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Context

We want to estimate/learn the link between covariates
Z = (Zy,....Z,)T € R? in high-dimension

and the intensity with which some events occur :

deaths/births
asthma attacks
purchases

blog entries

disasters
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Application in ecology

@ Birth-Death process :
N; = n is the size of the population at time ¢

» the population grows by 1 with a rate of birth A(n)
» the population decreases by 1 with a rate of death p(n)
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Application in ecology

@ Birth-Death process :
N; = n is the size of the population at time ¢
» the population grows by 1 with a rate of birth A(n)
» the population decreases by 1 with a rate of death p(n)
@ Predator-Prey model : the Lokta-Volterra model
N(t) = [N1(t),..., Nk(t)], Ni(t) : size of the population i at time ¢
» nq(t) : number of preys
» na(t) : number of predators

Deterministic version of the model :

{ ny(t) = 4anyi(t) — bny(t)na(t)
nh(t) = —cna(t) + dni(t)na(t)

Interpretation of the parameters :
» a = A1(t) rate of birth of the preys
> bna(t) = pi(t) rate of death of the preys
» dny(t) = Ao(t) rate of birth of the predators
» ¢ = pus(t) rate of death of the predators
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Application in survival analysis

Example :

@ 246 breast cancer patients :

» 142 patients receiving Tamoxifen
» 104 untreated patients

@ Variables of interest : relapse free survival time (RFS), that can be
right-censored

» T; relapse free survival time for individual 7
» C; censoring time for individual ¢
» 0; = L1,<c, censoring indicator for individual i

@ Covariates : 6 clinical variables, 44928 levels of gene expression
@ Observations : fori=1,...,246 and p = 44934

> Xz = mln(TZ,Cz) and (51
» Zi=(Zi1,..., Zip)" € RP the vector of covariates
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Hazard risk

Goal : to predict the RFS for the breast cancer adjusted on covariates
Conditional hazard : Fori =1,...,n,

_ sz‘|Zi (t)
Ao(t, Zi) = 1 - Fr,z,(t)

> fr,1z, conditional density of T; given Z;

» P, z, conditional distribution function of 7} given Z;
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Counting processes in the specific case of right censoring

Counting processes [Aalen, 1980] :
o Ni(t) = 1ix,<, 5,—1} counting process
@ Yi(t) = lyx,> at-risk process
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Framework : the counting processes

Fori=1,...,n,
@ N; counting process
e Y; predictable random process with values in [0, 1]
@ [0, 7] time interval between the beginning and the end of the study
@ Observations : (Z;, N;(t),Yi(t),i=1,...,n,0 <t <T)

A; compensator of Nj, so that
M; = N; — A; € M3},. (Doob-Meyer decomposition)

Assumption 1. N; satisfies the Aalen multiplicative intensity model :
t
Ai(t) = / Xo(s, Z;)Yi(s)ds,
0

where \g is an unknown nonnegative function called intensity
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The Cox model

The Cox model :
Mo(t, Z;) = ap(t) exp(BgZi)
@ ap : RT — RT baseline intensity
@ [Bo € RP regression parameter

= semi-parametric model
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The Cox partial log-likelihood

For a function A(t, Z;) = a(t)eP” Zi, the log-likelihood [Jacod, 1973] is
defined by

1 T T
- E;{/0 108 (a(0)S,(1.8)AN(D)} = [ a(t5,(t.8)
— l 3 ! o o 7 . wi BT Zi
n;{/olg sia ()} ith S,.(t, 8) = ZY
Iy, = Cox partial log-likelihood [Cox, 1972]
When p < n

B = argmax{l;,(8)}

BERP
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Usual procedure to estimate parameters in the Cox model

The Cox model :
Xo(t, Z3) = ag(t)ePo Zi, Z; € RP

Usual two-step procedure, when p < n :

© First step : estimation of B¢ using the Cox partial log-likelihood
@ Second step : estimation of ag

» Kernel estimator o”zf [see Ramlau-Hansen, 1983] :

,3 / t — u Al AN, (u)
il Z z;;l P Z5Y(u)

for some bandwidths & > 0 and K : R — R a kernel with integral 1.
» Cross-validation to select the bandwidth [Ramlau-Hansen, 1983 and
Grégoire, 1993]
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Estimation of the regression parameter in high-dimension

When p > n :
Lasso procedure in the Cox model [Tibshirani (1997)] :

Br = argmin{—1;(8) + T|Bl1},
BERP

I',, > 0 regularization parameter :
» in theory of order y/log(p)/n

» chosen in practice by cross-validation
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Lasso procedure

