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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

West Nile Virus (WNV) (Pybus et al., 2012)

the epidemic’s spatial dynamics have been explored only theo-
retically (22) or at very local scales (23, 24), and values reported
for the basic reproductive number, R0, of the epidemic vary
widely (14, 21, 25). Most phylogenetic studies have revealed little
about the epidemic’s spatial structure due to the limited diversity
of the subgenomic sequences typically used (26).

Linking Phylogeography and Spatial Ecology
This section explains how evolutionary analyses of viral spread
can be formally linked with spatial ecology, enabling the esti-
mation of spatial epidemiological variables from genomic data.
The approach is based on the application of a simple yet pow-
erful idea: phylogenies reconstructed from spatial epidemics
are branching structures that record the correlated histories of
transmission among sampled infections (Fig. 1 A and B), hence
the phylogeny of an epidemic can be used to correct for spatial
autocorrelation. More specifically, if the dates and locations of
all phylogenetic nodes are known or posited, then each phylog-
eny branch represents a conditionally independent trajectory
of viral movement, defined by a start location, end location, and
duration (27) (Fig. 1 A and B). Independence is conditional on
the date and location values proposed for each node; any esti-
mation or measurement uncertainty in these can be readily in-
corporated bymarginalization. Consequently, the spatial dynamics
of an epidemic can be quantified using simple, nonparametric
statistics of these displacements. This approach is analogous to that
used by phylogenetic comparative methods, which convert corre-
lated species trait values into independent observations amenable
to statistical tests (28).
Although many statistics of spatial dynamics could be calcu-

lated using this framework, we introduce the approach by esti-
mating the diffusion coefficient, D, without an explicit model of
spatial autocorrelation. Given a set of n movement observations
(phylogeny branches) whose durations and start and end loca-
tions are specified, D can be estimated using

D≈
1
n

Xn

i=1

d2i
4ti

; [1]

where ti denotes the duration in years of branch i, during which
the lineage has moved di km away from its start position in two
dimensions (5, 12) (Fig. 1 A and B). This estimator follows the
classical relationship between D and mean square displacement
(29) and has been previously used to estimate the diffusivity of
intentionally released rabid foxes that were subsequently tracked
via telemetry (5).
Estimates of the dates and locations of internal phylogenetic

nodes (ancestral infections; Fig. 1) can be readily obtained using
current phylogeographic and molecular clock techniques (10).
In our WNV analysis we infer the longitude and latitude of in-
ternal nodes using a 2D anisotropic random walk (Materials and
Methods). The marginal posterior probability densities of these
locations (and of D) can be estimated using standard Bayesian
Markov chain Monte Carlo (MCMC) techniques; hence our pro-
cedure fully incorporates statistical uncertainty (10). Sequences
sampled from the epidemic are assumed to have a single com-
mon ancestor (no recombination or introgression). Although
there must be sufficient temporal information to reliably esti-
mate the timescale of the phylogeny, the approach does not
necessitate the assumption of neutral sequence evolution.
We note two key benefits of this approach: first, it will be

applicable to a broad range of situations because the inference of
ancestral locations is separated from the estimation of D (or
other spatial variable); for each application, the most statistically
appropriate model for inferring the former can be chosen. Second,
the approach extends readily to more realistic, heterogeneous dis-
persal processes. Specifically, in this study, we use a flexible relaxed

random walk that allows the rate of dispersal to vary among phy-
logeny branches according to some probability distribution, while
constraining it to be constant along each branch (Materials and
Methods). As a result, we can directly measure heterogeneity in
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Fig. 1. (A and B) The link between spatial ecology and phylogenetics. Filled
circles represent viral sequences whose locations and dates of sampling are
known. Squares represent unsampled ancestral infections whose locations
and dates are estimated. The black squares in A and B denote the epidemic’s
origin in space and time, respectively. (A) Colored arrows indicate the di-
rection and distance di of the movement trajectory defined by each lineage.
Thin colored lines show the random walk undertaken by each lineage. (B)
The phylogeny resulting from the spatial infection process in A. Colored lines
in B show the duration ti of each lineage. Diffusivity can be inferred by
combining the information in A and B. Diffusivity is low for lineages with
long and winding paths that do not lead far (e.g., green), and is high for
lineages that quickly move large distances (e.g., purple). (C) Maximum clade
credibility phylogeny of the North American WNV epidemic, estimated from
whole genomes under the best-fitting dispersal model (Table 1). Posterior
probabilities of branching events are indicated by red (P > 0.95) and yellow
(P > 0.85) circles. Blue bars show the 95% HPD credible intervals of the es-
timated dates of well-supported nodes. See Fig. S1 for full annotation.
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Bayesian Phylogenetics

Goal:

p (θ, T ,ψ | Y,S) ∝ p (Y,S | θ, T ,ψ ) p (θ, T ,ψ)

∝ p (Y | θ, T ) p (S | T ,ψ ) p (θ, T ,ψ)

∝ p (Y | θ, T ) p (θ) p (S | T ,ψ ) p (T ,ψ)

Assumption: Y and S independent conditionally on T .

