roques 2019]
Anisotropic mutations effects, diffusive case

» Optimum with constant speed in geographical space, w/o adaptation (local
competition term, KPP eqs) : [Berestycki, Diekmann et al. 2009, Berestycki and
Rossi 2008].

» Phenotype optimum with constant speed: [Alfaro, Berestycki, Raoul 2017]:
diffusion, n-D, optimum moving at constant speed, asymptotic analysis

 Periodically fluctuating: [Lorenzi, Chisholm, Desvillettes, and Hughe, 2015]
Gaussian periodic (stationary) solution 1D case; [Carrere, Nadin 2020] principal
eigenfunction analysis in bounded domains, study of the mean limit population;
[Figueroa Iglesias and Mirrahimi, 2018, 2019]: method of constrained Hamilton-
Jacobi equations: large time-small mutation regime.
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Existing results

» Fixed optimum (= abrupt change) [Martin and Roques 2016] isotropic FGM
dimension n, [Alfaro and Carles 2017, Alfaro and Veruete 2019]: 1D diffusion
approximation, full trajectory; [Gil, Hamel, Martin, Roques] Dynamics of fitness
distribution w/o diffusion approximation; [Hamel, Lavigne, Martin, Roques 2019]
Anisotropic mutations effects, diffusive case

Large-time
dynamics™
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Here

» Description of the full dynamics (not only the asymptotics in time): of critical
Importance for the study of rescue events

* Do not need a small mutation regime assumption (but a diffusion
approximation ~ weak selection-strong mutation regime)

« We consider a general form of moving optimum (+ general time-dependent
strength of selection)

Ix —O@)|?
20(t)?2

r(t,X) = rmaz —
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Distribution of phenotype

We focus on the dynamics of the deterministic phenotype distribution ¢(t,x)
under a diffusion approximation:

AU

Orq(t,x) = 7Aq + q(t,x) (m(t,x) —m(t)), t >0, x e R"
_ 2
with m(t,x) =r(t,X) — T"maee = — Ix S)(t)H :

Equivalent to the study of eqs of the form:

2
din(t,x) = &= An+n(t,x) (r(t,x) = p(t), ¢ >0, x €R",

with n(t, x) the total population density and p(%) its integral over R™, as in/Lorenzi,
Chisholm, Desuvillettes, and Hughe, 2015; Alfaro, Berestycki, Raoul 2017; Figueroa
Iglesias and Mirrahimi, 2018, 2019; Carrere, Nadin 2020/ . Simply set

q(t,x) = n(t,x)/p(t).
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Distribution of phenotype

We focus on the dynamics of the deterministic phenotype distribution ¢(¢,x)
under a diffusion approximation:

2
Dq(t, x) = %Aq +q(t, x) (m(t,x) —m(t)), t >0, x € R"

Ix-omI?
2

with m(t,x) = r(t,X) — "maz =

Equivalent to the study of eqs of the form:

2
din(t,x) = &= An+n(t,x) (r(t,x) = p(t), ¢ >0, x €R",

with n(t, x) the total population density and p(%) its integral over R™, as in/Lorenzi,
Chisholm, Desuvillettes, and Hughe, 2015; Alfaro, Berestycki, Raoul 2017; Figueroa
Iglesias and Mirrahimi, 2018, 2019; Carrere, Nadin 2020/ . Simply set

q(t,x) = n(t,x)/p(t).
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Strategy that we had developed in previous works (fixed
optimum)
1. Derive a 1D equation satisfied by the distribution of fitness p(t,m)
Op(t,m) =U (J, ® p—p) (t,m) + p(t,m) (m —m(t)), t >0, m €R,
with (J, ® p—p)(t,m) = f Jy(m —y) p(t,y) dy — p(t,m).

R
2. Diffusive approximation

n
Oip(t,m) = —pi2m Bpl(t, m) + 112 (5 - 2) Omp(t,m) + (m — m(t)) p(t, m),
3. Define the cumulant generating function

C(t,2) = In ( /R plt, s)e** ds)

4. Solve (explicitly) the equation satisfied by the CGF.

C(t,2) = (1= p*2%)0:C(t,2) — Sy z —m(t), t >0, z € Ry
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Why this cannot work here

Pheno. 1 Optimum (t=0)  Pheno. 2

’ *\4»‘
O(t)

Pheno. 1 and 2 have the same fitness at ¢t = 0.

Pheno. 2 has a better fitness at larger times.

