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From physiology and behaviour to ecological patterns
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Seebacher and Franklin. 2012. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension
in conservation biology. Philosophical Transactions of the Royal Society B: Biological Sciences




Focusing on squamate reptiles as model systems

Toxicofera|

Reeder, Townsend, Mulcahy and Noonan. Plos One. 2015

About 12,000 identified species
including all lizards, snakes, and
amphisbenians

Land Amniota vertebrates (with
secondary colonization of
oceans) belonging to the
Tetrapoda super-class, the
“reptiles” group (with sister
taxon being crocodiles, dinosaurs
and birds)

Scaly skin with regular molting,
highly mobile cranial bone
morphology, ectothermic
energetic style, continuous
growth, extremely diverse
morphologies and ecologies



A group highly diversified in tropical areas and deserts
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Overview of this talk

* General concepts of thermal biology applied to terrestrial
ectotherms

* Hydroregulation: a missing component of the organismal
vulnerability to climate warming

 Modelling the link between microclimate, behavioural
thermoregulation and thermo-hydroregulation strategies



Thermal ecophysiology in metazoans (animals)

Ectothermic species

“Broad range” of body temperatures
varying around a thermal preference

Behavioural regulation relying on
environmental conditions

Some evaporative cooling and some
metabolic heat production

Endothermic species

“Tightly regulated” body temperatures
within a safety zone

Metabolic heat production
Evaporative cooling
Some behavioural regulation




Thermal performance curves in ectotherms
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After Tuff et al. Ecology Letters 2013, Rezende & Bozinovic Biol. Letters 2019
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Thermal biology and the climate vulnerability of reptiles

Restricted activity time and increased Reduced performances especially in
overheating risks thermal specialists
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Missing information about climate vulnerability

* Focuses on thermal biology traits instead of energy, nutrient
and water budget

* Includes rough climate proxies of climate conditions instead of
microclimates

* Generally lacks information about the link between functional
traits and physiological processes on one hand and
demographic traits and processes on the other hand

* Generally not backed up with detailed field data



Climate warming not the dominant cause of extinction
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Habitat loss and land use change (>25-50%)
Invasive species, especially for insular species (15-20%)
Exploitation and illegal trafic (10-15%)

Climate warming is not the dominant threat (<5%) but poorly assessed

Cox et al. 2017. A global reptile assessment highlights shared conservation needs of tetrapods. Nature.



Overview of this talk

* General concepts of thermal biology applied to terrestrial
ectotherms

* Hydroregulation: a missing component of the organismal
vulnerability to climate warming

 Modelling the link between microclimate, behavioural
thermoregulation and thermo-hydroregulation strategies



Water balance regulation in animals

Water Gain Water Loss
Regulation of the water balance
— (hydroregulation) in animals involves
V - Insensible .
Water Loss Inputs from food and free standing
0.9 L/day . .
» water = foraging behaviour and
habitat selection
0.3 L/day
Glucose + 02 —» CO2 + H20 +ATP » 1.5 L/day ) )
Metabolic water production= basal
» Bl Lidky and activity metabolism, especially
lipid metabolism

Intake Metabo]ic Output .
St - EGCEC - BOSERYNN -0 Water loss through the skin, lungs and
urine or faeces = evaporative water

loss, respiration and ventilation,
osmoregulation

From Regulation of Water Balance”, section 7.3 from the book An Introduction to Nutrition (v. 1.0)



https://2012books.lardbucket.org/books/an-introduction-to-nutrition/index.html

Water balance regulation in squamate reptiles

Components of the water budget Water intake

Food intake Drinking

Metabolic water production

— \

/

Open questions

Faeces Urine Cloacal Skin Ocular Ventilation Panting
Water output Cutaneous evaporation Respiratory evaporation
Total evaporative water loss (TEWL) Relevance of dietary water intake

— —

——

Total water loss

Acclimation and adaptation of TEWL

Contribution of cutaneous versus
respiratory mechanisms

After Le Galliard et al. 2021 Behavioural control of TEWL



Dietary water intake in reptiles

CARNIVOROUS

High protein content and
low water content preys,
intermittent feeding

Negative net water
intake

HERBIVOROUS

Low protein content,
high water content,
constant feeding

Positive net water intake

*ﬁ

INSECTIVOROUS

Variable prey types,
constant feeding

Unknown net dietary
water intake



Dietary water intake in an insectivorous lizard

Water restriction (10 days) Treatments (6 days
Treatments:
I *  Hydrated control (water
only)