This talk: Conditional on T .
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Outline

1 From the Brownian Motion to the Cauchy Process
• Brownian Motion
• Relaxed Brownian Motion
• Cauchy Process

2 Cauchy Process on a Tree
• CP on a Tree
• Likelihood Computation
• Ancestral State Reconstruction

3 Integrated Processes
• Velocity Statistic
• Integrated Brownian Motion
• Belief Propagation
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Brownian Motion on a Tree (Felsenstein, 1985)
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• The trait evolves like a BM in time

• Speciation → two independent processes

• Only tip values are measured
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Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Brownian Motion on a Tree (Felsenstein, 1985)
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• SDE: dXt = σ dBt

• Heredity: X8|X7 ∼ N (X7, σ2t8)

• Covariances: Cov(Yi ,Yj) = σ2Vij

• Distribution: Y ∼ N (µ1n, σ2V)
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Bi-variate Brownian Motion on a Tree
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• SDE: dXt = Σ1/2 dBt

• Heredity: X8|X7 ∼ N (X7, t8Σ)

• Distribution: Y ∼ MN (1nµT ,V,Σ)

• Note: Y3|X7 ∼ N (X7, (t8 + t3)Σ)
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Relaxed Random Walk (Lemey et al., 2010)
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• Brownian Motion: X8|X7 ∼ N (X7, t8Σ)

• Relaxed Brownian Motion: X8|X7, ϕ8 ∼ N (X7, ϕ8 × t8Σ)

• Regularisation: ϕj ∼ L(θ) iid
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Brownian Motion
Relaxed Brownian Motion
Cauchy Process

RRW: Not Sampling Consistent
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• Relaxed Brownian Motion: Xi |Xpa(i), ϕi ∼ N (Xpa(i), ϕi × tiΣ)

• Regularisation: ϕj ∼ L(θ) iid

• Unsampled tip: Changes the whole distribution.
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree
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Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Inverse-Gamma Normal Mixture

ϕj | ν ∼ Inv-Gamma(ν/2, ν/2)

Xj

∣∣ Xpa(j), ϕj ,Σ ∼ N (Xpa(j), ϕj × tjΣ)

gives:

Xj

∣∣ Xpa(j),Σ, ν ∼ Tν(Xpa(j), tjΣ)

Student: not a stable distribution.

Xj

∣∣ Xpa(pa(j)),Σ, ν ≁Tν(Xpa(pa(j)), (tj + tpa(j))Σ)

→ adding a node changes the whole distribution.

pa(pa(j))

pa(j)
j

j
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From the Brownian Motion to the Cauchy Process
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Integrated Processes

Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Stable Distributions

Stable distribution: X is stable if, for X1 and X2 iid copies of X :

aX1 + bX2 ≡
dist

cX + d (a, b, c > 0)

Characteristic function: Symmetric α stable distributions :

E
[
e iuX

]
= ϕ(u;α, γ, µ) = exp(iuµ − |γu|α)

Density: Only tractable in two special cases:
• α = 2: Gaussian distribution.
• α = 1: Cauchy distribution.

Note: See also the Lévy distribution for
an asymmetric stable distribution.
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Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Cauchy Process (CP)

Cauchy Propagation:

Xj

∣∣ Xpa(j), σ ∼ C(Xpa(j), σtj)

Stable Distribution:

Xj

∣∣ Xpa(pa(j)), σ ∼ C(Xpa(pa(j)), σ(tj + tpa(j)))

Density:

p
(
Xj

∣∣ Xpa(j), σ
)
=

1

πσtj

1

1 +
(
Xj−Xpa(j)

σtj

)2
• Xpa(j) is the location parameter.

• σtj is the scale parameter.
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Cauchy Process on a Tree
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Brownian Motion
Relaxed Brownian Motion
Cauchy Process

Inverse-Gamma Normal Mixture

ϕj | ν ∼ Inv-Gamma(1/2, 1/2)

Xj

∣∣ Xpa(j), ϕj , σ2 ∼ N (Xpa(j), ϕj × σ2tj)

gives:

Xj

∣∣ Xpa(j), σ2 ∼ T1(Xpa(j), σ2tj)

∼ C(Xpa(j), σ
√
tj)

“Cauchy-RRW”→ Still not stable !
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Pure Jump Lévy Process
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Brownian Motion:

E
[
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= e−t σ2

2
u2
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Cauchy Process:

E
[
e iuX (t)

]
= exp

(
σt

π

∫
R

(
e iux − 1 − iuxI{|x | < 1}

) d x
x2

)
= e−σt|u|
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Cauchy Process:

XCau
t = X 0

t +
∑
k≥1

(X k
t − E[X k

t ])

X k
t ∼ Compound Poisson rate:

2σ

π
dist:

d x

2x2
on Ik
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Ancestral State Reconstruction
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1 From the Brownian Motion to the Cauchy Process
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• CP on a Tree
• Likelihood Computation
• Ancestral State Reconstruction

3 Integrated Processes
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CP on a Tree
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• Heredity: X8|X7 ∼ N (X7, σ2t8)

• Covariances: Cov(Yi ,Yj) = σ2Vij

• Marginal: Yi ∼ N (µ, σ2Vii )

• Distribution: Y ∼ N (µ1n, σ2V)

Paul Bastide Viral Phylogeography 16/35



From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

CP on a Tree

−8 −6 −4 −2 0

Y5

Y4

Y3

Y2

Y1

t8 = V35

−
0.