B2

\'1 Bls—argmln{C +FZ\BJ|}

BERP
ﬁw B 2N
,@ls = arg min{C\,(3)}
BERP
s.t. :?:1 |5J| <b

Advantages of the Lasso procedure :

> convex minimization problem = computable in practice

» sparsity of the Lasso estimator = results easily interpretable
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State-of-the-art : estimation of an intensity with covariates

© In the Cox model :
» When p<n:
* Ramlau-Hansen (Ann. Stat., 1983) and Grégoire (Scand. J. Stat., 1993)
— Asymptotic results for the resulting estimators

> In high dimension :
* Kong and Nan (Stat. Sin., 2014)
* Bradic and Song (Elec. Journ. Stat., 2015)
* Huang et al. (Ann. Stat., 2013)

— Non-asymptotic results for the Lasso estimator of 3¢

@ General intensity :

» Comte et al. (AIHP, 2011) : results for a small number of covariates
< Procedure non-adapted to high-dimensional covariates
» Lemler (AIHP, 2014) : approximation of a general intensity by a Cox
model using a simultaneaous weighted Lasso procedure

s Estimation of both parameters 3¢ and «q with a Lasso procedure
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Objectives

No(t, Zi) = ap(t)e® %, Z; € RP
= Estimation of both parameters separately

> high-dimensional covariates = high-dimension on 3,

» estimation of o : R™ — R™ with a procedure not specific to high
dimension
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Objectives

No(t, Zi) = ap(t)e® %, Z; € RP
= Estimation of both parameters separately

> high-dimensional covariates = high-dimension on 3,
» estimation of o : R™ — R™ with a procedure not specific to high
dimension
= Possibly in high dimension
» p < n small dimension

» p = +/n intermediate case

v

p > n high dimension

v

p > n ultra-high dimension
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Objectives

No(t, Zi) = ap(t)e® %, Z; € RP
= Estimation of both parameters separately

> high-dimensional covariates = high-dimension on 3,
» estimation of o : R™ — R™ with a procedure not specific to high
dimension
= Possibly in high dimension
» p < n small dimension

» p = +/n intermediate case

v

p > n high dimension
» p > n ultra-high dimension

= Measurement of the influence of high-dimension on the estimation of «y
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Objectives

o(t, Zi) = ao(t)e® %, Z; € RP
= Estimation of both parameters separately

> high-dimensional covariates = high-dimension on 3,
» estimation of ag : RT™ — R with a procedure not specific to high
dimension
= Possibly in high dimension
> p < n small dimension

» p ~ /n intermediate case

v

p > n high dimension
» p > n ultra-high dimension

= Measurement of the influence of high-dimension on the estimation of ay
= Non-asymptotic result for the estimator of the baseline function «y
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© Estimation in the Cox model in high dimension
@ A two-step procedure
@ First step : estimation of the regression parameter in high dimension
@ Second step : estimation of the baseline intensity
@ Non-asymptotic oracle inequality

Sarah Lemler Estimation for counting processes in high dimension 11/05/2017



A two-step procedure

The Cox model in high dimension : p > n

No(t, Zi) = ag()e® %, Z; € RP

A two-step procedures :
» First step : estimation of Bq via a Lasso procedure

» Second step : estimation of ag via kernel estimation with a bandwidth
selected by the Goldenshluger and Lepski method
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First step :

Estimation of the regression parameter
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First step : estimation of the regression parameter

Lasso estimation of Bg :

B = argmin{~1;(8) + L'l Bl1},

where [ is the Cox partial log-likelihood
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First step : estimation of the regression parameter

Lasso estimation of Bg :

B = argmin{~1;(8) + L'l Bl1},

where [ is the Cox partial log-likelihood

Proposition [Huang et al. (2013)/Guilloux, L., Taupin (2014)]

Let k>0, ¢ >0 and s := Card{j : B, # 0}. Under some Assumptions,

with probability larger than 1 — en ™",

log(pn*)
n

18 — Bol1 < C(s)
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Second step

Estimation of the baseline intensity
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The kernel estimator

1 [T Kyt —
_ _Z/ Ent =) ),
nh i—=1 70 Sn(uvﬂ)
where
> Sn(u ,6 Ze'g Z’Y
» 3 is the Lasso estimator from the first step

0= 143
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The kernel estimator

1 [T Kyt —
_ _Z/ Ent =) ),
nh i—=1 70 Sn(uw@)
where
> Sn(u ,6 Ze'g Z’Y
» 3 is the Lasso estimator from the first step

0= 143
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General idea to choose the bandwidth

@ H,, a grid of bandwidths h > 0
@ Set of estimators :

