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A toy model with global warming
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Continuous time birth-death processes, stochastic evolution based on
individual dynamics with spatial position (x € R), competition and
environmental dependence.

% Large population: the initial population size is proportional to K, with
K — 400,

% Asexual reproduction: birth rate of 1. The individual at position x € R
gives birth to a new offspring at the same location.

% Motion/mutations: during its life, the individual moves according to a
Brownian motion with diffusion coefficient 0 > 0 or according to a pure jump
process with jump measure ym(x, y)dy (nonlocal mutation operator).

 Natural death: an individual at position x at time t dies with the natural

death rate
1 2
5 (X — UCt) .

The optimal location is oct, which moves linearly with time.

Competition: each individual dies with the extra competition rate N;/K.



Stochastic differential equation with jumps

The population is represented by:

NK

ZK(dx) = Z(sx, () € Me(R)

i=1
K
Notation: (ZK,f) = [, F(x)ZE(dx) = & S0, £ (xi(t)).

+* If sup, B({Z5,1)?) < +o00, the evolution of (Z,t > 0) can be described by
a SDE and for all f € C2(R,R):

Zt ) > <ZO 7f>
2
/ / 1 — Z(x —ocs)? = (ZE, 1)) F(x) + %f”(x)] ZX(dx) ds + MF
where M is a square integrable martingale with:

(M), = / / (145 oesP (25, 1) P )02 (7 ()] 25(0k) ds.



Simulation (1)

Trait

Time



Large population limit

#* Prop: If sup, E((Z{,1)*"°) < 400 and limk— 400 Z8(dx) = uo(x)dx, then
when K — +o0, (Z{,t > 0) converges in D(R4, Mg(R)) to
(&, t > 0) = (u(t, x)dx, t > 0) where:

1 2
Oru(t,x) = (1+ E(x —oct)’ + / u(t, x")dx")u(t, x) + %8fxu(t, x).
R
There exists a unique non negative solution for this PDE.

% Change of variable: f(t,y) = u(t,y + oct). Then:

2

1 )
0f(y) = (L4 307+ [ F(Ey)d)F(ey) +oco,f(ey) + 5
R

5 O f(t.y).

1. Fournier Méléard, Annals of Applied Probability, (2004)
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1 )
0f(y) = (L4 307+ [ F(Ey)d)F(ey) +oco,f(ey) + 5
R

5 O f(t.y).

% For the nonlocal mutation operator:
1
0.f(6y) = (1+ 50+ [ F(ey)d)F(e.y) + 0Oy (t.y)
R

+r / (A(y) = £(x)) m(y, x)dy.

1. Fournier Méléard, Annals of Applied Probability, (2004)



Stationary solution

1 2
0f(6y) = (1+ 30+ [ F(Ey)d)F(6.y) + 0O, (00) + G (2.
R

# When (c? 4+ 0)/2 < 1, there exists a unique non trivial stationary solution:

A exp( (y+c)2)7

F(y) = -
) e %
2
with |\F||1:)\:1—%—%.

Y For the non-local mutation operator: existence and uniqueness as well.

1. Cloez and Gabriel, CRAS, (2020)



A simulation: who are the ancestors?

Trait

9
«O>» < Fr <) «=)» QA



Historical process

Trait

T
10

T
30

T
40
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Genealogies and ancestral paths
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Historical process (2)

% We consider the ancestral path or lineage:

¥: = trait of the ancestor living at time t

y € Dp = D(R,R) embedded with the Skohorod topology.

Notation: y;, y' = y ar, (v|s|w)

1. Dawson Perkins, Memoirs of the AMS, (1991)
2. Méléard Tran, EJP, (2012)
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% We consider the ancestral path or lineage:
¥: = trait of the ancestor living at time t

y € Dp = D(R,R) embedded with the Skohorod topology.
Notation: y;, y* =y a¢, (v|s|w)

% Population:
NK
1 t
H{ (dy) = 2 >3y, (dy)
i=1

in M(Dg) embedded with the weak convergence topology. Thus
HX € D(R ., Mg(Dg)), embedded with the Skorohod topology.