5
0.

5
1.

5
2.

5

time (years)

tr
ai

t

−8 −6 −4 −2 0

Y5

Y4

Y3

Y2 Y1

• Heredity: X8|X7 ∼ C(X7, σt8)

• Covariances: do not exist.

• Marginal: Yi ∼ C(µ, στi )

• Distribution: Y ∼ ?
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• Heredity: X8|X7 ∼ C(X7, σt8)

• Covariances: do not exist.

• Marginal: Yi ∼ C(µ, στi )

• Distribution: Y ∼ MC(µ1, γphy (·)) Multivariate Cauchy
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood Computation

Likelihood: Characteristic Function

p(Y | µ, σ ) =
1

(2π)n

∫
Rn

e−iuTYϕY|Xroot
(u;σ) du

Exact Algorithm: Algo

Can compute the integral explicitly, with one traversal of the tree.

Complexity:
Quadratic in the number of tips.

Stability:
Sums of large positive and negative numbers: numerical issues.
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Ancestral State Reconstruction

Density for an ancestral state:

p(Xj = v | Y,Xr = µ, σ ) =

p(Yj
∣∣ Xj = v , σ )p(Y−j ,Xj = v

∣∣ Xr = µ, σ )

p(Y | Xr = µ, σ )

Can be computed for a grid of values v .
(Linear in the number of grid values.)

Can be multimodal !
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Identifiability Issues
Cauchy reconstruction:
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WNV using Evolaps (Pybus et al., 2012; Chevenet et al., 2024)

CP:



WNV using Evolaps (Pybus et al., 2012; Chevenet et al., 2024)

CP:
Cauchy RRW:

Simulations



From the Brownian Motion to the Cauchy Process
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Velocity Statistic
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Outline

1 From the Brownian Motion to the Cauchy Process

2 Cauchy Process on a Tree

3 Integrated Processes
• Velocity Statistic
• Integrated Brownian Motion
• Belief Propagation
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

How fast is the virus going ? (Dellicour et al., 2020)
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Summary:

• weighted lineage dispersal velocity:
      mean value = 164.6 km/year
      95% HPD = [158.0 - 169.2]

• 801 genomes (after 
  phylogenetic subsampling)

• mean lineage dispersal velocity:
      mean value = 1215.2 km/year
      95% HPD = [565.4 - 4140.5]
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Fig. 1 Spatio-temporal diffusion of WNV lineages in North America. Maximum clade credibility (MCC) tree obtained by continuous phylogeographic
inference based on 100 posterior trees (see the text for further details). Nodes of the tree are coloured from red (the time to the most recent common
ancestor, TMRCA) to green (most recent sampling time). Older nodes are plotted on top of younger nodes, but we provide also an alternative year-by-year
representation in Supplementary Fig. S1. In addition, this figure reports global dispersal statistics (mean lineage dispersal velocity and mean diffusion
coefficient) averaged over the entire virus spread, the evolution of the mean lineage dispersal velocity through time, the evolution of the maximal wavefront
distance from the origin of the epidemic, as well as the delimitations of the North American Migratory Flyways (NAMF) considered in the USA.
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Fig. 2 Environmental variables tested for their impact on the dispersal of West Nile virus lineages in North America. See Table S1 for the source of data
for each environmental raster.
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Velocity Statistic

MCMC: Sample (θk , Tk ,ψk) from

p (θ, T ,ψ | Y,S)

Ancestral reconstruction: Sample ancestral positions Xk from

p (X | Y,θk , Tk )

Displacement: for each branch i at iteration k

d i
k = ∥X pa(i)

k − X i
k∥2 = distance covered on branch i

t ik = length of branch i in tree Tk

Velocity Statistic:

WLDVk =

∑N
i=1 d

i
k∑N

i=1 t
i
k
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Belief Propagation

Problem with the Velocity Statistic (Dellicour et al., 2024)

Models: Brownian Motion, Relaxed Random Walk, Cauchy

Velocity is not defined ! processes have infinite variation.

Sampling inconsistent: the more densely sampled, the faster the
process appears

 
Figure 1: example of a continuous phylogeographic simulation based on a Brownian random walk (BRW) diffusion process. 
Both graphs display the phylogenetic tree sampled during a unique simulation, with its time-scaled visualisation in the left panel 
and its mapped visualisation in the right panel. Tree nodes are coloured according to time, with internal and tip nodes coloured 
according to their time of occurrence and collection time, respectively. 
 