Capture & TO Tl T2 Food only

Acclimation ~ Measurements Measurements Measurements - Spiders
Hydrated Crickets
Dehydrated Crickets
Woodlice

Dehydrated control (no water

no food)

Hypothesis 1. Food supplementation allows lizards to maintain their water
balance at a level somewhere between the dehydrated control group and the
hydrated control group with drinking water

Hypothesis 2. High quality food (spiders and hydrated crickets) is a better diet
with regard to water balance regulation



Dietary water intake in an insectivorous lizard

DEHYDRATION
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Food supplementation does not allow to restore water balance irrespective of food type

Food consumption is positively correlated to dehydration, possibly because foraging and
digestion effort slightly increase water loss

After Chabaud et al. unpub data



Unexpected rehydration mechanism: skin water intake
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1. Dry = dry substrate

2. Wet = wet substrate in contact with lizard

3. Wet, not contact = wet substrate without contact

After Dupoué et al. unpub data



Standard evaporative water loss (EWL) rates across species

TEWL
CWL e
RWL e

EWL rate (log, mg per hour)

Body mass (log, g)

After Le Galliard et al. 2021, Chabaud unpub. data
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Acclimation and adaptation of EWL
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Water loss: lower standard water
loss rates in habitats without
access to free standing water

Water balance: plasma osmolality
similar in habitats with or without
access to free standing water
(homeostatic state)

Dupoué, A., Rutschmann, A, Le Galliard, J.-F., Miles, D. B., Clobert, J., DeNardo, D., Brusch, G. A. and S. Meylan. 2017. Water availability and environmental
temperature correlate with geographic variation in water balance in common lizards. Oecologia 185(4):561-571



Phenotypic plasticity of TEWL

Treatment Common garden e
Experimental g C.entre.d Etudes
conditions : Warm (n = 16) | Medium (n=16) | Cold (n=17) Medium (all 49 individuals) Biologiques de
Chizé
Birth 19 months post-birth 30 months post-birth 47 months post-birth 49 months post-birth 85 months post-birth 4
| | | | | | I
Timeline : | | | 1 1
Sep. 2009 Apr. - May 2011 Mar. 2012 Aug. 2013 Oct. 2013 Oct.- Nov. 2016
]
§ ! ! ! |
Measured BM (g) ; SVL (cm) BM (g) SVL (cm) BM (g) BM (g) ; SVL (cm) BM (g) ; SVL (cm)
ariables :
s VO, (mLh~1) VO, (mLh™%) VO, (mlh) VO, (mlL.h1)
TEWL (mg.h™%) TEWL (mg.h™?) TEWL (mg.h™%)
Life stage : Immature Adult
(a) Daily temperature cycles

30 4 —&— Warm
-1 —A— Medium
—B— Cold

Temperature (°C)

Hours

Study performed at CEBC by Olivier Lourdais with PhD student Mathias
Dezetter Dezetter et al. Functional Ecology 2021



Persistent phenotypic plasticity of TEWL

Trial temperature (°C) © 20 @ 30 Treatment group: O Warm A Medium [J Cold *
b
0.6 .
b
* ab

(on
oo
-
=
oo
-

037 A Acute

L] temperature
\ % effects
0.0

o
H> o
o
HoH

Adjusted TEWL (mg.h™1)
*
*

a
-0.3 % db §
a O
Q
-0.6
T T T
47 49 85
Treatment Common garden
Medium Time (months post-birth)
temperature
persistent

acclimation



Thermal dependence of EWL

Reproductive mode =*= oviparous viviparous
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High temperatures and low ambient humidity should be
avoided to reduce TEWL

After Dupoué, Lourdais and Le Galliard, unpub data



Behavioural reactions to dehydration risks

KER

Coté chaud ~ 35°C

Sec Humide .}

Quantification of activity and
4 thermoregulation effort

Analysis of shelter use

Measurement of body temperatures

Humide

Coteé frais ~20°C

Relevé comportemental toutes les 30 min de 8h a 17h
JO

Témoin

Restriction hydrique
J1 J2 J3 J4 J5 J6 J7 J8

After Rozen-Rechels et al. Oikos 2020



Behavioural reactions to dehydration risks
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Behavioural reactions to dehydration risks
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Short conclusions