F(H) = {68, h e 1y}

@ Oracle :
h* = axg min oo — Efa 212 + ElElay] - 67|}
B(aP) Vi(h)

o Estimated bias : B(d
@ Selection procedure o

7P = argmin{ B(G2) + V(h)}
heH

o Final estimator :
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The Goldenshluger and Lepski method (2011)

Selection of 18 € H,, s.t. the risk of o“zgﬁ. € F(Hy,) is as close as possible to

i - K 24+ V(h
gg;{r}l{\lao n*aolls +V(h)}

» Estimated bias :

Bap) = sup {llaf) - af I3 - v(r)} |
hEeHn ’ +

with &, = Ky * & and

K113

V(h) “||O‘0||0<>,T h

> Selected bandwidth :

7B = argmin{ B(G2) + V(h)}
hEH

» Resulting estimator : dgé
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Non-asymptotic oracle inequalities for o?gé

Theorem [Guilloux, L., Taupin (2016)]

Under classical assumptions, for some a > 0 and C, C’(s) and L some
contants,

3 In®ninn
Aﬂ 2 ° 2 / p
E[|a% — aoll) < © inf {llo — aolly + V() } +0'(s) T
L In®nlnnp
< ° _ 2 _ / e
_Chlergn{Hah ang+nh}+C(s)
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Non-asymptotic oracle inequalities for olgé

Theorem [Guilloux, L., Taupin (2016)]

Under classical assumptions, for some a > 0 and C, C’(s) and L some
contants,

3 In%n
Aﬁ 2 o 2 /
IE[||aﬁé —agll3] < Chlel%_f['n{Hah — |5+ V(h)} +C'(s) - Innp
L In*n
< : o 2 /
_Chg%fn{HOéh a0||2+—nh}+0(8) Innp
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Non-asymptotic oracle inequalities for o?gé

Theorem [Guilloux, L., Taupin (2016)]

Under classical assumptions, for some a > 0 and C, C’(s) and L some
contants,

3 Inn
~ B 2 g 2 ’ a P
E[|65, — aol3] < C,inf {llan = all§ + V() } +C'(s) Inn="F
Innp
ni

L
< 2 o 2 / a
_Chgfn{Hah a0||2+—}+C(s)ln -

nh
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Comparison model selection / kernel estimation

Comparison of the oracle inequalities
o Kernel estimation [Guilloux, L., Taupin (2016)]

113
nh ’

V(h) = llaolloor

log np
n

E[|67, — aoll3) < C,inf {llan - aoll3 + V(1) } +C'(s) log" (n)
o Model selection [Guilloux, L., Taupin (2015)]
o
pen(m) := A1+ [Jaollor)

B % o ~,. Jognp
E([|6 5 — aollf < € inf {llco — i es+ pen(m)} + €'(5) 222

v
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Model selection

e M, a set of indices,
e {S,,,m € M,} a collection of models such that

Sm={a:a= Z aj'pi, ajt € Ry,
j€dm

where (¢7")je,, is an orthonormal basis of (L2 N L>)([0,7]).

@ D, :=|Jp/|, dimension of S,
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Comparison model selection / kernel estimation

Comparison of the oracle inequalities
o Kernel estimation [Guilloux, L., Taupin (2016)]

113
nh ’

V(h) = llaolloor

log np
n

E[|67, — aoll3) < C,inf {llan - aoll3 + V(1) } +C'(s) log" (n)
o Model selection [Guilloux, L., Taupin (2015)]
o
pen(m) := A1+ [Jaollor)

B % o ~,. Jognp
E([|6 5 — aollf < € inf {llco — i es+ pen(m)} + €'(5) 222

v
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Context
Framework
Objectives

A two-step procedure

First step : estimation of the regression parameter in high dimension
Second step : estimation of the baseline intensity

Non-asymptotic oracle inequality

© Simulations and application to a real dataset
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Simulations : simulated data

Xol(t, Z;) = ao(t)eﬁgzi, fori=1,...,n
where Z; = (Z; 1, ..., Z,-’p)T is the vector of covariates of individual %.

» Sample sizes and number of covariates :
» n =200 or n =500

* p =15 < n small dimension case
* p=+/n (=15 or 22) intermediate case
* p =n high dimension case

» Design matrix : Z ~U([—-1,1]), Z € R™*P
» Rate of censoring : ~ 20% or 50%
True parameters :
» Baseline function : ag(t) = ¢g\t?~! (Weibull distribution),
» Regression parameter : Bg = (0.1,0.3,0.5,0,...,0)7 € R?
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Simulations : estimation of the parameters

» Estimation of Bg
» Lasso [Simon et al., 2011] :

B= argﬁmin{—lé(ﬁ) + plBlh}

where p is chosen by cross-validation
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Simulations : estimation of the parameters

» Estimation of B¢
» Lasso [Simon et al., 2011] :