 
Figure 2: robustness of lineage dispersal metrics to the sampling effort. We here report three dispersal statistics estimated on 
50 geo-referenced phylogenetic trees simulated under a Brownian diffusion process: the weighted lineage dispersal velocity 
(WLDV, km/year), the weighted diffusion coefficient (WDC, km2/year), and the isolation-by-distance (IBD) signal has been 
estimated by the Pearson correlation coefficient (rP) between the patristic and log-transformed great-circle geographic distances 
computed for each pair of tip nodes. Each specific tree is represented by a specific grey curve obtained when re-estimating the 
dispersal metric on subsampled versions of the tree, i.e. subsampled trees obtained when only randomly keeping 500, 450, 400, 
350, 300, 250, 200, 150, 100, and 50 tip nodes; and the red curve indicate the median value across all simulated trees. 
 
For each diffusion model considered, we have simulated 50 continuous phylogeographic reconstructions of more 
than 500 tips and then subsampled the resulting trees to only keep 500, 450, 400, 350, 300, 250, 200, 150, 100, and 
50 tips (see the Material and Methods section for further detail). We have then estimated the three dispersal metrics 
on all the resulting datasets to explore the impact of the sampling size on their estimates (Fig. 2). Although associated 
with slightly more variability when estimated on the smaller datasets, both the diffusion coefficient and IBD signal 
metrics appear to be robust to the sampling effort (Fig. 2). This is however not the case for the lineage dispersal 
velocity metric for which estimates drastically decrease with the number of tips (Fig. 2). While Figure 2 reports the 
results obtained with the continuous phylogeographic simulations based on a Brownian diffusion process, we reach 
the same conclusions based on the results obtained by the simulations following a RRW diffusion process (Fig. S3) 
or when tree topologies are simulated under a coalescent instead of a birth-death model (Fig. S4).  
 
In addition to the three main metrics investigated above, we have also used our simulations to assess the robustness 
of alternative metrics, such as different ways to define the correlation coefficient measuring the IBD signal (Fig. S5) 
or unweighted versions of the lineage dispersal velocity and diffusion coefficient (Fig. S6). Overall, we reach the same 
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Brownian Motion
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X (t) = x0 +

∫ t

0
σdBt ∼ N (x0, σ2t)
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Integrated Brownian Motion

V (t) = v0 +

∫ t

0
σdBt ∼ N (v0, σ2t)

X (t) = x0 +

∫ t

0
V (s)ds ∼ N (x0 + v0t,

σ2

3
t3)
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Belief Propagation

Integrated Brownian Motion is Gaussian

Integrated Brownian Motion

V(t) = Vρ +

∫ t

0
σdBt X(t) = Xρ +

∫ t

0
V(s)ds

Velocity (BM):

E[Vi ] = Vρ

Var[Vi ;Vj ] = Στij

Position (IBM):

E[Xi ] = Vρτi + Xρ

Var[Xi ;Xj ] = Στij

[
τiτj + τij

(
τij
3

−
τi + τj

2

)]
.
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Belief Propagation

Efficient Computation

X5

X4

X3

X2

X1

X6

X7

X8

X9 Xr ∼ N (µ,Γ)

Xj

∣∣ Xpa(j) ∼ N
(
qjXpa(j) + rj , Σj

)

Pruning: Likelihood pθ(Xobs) in O(n).

Belief Propagation: Ancestral density pθ(Xanc |Xobs) in O(n).

→ with missing data.
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Efficient Computation

BM:
Xj

∣∣ Xpa(j) ∼ N
(
Xpa(j), tjR

)
IBM:(
Vj

Xj

) ∣∣∣∣ (Vpa(j)

Xpa(j)

)
∼

N
([(

1 0
ti 1

)
⊗ Ip

](
Vpa(j)

Xpa(j)

)
,

(
ti t2i /2

t2i /2 t3i /3

)
⊗ Σ

)

→ joint velocity / position vector is linear Gaussian
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Integrated Brownian Motion
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Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Integrated Brownian Motion - Predictions ?
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Perspectives

Three processes:

• Strict Brownian Motion

• Relaxed Random Walk - Cauchy Process

• Integrated BM IOU

Efficient Likelihood Computation:

• Linear Gaussian process

• Sequence / Trait independence

• No geography / temporal variables

Perspectives:

• Multivariate Cauchy +

• Include spacial co-variables

• Prediction ?
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Multivariate Cauchy (Ferguson, 1962)

Definition:

X ∼ MCp ⇐⇒ aTX ∼ C , ∀a ∈ Rp.

Characterization:

X ∼ MCp ⇐⇒ ϕX(u) = E
[
eu

TX
]
= e iµ(u)−γ(u)

with: {
µ(au) = aµ(u)

γ(au) = |a| γ(u)
∀a ∈ R,u ∈ Rp.