1. Dawson Perkins, Memoirs of the AMS, (1991)
2. Méléard Tran, EJP, (2012)

12



Test functions for historical processes

Usual class of test functions:
o) =[] &)
j=1

formeN", 0<t;<---<tynandVj€[l,m], g €CiR,(0,+)).

However these functions are not continuous for discontinuous y’s.

1. Dawson Perkins, Memoirs of the AMS, (1991)
2. Méléard Tran, EJP, (2012)
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However these functions are not continuous for discontinuous y’s.

For a real C2-function g on R, x R and a real C2-function G on R, we
define the continuous function G, as

Ge(y) = G( I/OxT g(s, ys)dS)-

% Lemma: Let ¢ be a test function of the form proposed by Dawson. Then,
there exists a sequence of test functions of the second form (g)qen= such that
for every y € Dr and every t € R at which y is continuous,

li = .

Jim q(y) = 2(y)

(choose G(x) = €* and gq(s, ys) = 3_7"; log gi(ys)k(tj — 5))
1. Dawson Perkins, Memoirs of the AMS, (1991)

2. Méléard Tran, EJP, (2012)
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Evolution equation for HX

With the same initial conditions as before, we have:

(HE ) =(Hg' / / Acp s,y) — ocDy(s, y)
C(Ry, R)

HL= G (HE D)) ) HE(dy) ds 4 ML,

where M %% is a square integrable martingale with predictable quadratic
variation process:

M=o [T (0% )y Bl ) )

# Let UX be a uniform random variable on the set of living individuals at time

T. and let B
Y =x"T, fortelo,T]
Then,
(HE, ®)
E.|® (VS tel0,T])| =Es, |~n—"
[ ( ! )] > | (HK,1)
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Coupling with a branching process

% We now assume that sup, E((Z&, 1)) < 400 and that limx_ 100 Z& = F.

* Then,
lim E(supI(ZfK,ﬁ —(F,f)])=0.
t<T

k—+o00

Let us freeze the competition term (Zf 1) to ||F||1 = \. We obtain:

(2 f) =(Z'. 1)

+ AtAZSK(dY) [(1 - %y2 — N f(y) — cof'(y) + O;f'”(y)] nyy.as

where
MK L ! }/2 2 20 1\2 5K
(M >t—R (1—&-?—1—/\)1‘ (y) + o (F)(y)| Z (dy)ds.
o Jr
This process satisfies the branching property (independence between

individuals)!

Similar equation for HX.
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Approximation by the branching process

* Prop: If ZK KL) F . Then for any continuous and bounded function ¢ on
D, ~
lim E(sup |(H, @) — (H, @)) = 0

K—+oo t<T

and lim E(sup |z, )y —(ZE, f>|2) =0.

k—+o00 t<T

% We have a toolbox for dealing with branching processes.

(Z, t > 0) is the branching process started with one particle.

16



Many-to-one formula

% Based on the branching property, we can replace expectation over the tree
by expectation along 1 branch!

E, [(Z, f)] = E, {exp (/Ot (1 - %vﬁ - /\) ds) f(Yt)] =: Pif(x),

where Y is the drifted motion process, for instance:
dyt = O'(dBt — Cdt)

This can be generalized in:

E, [(Ht, q>>] = E, |:exp (/Ot (1 - %vﬁ - A) ds)CD(Ys,s < t)} .

% The expected population size m:(x) = E,((Z;, 1)) satisfies:

me(x) = B, {exp (/Ot (1 - %Yf - )\) ds)]

from which we deduce that m € C}"°([0, T] x R).

% We can thus define a probability measure on path space by renormalizing
the intensity measure of H; by m:(x).

1. Hardy Harris, Séminaires de probabilité, (2009)
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Many-to-one formula (2)
Th: We have

1
mr(x)

E. [(fir,@)] = Ex[o(V:, t < )]

for the inhomogeneous Markov process Y (depending on T) with infinitesimal
generator

Gef (o) = LmT=eF)0) = FOOLmT ()

mrt—¢(x)

L being the generator of Y, for example Lf(x) = %Zf”(x) — ocf’(x) in the
Brownian case.

