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Stochastic nucleotidic substitution models

Common assumptions of the usual models

- A DNA sequence is an element of {A, T,C,G}"N, N € N*.

- Independent evolution of the sites according to a Markovian kernel.
Example: Jukes and Cantor model (1969)

- Rate matrix (A > 0)

‘ ATCG - Diagonal entry —q,, is the substitution
Al X X A . "
Tl Y ) rate of nucleotide a, here g,, = —3\.
c )\ \ - Non-diagonal entry g, is the substitution
cly A )\ rate of nucleotide a by b, here g., = .

Modelisation
- At any site x, we run a Poisson point process with parameter 3.

- At any point, the nucleotide 7(x) is substituted by
ae{AT,C,G}\ {n(x)} with probability 1/3.
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Alternative, equivalent but faster

modelisation
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Stochastic nucleotidic substitution models

Consequences
- Convergence in distribution at any site

- Convergenge in distribution of the whole sequence to the product
measure.

Problems

- (a1..-30)obs # (31)obs - - - (3)obs-

- The substitution rate n(x) — a may dépend de 7(x — 1), n(x) and
n(x +1).

Famous example : CpG dinucleotides

- Rate C — T up to ten times larger when C is involved in a CpG (in fact
C*pG).
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JC+CpG model

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- A DNA sequence is now doubly infinite, that is, an element of
{A,T,C,G}2.

- Keep Jukes and Cantor model

A T CG
Al 1 1 1
T|{1 - 1 1
cj1 1 - 1
G|1 1 1

- Superimpose "double" substitution mechanism

r

r
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Construction with marked Poisson point

processes
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To know more about interacting particle
systems

Bible: Liggett, Interacting particle systems, Springer (1985)

Durrett, Ten lectures on interacting particle systems, Springer

(1993)
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Properties

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- There exists a unique Markov process on o7 with the transition
rates defined before.

- The process is ergodic, its unique invariant probability measure 7 on 7%
is translation invariant and ergodic with respect to the translations on
Z.

- Starting from equilibrium, any collections (7x)xes and (n,),cy are
indépendent as soon as dist(/, J) > 3.
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Simulate the evolution of a finite DNA
sequence

Add two
artificial sites

Extension

1 4

Transform the linear se-
quence into a circular one

Run the
evolution

process with
marked Ppp's

X b——--—— X

N
and remove
the two

artificial sites




© Nucleotidic substitution processes

@ The origins: Jukes and Cantor model
@ Entering the field of interacting particle systems

@ Model properties

a Extension
@ Adding translocation mechanism
@ How to use the dual process

@ Results



© Nucleotidic substitution processes

@ The origins: Jukes and Cantor model
o Entering the field of interacting particle systems

@ Model properties

a Extension
@ Adding translocation mechanism
@ How to use the dual process

@ Results


















Nucleotidic substitution processes Extension

Definition with Markov generator

Translocation process

Lof(n) = Y pl,y)lf(neax,) —F(n), (1)

X,YEL

with o, , defined for any x < y by

y if z=x,
z—1 if x<z<gy,

z if Z¢{X,X+1;~~'7y}v
Ux,y(z):

and by 0}
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Construction with marked Poisson point
processes
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sites y, y + 1, ..., x are left circularly permuted.
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Spin + stirring

Ferrari, Annals of Probability (1990)

p(x,y)

----|n(x) *fﬁn(yfl)}—{n(y)kﬂ

To prove ergodicity, Ferrari introduces the construction of a dual process
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Introduction of a branching process
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Introduction of a branching process
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Results for independent evolution models

Falconnet, Gantert and Saada, (2012)

Assume that the substitution rates are independent and are Markovian.
The the process is ergodic and the invariant measure is the product
measure on Z.

- Especially, for any usual substitution model (JC69, K80, T92, etc.) and
any translocation mechanism invariant by translation, the dynamic of the
process is ergodic.
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Results for spin + stirring models

Neuhauser, Annals of Probability (1990)

Consider the Ising model. If the rate of stirring is small enough, then the
process remains ergodic.

Ferrari, Annals of Probability (1990)

Define
m=inf{c(x,n) : x € Z,n € X},
K = sup{c(x,n) : x € Z,n € X}, (2)
h = maxxez | Ryl

Then if m > 0 and if
(h—1)(K—m)<2m,

the process is exponentially ergodic.
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Results for substitution process with
translocation mechanism

Falconnet, Gantert et Saada, (2012)

Ferrari's result can be transposed. Define

m=inf{c(x,a,n) : x€Z,ac o, ne X}
K =sup{c(x,a,n) : x€Z,ac o ,ne€ X}, (3)
h = maxxez, acor |RE|-

Then if m> 0 and if
(h—1) (K —m) < |/|m,

the process is exponentially ergodic.

Especially, JC4+CpG+Translocation model is ergodic as soon as

r<4ai
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Open questions

Contact process

The contact process is such that

An(x—1)+n(x+1 if x) =0,
C(X,n):{ 1[77( ) +n(x +1)] i 2821,

where X\ > 0. One can see that
m=inf{c(x,n) : x€Z,ne X} =0,

hence the theorem cannot be used there.

One can show that there exists a critical value A.(p) depending on p, but
we do not know its behavior. At the moment, we only know that
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Questions ouvertes

Modéle d’Ising
The one dimensional Ising model is defined as
e 28 if n(x —1) =n(x) =n(x + 1),
cxm) =9 ¢ if  n(x)#n(x—1)=n(x+1),
1 else.
This process is ergodic for any 5 > 0. We think that translocation
mechanism should not change this fact.
Statistics

Would it be possible to use this model to improve DNA sequences
alignment ?



	Nucleotidic substitution processes
	The origins: Jukes and Cantor model
	Entering the field of interacting particle systems
	Model properties

	Extension
	Adding translocation mechanism
	How to use the dual process
	Results