Student with ν = 1:

X ∼ MT p(µ,Σ; ν = 1) ⇐⇒ ϕX(u) = eu
Tµ−

√
uTΣu
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Two tips tree

R

B

A

ϕYA|R (uA;σ) = exp (iµuA − σtA |uA|)
ϕYB |R (uB ;σ) = exp (iµuB − σtB |uB |)

Joint distribution:

ϕYA,YB |R (u;σ) = ϕYA|R (uA;σ) × ϕYB |R (uB ;σ)

= exp (iµ(uA + uB) − σ(tA |uA| + tB |uB |))

→ multivariate Cauchy...
...but not Student:

γ(u) = σ(tA |uA| + tB |uB |) ̸=
√
uTΣu

back
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CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Characteristic Function

Branch Characteristic Function:

ϕXj |Xpa(j)
(u;σ) = exp

(
iXpa(j)u − σtj |u|

)
Tree Characteristic Function: Conditionally on Xroot = µ:

ϕY|Xroot
(u;σ) = exp

iµ
n∑

k=1

uk − σ
∑

j ̸=root

tj

∣∣∣∣∣∣
∑

k∈desTips(j)

uk

∣∣∣∣∣∣


+

Multivariate Cauchy but not a Student with ν = 1.
back
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
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Characteristic Function : Pre-order Tree Traversal
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Propagation:
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(
uj ;σ
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= ϕYj1 |Xj

(
uj1 ;σ
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×ϕYj2 |Xj

(
uj2 ;σ

)
conditional independence

ϕYj1 |Xj

(
uj1 ;σ

)

Xj

Xj1

Xj2

Yj1
Yj2
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 with Z ∼ C(Xj , σtj1)
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∑

k∈desTips(j1)

uk
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Xj
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood

p(Y | µ, σ ) =
1

(2π)n

∫
Rn

e−iuTYϕY|Xroot
(u;σ) du

p(Y | µ, σ ) =
1

(2π)n

∫
Rn

e−iuTY exp

iµ
n∑

k=1

uk − σ
∑
j ̸=root

tj

∣∣∣∣∣∣
∑

k∈desTips(j)

uk

∣∣∣∣∣∣
 d u

Idea:

• take a node j with two descending tips k and l

• change of variable : vk = uk + ul and vl = ul
• integrate out vl .

+

back
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood Computation

Partial Likelihood:

p (yr | zr , σ, T ) =
1

(2π)|LT |

∫ +∞

−∞

∑
b∈LT

C sgn(u)
r,b exp (−σtr :b|u| − iu(yb − zr )) du.

Recursion formula:

Cj,b = Cm,b

∑
c∈desTips(k)

(
Ck,c

σ(tj :c − tj :b) + i(yc − yb)
+

Ck,c

σ(tj :b + tj :c) − i(yc − yb)

)

Initialization for any tip i : C+
i,i = C−

i,i = 1.
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood Computation

Conditional Independence:

p
(
yk
∣∣∣ zk , σ, T −

k

)
= p

(
yi
∣∣∣ zk , σ, Ti

)
p
(
yj
∣∣∣ zk , σ, Tj

)

Integration on parent branch:

p
(
yk
∣∣∣ zpa(k), σ, T −

k

)
=

∫ +∞

−∞
p
(
yk
∣∣∣ zk , σ, T −

k

)
p
(
zk
∣∣ zpa(k), σ

)
dzk

Recursion:

p
(
yk
∣∣∣ zpa(k), σ, T −

k

)
=

1

(2π)|Lk |

∫ +∞

−∞

∫ +∞

−∞
exp

(
i(u + v)zpa(k) − σtk |u + v|

)

×

 ∑
b∈Li

C
sgn(u)
k,b exp (−σtk:b|u| − iuyb)


 ∑
c∈Lj

C
sgn(v)
k,c exp (−σtk:c |v| − iuyc )

 dudv
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood Computation

Root integration:

p(Y | µ = 0, σ ) =
2

(2π)n

∑
b∈desTips(r)

Rr,bσtr :b + Ir,byb
(σtr :b)2 + y 2

b

back
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood Computation Algorithm

Recursion Formula:

Cj,b = Cm,b

∑
c∈desTips(k)

(
Ck,c

σ(tj :c − tj :b) + i(yc − yb)
+

Ck,c

σ(tj :b + tj :c) − i(yc − yb)

)
Exact:
Can compute the integral explicitly, with one traversal of the tree.

Complexity:
Quadratic in the number of tips.
Stability:
Sums of large positive and negative numbers: numerical issues.

Theoretical problem:

Division by zero ! +

j

m k

b c

Paul Bastide Viral Phylogeography 13/35



From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Likelihood Computation Algorithm

Recursion Formula:

Cj,b = Cm,b

∑
c∈desTips(k)

(
Ck,c

σ(tj :c − tj :b) + i(yc − yb)
+

Ck,c

σ(tj :b + tj :c) − i(yc − yb)

)
Exact:
Can compute the integral explicitly, with one traversal of the tree.