 TEWL, especially through the skin, represents a significant
avenue of water loss in reptiles

* Many reptile species might be highly dependent upon drinking
water and moisture to restore their water balance

* Water balance regulation involves flexible behavioural
mechanisms as well as adaptive acclimation responses

* Water balance regulation can conflict with thermoregulation
needs especially at high temperatures and during drought
events, leading to potential “sub-optimal” thermoregulation



The thermo-hydroregulation concept
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Overview of this talk

* General concepts of thermal biology applied to terrestrial
ectotherms

* Hydroregulation: a missing component of the organismal
vulnerability to climate warming

* Modelling the link between microclimate, behavioural
thermoregulation and thermo-hydroregulation strategies



Overview of this talk

* General concepts of thermal biology applied to terrestrial
ectotherms

* Hydroregulation: a missing component of the organismal
vulnerability to climate warming

* Pace-of-life acceleration and physiological tipping-points in
response to climate warming

* Modelling the link between microclimate, behavioural
thermoregulation and thermo-hydroregulation strategies



From physiology to the life history and the climate niche

* The physiology-life history nexus posits that life history and

population dynamics can be constrained by physiological
mechanisms

 We have collected extensive data about the thermo-
hydroregulation strategies including behavioural traits,

physiological traits and data on static and labile properties of
these traits

* How can we use this knowledge to predict current and future
life history strategies and range distribution of these species ?



The answer is mechanistic modelling |

* A mechanistic model uses individual-level processes constrained
by functional traits such as physiology and behaviour to infer
demographic-level processes

* This mechanistic model should be able to (1) describe the
environmental conditions, especially climate conditions, (2)
provide a quantitative description of the energy and water
budget of the organism, and (3) integrate this budget into a
prediction of the life history and population dynamics

* To do so, we can combine three kinds of models: microclimate
physical models, biophysical models of the energy and water
budget, and dynamic energy budget of the life history



NicheMapR as a platform to run the models

BIOPHYSICAL
ECOLOGY

Dynamic Energy
Budget Theory

For Metabolic Organisation

3RD EDITION

Microclimate model

e Predicts spatial and hourly variability in climate conditions

"#5. 5] e Requires input about real weather conditions or gridded climatic and environmental

data at any spatial scale

| can predict ground microclimates in vegetation and soil for example

Biophysical thermo-dynamic model

* Coupled energy, mass and water budget model
¢ Constrained by biophysical properties of organisms and behavioural routines

® Uses inputs from the microclimate model to predict instantaneous energy and mass
balance

Dynamic energy budget model

¢ An ontogenic model of acquisition and allocation of water and energy in growth,
reproduction and survival using inputs from the thermodynamic model

e Describes reserve, structure and maturation/reproduction through life using
knowledge from metabolic theory




Application to occurrence data in Massif Central

Microclimate predictions calculated with WorldClim database, thermodynamic model
parameterized for a juvenile lizard under scenarios of water balance with or without
nighttime skin drinking, dynamic energy budget modelling of growth and maintenance during
the first year of life, habitat suitability calculated with GBIF occurrence database

a) Optimal hydroregulation b) Non-optimal hydroregulation
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After Dupoué et al. unpub data




Application to analysis of viviparity versus oviparity

Microclimate predictions calculated with WorldClim database, thermodynamic model
parameterized for an adult female lizard with oviparous or viviparous reproduction, energy
and water budget calculated during a standard year

Massif Central and most
European populations
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Publications:

Gvozdik & Castilla (2001)

® Le Galliard et al (2003)
Rozen-Rechels et al (2021)
Van Damme et al (1986)

@  Carretero et al (2005)

© Rodriguez-Diaz & Brana (2012)

® Trochet et al (2018)

© Zagaretal (2017)

Standard deviation: SOUthweStern Europe
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After Dupoué et al. unpub data



Water budget of viviparity versus oviparity
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Energy budget of viviparity versus oviparity
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