Contrarily to the « fixed optimum » case, the distribution of fitness does not fully
determine its own evolution
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Definition of 2D fithess components

Two time-independent ‘components’:

xX
mi (X) = u-X,
S (5 ) \ X 2
mo(x) \1 mQ(X) — _|| 2“
\
\ - _ -
— 7R \ _ - -
) s | no-
/ | }1 mq (X
| K
]\
\ /
~ e
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Distribution of the fithess components

p(t,m1,ms) : bivariate distribution of the components (my,ms)

Defined by:

Theorem (Bonnefon, Martin, Patout, Roques, 2020) There exists a
unique nonnegative density function p € C'(R,, L*(R x R_)) that satisfies the
following relationship

fﬂ q(t,x)p(m1(x), ma(x))dx = f p(t, m1, ma)d(my, ms)dmidms,

RxR_

for every test functions ¢ € L?(R x R_) and all ¢ > 0.
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2D cumulant generating function

Define the CGF of the components mq, ma: for all (z1,22) € R x Ry

C(t,z1,22) :==1In (/ p(t,my,my) €™ A1 TM222 i, dmg) .
RxR_

Simple characterizations of the central moments of the fitness distribution:

(2) 01C(t,0,0) + 0C(t,0,0) — 6(;)2,

m )
Vi (1) = 6(t)?011C(t,0,0) + 022C(t,0,0) + 26(t)012C (¢, 0,0).

I N?A Lionel Roques
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2D cumulant generating function

C(t, z1,22) :=In (f p(t,mi,mg) ™ #1TM2%2 dpm, dmg) :
RxR_

Theorem (Bonnefon, Martin, Patout, R. 2020) The CGF satisfies, for
t >0 and (21,22) € R x Ry

0 C(t,z1,22) = a(t) - (VC(t, z1,22) — VC(t,0,0))
-+ k(zl, Zg) . VC(t, 21, 212)
2

where a(t) = (6(t),1) € R? and { :EZ:Z; : ;:#(Z(%Z}QZ? j/7?;;/2)
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Solving the CGF equation

Define a change of variable ¢, : R: — R x R4, such that

Q(t,z,2) == C(t,p(2,2))

solves a simpler equation:

0:Q(t, 2, 2) = (1,1) - (VQ(t,2,2) — VQ(£,0,0)) + B(¢, 2, 2),

for (t,z,2) € R3.

Proposition (Bonnefon, Martin, Patout, R., 2020) (@ is given by the
expression:

t
Q(t, z, 2) :fo B(t—s,z+s,2+s)—B(t—s,s,8)ds+Qo(z+t,Z+1t)—Qo(t,1).

:;== IN?A Lionel Roques
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Solving the CGF equation

Define the change of variable ¢ : Ri — R x Ry, by

th(za 2) — (yl(tv 2 2): yQ(Z))

with
( 3 © cosh(u s) _.cosh(pu(z+1t))
t = 0 t— d —
< itz 2) /0 (241 =s5) cosh(p 2) sH(z=2) cosh(pz)
tanh(u z
yo(z) = (1z)
\ H Note: surjectivity is not needed

Main theorem (Bonnefon, Martin, Patout, Roques, 2020)
For all t > 0 and (z,2) € R%, the CGF satisfies:

C(ta th(za 2)) — Q(ta 2y 2)

I N?A Lionel Roques
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Cumulant generating function: explicit solution

Main theorem (Bonnefon, Martin, Patout, Roques, 2020)
For all t > 0 and (z,2) € R2, the CGF satisfies:

Olt, b4(2,2)) = Q(t, 2, ).

Corollary

mi(t) =~ tanh(ut) — 5 (Hy(t) — 6(1))° + Ry()

sinh(p u)

du and
cosh(put) wan

= cosh(n1) (6(t) — Hs(t)) 1 Co(¢o(t, 1)) + (1 — tanh?(11)) 92C0(do(t, 1)).
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Cumulant generating function: explicit solution

Clonal case (O(0) = 0)

m(t) =|—p 5 tanh(ut)~|5 (Hs(t) = 6(1))°

with Hs(t) := / t 5(u) Sin%) du

0 Gsh(pt)

m(t) with a steady optimum (§ = 0),

Squared distance between O(t), and a
‘weighted history’ of O(s) for s € (0,1).

I N?A Lionel Roques
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Example 1. Optimum shifting with a constant speed

Standard assumption in theoretical papers [e.g., Alfaro, Berestycki, Raoul 2017; Figueroa
Iglesias and Mirrahimi, 2019]
But, linear environmental change does not necessarily mean linear shift of the optimum

Proposition (Bonnefon, Martin, Patout, R, 2020)
Assume that 6(t) = ct for some ¢ € R and clonal initial population at O(0).
Then,

2

m(t) = —ug tanh(pt)|— 26_”2 tanh”(pt)

m(t) with a steady optimum (§ = 0),

Effect of the speed c.

Shifting and fluctuating environments, as those considered in [Figueroa Iglesias and
Mirrahimi, 2019], could be treated as well, by taking: 1x — O(1)]|?
20(t)?
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Example 1. Optimum shifting with a constant speed

At large times (t — 00),

(32

_ n
m(oo) = —HST Q—My

independently of the initial pheabGtype distribution.