Complexity:
Quadratic in the number of tips.
Stability:
Sums of large positive and negative numbers: numerical issues.

Theoretical problem: Division by zero ! +

j

m k

b c

Paul Bastide Viral Phylogeography 13/35



From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Chelonia Dataset

Jaffe et al. (2011)

Dermochelys Coriacea

Homopus Aerolatus

summary(data)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.303 2.996 3.296 3.482 3.892 5.497
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

CP on a Tree
Likelihood Computation
Ancestral State Reconstruction

Chelonia Dataset

summary(exp(data))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 10.00 20.00 27.00 41.67 49.00 244.00
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Integrated OU

−8 −6 −4 −2 0

Y5

Y4

Y3

Y2

Y1

t8

X7

X8

0
10

0
30

0
50

0

time

ph
en

ot
yp

e

−8 −6 −4 −2 0

Y5
Y4

Y3Y2

Y1

Integrated Ornstein-Uhlenbeck(
Vi

Xi

) ∣∣∣∣ (Vpa(i)

Xpa(i)

)
∼ N

((
e−αti 0

(1 − e−αti )/α 1

)(
Vpa(i)

Xpa(i)

)
+

(
(1 − e−αti )β

(ti − (1 − e−αti )/α)β

)
;

σ2

2α

(
(1 − e−2αti ) (1−e−αti )2

α
(1−e−αti )2

α
2ti
α

− 4 (1−e−αti )
α2 + (1−e−2αti )

α2

))
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Existing Approaches

RRW: Lemey et al. (2010); Fisher et al. (2021)

p (ϕ, σ | Y ) ∝ p (Y | ϕ, σ ) p (ϕ) p (σ) with ϕi ∼ Inv-Gam(1/2, 1/2)

General Stable Process: Elliot and Mooers (2014)

General Lévy Process: Landis et al. (2013); Duchen et al. (2017);
Landis and Schraiber (2017)

→ large latent space, numerical integration

New approach: Direct numerical likelihood maximization.
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Greater Antilles Anolis Lizards (Mahler et al., 2013)

50 40 30 20 10 0
0 2 4 6

log(SVL)

Anolis equestris

Anolis porcatus

Anolis sagrei

Paul Bastide Viral Phylogeography 18/35



From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Lizard Dataset
library(cauphy)

fitContinuous(phy, svl, model = "BM")$opt$lnL

## [1] -4.700404

fitContinuous(phy, svl, model = "lambda")$opt$lnL

## [1] -4.700404

fitCauchy(phy, svl, model = "cauchy", method = "fixed.root")$logLik

## [1] 4.441921

fitCauchy(phy, svl, model = "lambda", method = "fixed.root")$logLik

## [1] 4.926054
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Lizard Dataset
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Figure 7: Ancestral trait reconstruction for the lizard dataset from Mahler et al. (2013), with the log-
transformed snout-to-vent length (SVL) trait measurement, using the Cauchy REML model fit. Species
names are colored according to their ecomorphs. Measured traits are shown as a bar plot at the tips of
the tree, with a color gradient encoding the trait value, from light yellow (small) to dark purple (large).
Modes of the posterior trait reconstructions are showed at internal nodes, with a width proportional to
the relative height of the modes (nodes with only one color have a single mode), and the same color
scale as tip values. Modes of the posterior branches increments are showed on the edges, using the
same convention, but with a diverging color scale so that increments close to zero are white, positive
increments are blue, and negative increments are red. The clade discussed in the text is highlighted in
bold. The posterior density for the ancestral reconstruction of the stem of this clade, which is bi-modal,
is shown as an inset plot, colored with the same gradient.
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West Nile Virus (Pybus et al., 2012)

ure S3). In particular, the first north to south travel of the virus allows us to compare the RRW and
CP approaches (see Fig. 8). Indeed both models exhibit the same general pattern, with a rapid shift
from New-York to Florida in the first half of 2000, on the small branch going from the black to the dark
orange node. However, the CP also supports an alternative hypothesis, where the shift does not occur
on this branch, but latter on the tree after the light yellow node, corresponding to a scenario where the
virus first spreads to Ohio, and then to Florida, instead of radiating to back to Ohio from Florida as
in the first scenario. This alternative scenario involves shifts of lower size, and its absence in the RRW
case could be related to the fact that the RRW is a CP on a square-rooted tree, and hence has a larger
dispersion parameter than the standard CP for short branches of length less than one, possibly allowing
for longer dispersion events. As the RRW density is based on an MCMC, it could also be possible that
one of the modes was never sampled in the chain. Finally, the RRW takes some correlations between the
traits into account, while our CP treat them as independent, which could also be a source of discrepancy.
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Figure 8: Ancestral node and increment reconstructions for the latitudes (a) and longitudes (b) using
the “Cauchy RRW” (black curves) and CP (dark orange curves) on the MCC tree of the WNV (c),
for the nodes and edges marked with colored dots on the tree. For the RRW, curves are kernel density
estimates from states sampled in the MCMC chain.