. .. Uk
# Th: Returning to the original process: recall Y = X,7.

lim e [0 (Y € [0,T])] = lim Eg [U#’d’)]

K—+oo K—+o00 <H¥7 1>
K

= lim E, (Hr, @)

Koo 50| (HE,1)

mr(x)F(dx)

:/IEX[<D(\~’S,5 <T7)]

18
1. Marguet, (2018)



Spine of the process (Brownian case)

Using Feynman-Kac's formula, m is the solution of

0_2

2
Oem = 78yym —ocdym+(1-— y? —A)m, mo(y) = 1.

Following Fitzsimmons-Pitman-Yor arguments using Girsanov's, we obtain that:

—ot

mi(y) = V1 tanh(ot) exp (_W (1 4 tanh(ot)) + 0/2+c)2) .

o
% Using the explicit value of m7(x), we obtain that:

cosh(o(T —t))

ve= cosh(aT)

Yo + ccosh(o(T — t))(tanh(o( T — t)) — tanh(o T))

+ o cosh(a(T — t))/o ﬁ'

1. Wenocur, J. Appl. Probab., (1986)
2. Fitzsimmons Pitman Yor, Springer, (1993)
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Backward spine (Brownian case)

% Forany t >0, \7: is a Gaussian r.v.

Computation gives that:

V.~ (Tt o
‘ N( ce " 1+ tanh(o(T — 1))

and thus, the density p(t,y) of Y, is:

y + Ce—(f(T—t)
_7

Oy log p(t,y) = (1 +tanh(o(T —t))).

% Using a formula by Haussmann-Pardoux, the time-reverse diffusion process
of Y is the Ornstein-Uhlenbeck process:

dXt = —O'(CXtdt =+ dBt)

1. Haussmann Pardoux, Annals of Probability, (1986)
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Spine for non-local diffusions (1)

Recall the generator of Y:

Limr—:f)(y) — f(y)LmT—e(y)

G:f(y) = ;
t (y) mT—t(y)
% We can compute the semi-group of the inhomogeneous Markov
process Y': N
- Pt(fmT,t,s)(x)
Pstpsf(X) = ——F—~—
e ( ) mT,S(X)
where for Y of generator Lf(x) = [5(f( (x))m(x,y)dy — ocf’(x),
—~ t 1
P.f(x) = E, [exp (/ (1 -3 Y2 - /\> ds) f( Yt)] :
0
# Define for L*f(x)= [ (f( (x))m(y,x)dy — ocf’(x),

P{f(x) = Ex {exp (/Ot (1 — %(Y;V — A) ds) f(y:)} .
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Spine for non-local diffusions (2)

% For f, g measurable and bounded, (g, ,Btf> = <,B;kg., ).
* [ me(x)F(x)dx = (Ps1,F) = (1, PrF) = (1, F) = \.

% As a consequence, if we start from mrF,

Emr,c[f(Yt)] :/Rf(x)mr,t(x)l-_(x)dx
and Y, ~ my_.(x)F(x)dx.
Proof:

B F0] =(o e, PR (5

=(P}F,fmr_¢) = (F, fmr_:).
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Backward spine

Ps,t+sf(X) = w

Returning the time for Y can be done without computing explicitly
my(x). The backward spin is a homogeneous Markov process with

semigroup: R
P (fF)
PtRf(X) = tTa
where P* is the dual of P. For the nonlocal mutations, this yields the
generator:
L*(fF)(x) x2
LRE(x) =—= + (1 & = \)f
() =g+ (1= =)
F
=—ocf'(x) + 7/ (f(y) — f(x))ﬂm(y,x)dy.
R F(x)

1. Nagasawa, Nagoya Math. J., (1964)
2. Reinhard Roynette, AIHP, (1970)

3. Dellacherie Meyer, Hermann, (1987)
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