Mutation load Lag load

e . tends to increase the mutation load and to decrease the lag load

— optimum value p* = (2¢2/n)/3.

e critical speed ¢* for persistence (r(t,X) = e +m(t,x)):

¢’ = /,L\/QT’mam — un.
Consistent with [Alfaro, Berestycki, Raoul 2017]
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Example 1. Optimum shifting with a constant speed

At large times (t — 00),

e increases with the speed ¢

e nonmonotonic function of u. Critical value reached at yu = (¢?/n)/3

Skewness

Skew,, (c0) = TNOEE

e negative skewness: distribution is asymmetrical, with a longer left tail.

e c is increased: reinforces the asymmetry of the distribution.
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Example 1. Optimum shifting with a constant speed
Comparison with individual-based simulations

0

Speed ¢ s.t. 0.0z

equilibrium=

2 (mut. load) ~ 0-04¢ 1
IS
-0.06 1
00

Explicit solution

© 00008 00000 UOUTD T L
-0.08 /
-0.1 ' L L L 1
0 50 100 150 200 250 3
t

. X circles: IBM
Numerical solution of: ) )
simulations

8tq(t,X) =U (J*q — Q') + Q(ta X) (r(t,x) — F(75)) (mean value)
Parameters: N = 10* invid, n = 3, A = 0.005 U = 10U, (U, := n* \/4)
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Example 2. Sub- and superlinear cases

Proposition (Bonnefon, Martin, Patout, R, 2020)
Assume that §(f) = ct® for some ¢ € R* and a > 0.

(i) If a < 1, then m(t) = —pn/2 and V,,(t) — p*n/2, as t — +oo.

(ii) If @ > 1, then m(t) - —oo and V,,,(t) = +00, as t — +00.

I N?A Lionel Roques
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Example 3. Periodically varying optimum

Proposition (Bonnefon, Martin, Patout, R, 2020)
Assume that §(t) = dpnaz sin(wt). Then:

1

m(t) = —ug tanh(pt) — = ( Omaz W

w2_|_”2

5 ) (w sin(wt) 4+ p cos(wt) tanh(ut))?

In [Figueroa Iglesias and Mirrahimi, 2018/ same example (with n = 1). Asymp-
totics at large time, small mutation regime:

mi(t) ~ —g 1 (5”@“3)2 (w sin(wt) + g cos(wt))?.

2 W

I N?A Lionel Roques
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Example 3. Periodically varying optimum

At large times, average value over one period:

t+7/w 52 2
(Moo) := lim E/ m(s)ds = —pu D mee®
sy 2 2w? + 22

e higher frequencies tend to impede adaptation
e as w — +o00, the average lag load converges to —d2, /2

e reaches a maximum for some other value of ;1 = K w, with K > w/+/3 the
root of —n/2+ 6% K/[w?(K*+ 1)]* = 0.

max
O[|— 7=2 ®
— 17=1 A
T=1/4
_._1 -
. .(','-
1 3 i B |
2| - /\ l
Numerical simulations in [Carrere, Nadin 2020] 107 107 107t 10° 10!

Diffusion
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Example 3. Periodically varying optimum
Comparison with individual-based simulations

/ Explicit solution
On

005F T\ AWAWAW A

W
TAAALE

S
-0.15 0.8
10.6
0.2t 104 circles: IBM
0 simulations
(mean value)
-0.2
/) 150 250 300

Numerical solution of:

Ovq(t,x) =U (J xq—q) +q(t,x) (r(t,x) = 7(1))
Parameters: N = 10° invid, n = 3, A = 0.005 U = 10U, (U, := n?* \/4)

-0.1F
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Example 3. Periodically varying optimum
Comparison with individual-based simulations

/ Explicit solution

during the )
transient stage

<
<
A
=

S
-0. 0.8
10.6
02+t 104 circles: IBM
1o 5|mulat|o|ns
mean value
-0.2 ‘ 0 ( )
0 50 100 150 200 250 300

Numerical solution of:

Ovq(t,x) =U (J xq—q) +q(t,x) (r(t,x) = 7(1))
Parameters: N = 10° invid, n = 3, A = 0.005 U = 10U, (U, := n?* \/4)
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Example 4. Stochastic position of the optimum.

d(t) is an Ornstein-Uhlenbeck process:

d5(t) = —vé(t) dt + BdW,,

We use the general formula (initially clonal population):

mi(t) = —p s tanh(ut) — 3 (Hy(t) — 5(1))°
sinh(p u)

du.

with Hs(t) :== p /0 o(u) cosh(pt)
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Example 4. Stochastic position of the optimum.

R

0 50 100 150 0 50 100 150
t t

(a) U = U, (b) U = 10U,

e dynamics of the mean fitness simulated by the IBM are well-described by
our theory

e complex interplay between the environment and the mutation rate: the
same environment leads to very different dynamics of adaptation

I N?A Lionel Roques
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What next

Theoretical problems:

» Coupling with Feller diffusion SDEs (birth-death process) to describe the
population dynamics, and compute the probability of rescue depending on
the strategy. As in [Anciaux, Lambert, Ronce, Roques, Martin, 2019].

« Consider an optimum moving along a curve

Forthcoming experiments (ISEM):

* In vitro adaptation of E. coli to a saline solution. Various 6 (t) functions will
be imposed by different regimes of salinity increase. Mean fitness over time
(growth rate) will be followed by fluoroluminometric measures.
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Thank you!

Preprint: Adaptation in general temporally changing environments, Arxiv:2002.09542
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