5 Discussion

5.1 The Cauchy Process for Trait Evolution

The Cauchy Distribution. Various situations may lead to observe the Cauchy distribution in prac-
tice. For instance, it arises as the ratio of two independent normal Gaussian random variables, so that it
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From the Brownian Motion to the Cauchy Process
Cauchy Process on a Tree

Integrated Processes
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Integrated Brownian Motion
Belief Propagation

Simulation Study - Model Selection
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Figure 3: Model selection results using the AIC for 100 datasets simulated on the Lizard tree (Mahler
et al., 2013), with various processes. Simulation processes are on the x axis, and include three Gaussian
processes (BM, OU, EB), the NIG process with various levels of excess kurtosis (from 1 to 10), and
the Cauchy process. All simulation processes but the EB have the same MAD (see Table 1). For each
simulation model, the proportion of time each fitting model is selected is shown as a bar plot. Fitted
Gaussian models are in shades of green, while fitted Cauchy models are in orange.

matches similar findings in the Gaussian phylogenetic case (Housworth et al., 2004; Ives et al., 2007). For
larger trees, the REML estimate also seems to have a slightly lower variance than the ML. Each fit took
less than 10 second to compute on a standard laptop computer (MacBookPro 13-inch, M2, 2022), usually
taking less than 1 second from trees with 100 tips or less (see Supplementary Figure S1). The REML fit,
that only maximizes over one parameter instead of two, was consistently faster than the ML fit. When
the tree had more that 200 tips, we observed that the parameter estimation tends to deteriorate. This
phenomenon could be explained by the numerical instabilities of our algorithm (see Discussion), that
can become unreliable for larger trees.

Estimation of the Root Value. Figure 5 shows that the estimation of the root value was unbiaised,
both in the ML or REML frameworks, for any size of tree. A small fraction of 5.5% of the datasets over
all scenarios produced point estimates that had an absolute value larger than 2, far away from the true
value of 0. These could be cases where, because of the jumping nature of the Cauchy process, the root
value gets “forgotten” along the tree. However, Figure 6 shows that, in the REML case, the empirical
coverage of the HDPI (fraction of simulation where the true value lies in the estimated interval) is close
to its norminal rate of 95%, for all sizes of tree.

4 Empirical Examples

4.1 Greater Antilles Lizards

Data. The adaptive radiation of anoles in the Greater Antilles is well documented (Losos, 2009), and
has been hypothesized to follow a Simpsonian “evolution by jumps” (Mahler et al., 2013). Previous
analyses of this dataset includes models based on Brownian Motion or Ornstein-Uhlenbeck with shifts
(Mahler et al., 2013; Eastman et al., 2013; Bastide et al., 2018), or Lévy processes (Duchen et al., 2017).
We considered here the dataset from Mahler et al. (2013), that consists of 100 lizard species on a time-
calibrated maximum clade credibility tree, with each species associated with an ecomorph. As in Duchen
et al. (2017), we focused our analysis on the log-transformed snout-to-vent length (SVL), which is highly
correlated with all the other morphological measurements (Bastide et al., 2018).
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Figure 4: Estimation of the dispersion parameter of a CP on pure-birth trees of growing sizes (x axis),
using the maximum likelihood with fixed root method (ML, dark red) or the restricted maximum likeli-
hood (REML, light orange). The true simulation value is indicated as a dashed line. Each boxplot is on
500 replicates.
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Figure 5: Estimation of the root trait value of a CP on pure-birth trees of growing sizes (x axis), using
the maximum likelihood with fixed root method (ML, dark red) or the restricted maximum likelihood
(REML, light orange). Each boxplot is on 500 replicates. Outlier estimates with absolute value larger
that 3 (3.1% of the points) are not shown on the graphic.

Methods. We fitted a Cauchy process on this dataset, using the ML or REML method. Using the
AIC criterion (Akaike, 1974), we compared these results with fits obtained using traditional Gaussian
processes, such as the Brownian Motion (Felsenstein, 1973), the Ornstein-Uhlenbeck (Hansen and Mar-
tins, 1996) and the Early Burst (Blomberg et al., 2003; Harmon et al., 2010), all fitted with phylolm (Ho
and Ané, 2014a) (ML) or Rphylopars (Goolsby et al., 2017) (REML). We then carried an ancestral state
reconstruction using the Cauchy REML fit, on a grid of 100 values between 3 and 5.5 for all trait values
at internal nodes, and between �1.5 and 1.5 for all increments on branches.
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Figure 6: Fraction of simulations where the true simulation value for the root lies in the 95% highest
posterior density interval computed from the ancestral posterior reconstruction of the root trait value
using the REML (empirical coverage over 500 replicates for each tip number).

Model fit. Compared to Gaussian processes, the Cauchy process increased the log-likelihood by about
8 units, and had a much smaller AIC (Table 2). Consistent with a pulsed evolution hypothesis, the CP
was hence clearly favored over any Gaussian process.

Table 2: Fits of Gaussian (BM, OU and EB) and CP models on the lizard dataset from Mahler et al.
(2013), with 100 species, and using the snout-to-vent length (SVL) trait measurement. The first two lines
are the (restricted) log likelihood and AIC scores for the ML (left) and REML (right) fits. The parameters
are µ for the ancestral root value (ML), � for the Gaussian standard error or Cauchy dispersion, and
✓ represents the selection strength ↵ for the OU, and the rate r for the EB. The computation time for
each fit on a standard laptop is given in seconds.

ML REML

BM OU EB CP BM OU EB CP

logLik -4.70 -4.70 -4.29 4.44 -6.00 -6.01 -5.36 3.10

AIC 13.40 15.40 14.57 -4.88 14.01 16.01 14.73 -4.21

µ 4.07 4.07 4.07 4.00 – – – –

� (⇥10�3) 52.18 52.18 68.34 4.51 52.45 52.45 73.48 4.48

✓ – 0.00 -0.01 – – 0.00 -0.02 –

time (s) 0.02 0.11 0.01 1.55 0.01 0.25 0.05 1.36

Ancestral Reconstruction. As in Duchen et al. (2017), we found evidence for large positive incre-
ments on branches leading to clades with species from the “crown giant” ecomorph, that have particularly
large body sizes (Fig. 7). The clade highlighted with bold edges on Figure 7 is particularly interesting,
as it exhibits bi-modal posterior trait and increment distributions, that can support two possible hy-
potheses about body size evolution of these species. One possible scenario is consistent with the one
exhibited in Duchen et al. (2017), with medium sized ancestors (“orange” mode on ancestral nodes),
and shifts towards large values on branches leading to species from the “crown giant” ecomorph, and to
the clade of “false chameleons”, namely A. guamuhaya, A. porcus, A. chamaeleonides and A. barbatus,
from the former genus Chameleolis, that are known to have unique characteristics. However, an other
scenario that is supported by this dataset would see a shift toward large body sizes at the crown of the
clade leading to large ancestors (“purple” mode on ancestral nodes), and shifts towards smaller values
on branches leading to the two smaller species of A. christophei and A. eugenegrahami.

Timing. The initial Cauchy fit was fast, taking less than 2 seconds for the CP. The additional character
reconstruction took around 2 seconds total for all the 99 ancestral nodes (using a single thread), and
around 17 seconds total for all the 198 edges (using six threads in parallel). All analyses were carried on
a standard laptop computer (MacBookPro 13-inch, M2, 2022).
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Pagel’s Lambda (Pagel, 1999)

Relax the BM variance structure:

V(λ)ii = Vii

V(λ)ij = λVij

Equivalent to running a BM on a modified tree with:

t(λ)i =

{
λti if i internal node

λti + (1 − λ)Ti if i leaf

λ = 1 λ = 0.5 λ = 0
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Equivalent to Pagel’s λ.
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Pagel’s λ tree transform

Easy to implement:
Transform tree for each λ.

Phylogenetic Heritability:

• λ = 0: no heritability.

• λ = 1: no individual variation.

Individual variation:
Measurement error, intra-specific variation, multiple
measurements, ...

Valid for any α-stable process.
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Multivariate α Stable Distribution (Nolan, 2005)

Definition:

X ∼ MCp ⇐⇒ aTX ∼ C , ∀a ∈ Rp.

Characterization:

X ∼ MCp ⇐⇒ ϕX(u) = E
[
eu

TX
]
= e iu

Tµ−γ(u)

with:

γ(u) =

∫
Sp

∣∣uT s∣∣ dσ(s)

and σ(s) is a spectral measure on the sphere Sp.
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Special Case: Linear Combinations (Kidmose, 2001)

Assumption:

X = AV with A : p × q and V vector of q iid Cauchy

Notes:

• If p = q, then getting the density is easy.

• q > p is allowed.

• Cauchy on a tree : special case with p = n and q = 2n − 2.

Characteristic Function: Assuming Vi ∼ C(µi , σi )

ϕX(u) = e iu
Tµ−γ(u) with γ(u) =

∫
Sp

∣∣uT s∣∣ dσ(s) and

σ(s) =

q∑
i=1

1

2
σi

√
AT

i Ai (δ(s − si ) + δ(s+ si )).
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Case p = q = 2
gaussian student linear cauchy orthogonal linear cauchy
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Cauchy Process on a Tree

Integrated Processes

Velocity Statistic
Integrated Brownian Motion
Belief Propagation

Special Case: Linear Combinations (Kidmose, 2001)

Assumption:

X = AV with A : p × q and V vector of q iid Cauchy

Notes:

• If p = q, then getting the density is easy.

• q > p is allowed.

• Cauchy on a tree : special case with p = n and q = 2n − 2.

Perspectives:

• For p = 2, and any q: we can get the density.

• It looks like a mixture of Cauchy-Like distributions.

• Can we do any p ?
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