B= arg min{ 1, (8) + ulB}}
where p is chosen by cross-validation

» Kernel estimation of ag
» Epanechnikov kernel :

3
K(u) = 1(1 - u2)]1{|u|g1}
» Choice of the bandwidth :

* cross-validation of Ramlau-Hansen
* the Goldenshluger and Lepski method
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Simulations : estimation of the parameters

» Estimation of B¢
» Lasso [Simon et al., 2011] :

B= argﬁmin{—lé(ﬁ) +ulBh}
where p is chosen by cross-validation

» Kernel estimation of ag
» Epanechnikov kernel :

3
K(u) = 1(1 - u2)]l{|u|§1}
» Choice of the bandwidth :

* cross-validation of Ramlau-Hansen
* the Goldenshluger and Lepski method

» Estimation of agy by model selection :
1
. . . _ 2
» Histogram basis : ¢;(t) = 727’1/ Li—1)r/2m jrj2m((t), for
j=1,..,2™ D,, = 2™
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Simulations : MISEs for a known regression parameter

For Bo known, ap ~ W(1.5,1), n =200, p =15 :

MISE(45") = 0.015
MISE(a$") = 0.018
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Simulations : MISEs for the different estimation procedures

For ap ~ W(1.5,1)

. Dimensions n — 200 n — 500
Estimators
p=15 | p=200 || p=22 | p=500
KernelCV 0.023 0.045 0.010 0.023
KernelGL 0.017 0.044 0.009 0.022
For ag ~ W(0.5,2)
. Dimensions n = 200 n = 500
Estimators
p=15|p=200 || p=22 | p =500
KernelCV 1.561 1.556 1.521 1.515
KernelGL 1.02 0.923 1.006 1.098
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Simulations : MISEs for different rate of censoring

For atp ~ W(1.5,1) and two rates of censoring 20% and 50%

MISEs

. . 20% 50%
Dimensions
GL Ccv GL cv
" = 200 p=15 0.014 | 0.017 || 0.023 | 0.029
p =500 | 0.013 | 0.016 || 0.022 | 0.026
" = 500 p =22 0.009 | 0.007 || 0.011 | 0.012
p=1000 | 0.008 | 0.008 || 0.011 | 0.013
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Simulations : MISEs for the different estimation procedures

For ag ~ W(1.5,1)

. Dimensions n = 200 " — 500
Estimators
p=15 | p=200 || p=22 | p=>500
KernelCV 0.023 0.045 0.010 0.023
KernelGL 0.017 0.044 0.009 0.022
Model Selection Hist 0.072 0.071 0.055 0.059
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Dataset and screening step

@ 246 patients breast cancer patients :

» 142 patients receiving Tamoxifen,
» 104 untreated patients

@ Variable of interest : time of relapse free survival, that can be
right-censored

@ Covariates : 6 clinical variables, 44928 levels of gene expression

Screening step : p = 1000
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Dataset : plots of the estimators of the baseline functions
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(a) Untreated patients (p=1000).  (b) Tamoxifen patients (p=1000).
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Conclusion

» Two-step procedures to estimate both parameters Cox model with
high-dimensional covariates :

» Lasso procedure to estimate (g
» Non-parametric procedures to estimate ay :

* Model selection
* Kernel estimation with the Goldenshluger and Lepski method

» Non-asymptotic oracle inequalities for the estimators of «
» Measurement of the influence of the high dimension on the estimation
of (7))

8 Guilloux A., Lemler S. and Taupin M-L. Adaptive estimation of the baseline
hazard function in the Cox model by model selection, with high-dimensional

covariates. JSP/ (2015).

[4 Guilloux A., Lemler S. and Taupin M-L. Adaptive kernel estimation of the
baseline function in the Cox model, with high-dimensional covariates. JMVA
(2016).
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Perspectives

» |Interaction models to investigate potential crossed effects of the
treatment and some genes

» Cox model with covariates and a regression parameter that depend on

the time }
Xo(t, Zi(t)) = ag(t)ePo®” Zi®)
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Perspectives : applications to SDE

Application in neuroscience :

SOMA (NOYAU)
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Perspectives : applications to SDE

» Spike train : sequence of the times of occurence of the action
potentials of a neuron

» Spike : time of occurence

Two kind of data :
» Extracellular signal : spike trains,
action potential of several neurons = spike sorting
< discrete signal

> Intracellular signal : membrane potential in mV (all the electric
fluctuations in the cellular membrane, including those who do not lead
to action potential)
< continuous signal
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Perspectives : applications to SDE

o X = (X¢)>0 action potential of a fixed neuron

@ measurements of M spike trains from M different neurons

M
dX; = b(Xy)dt + odW,- + > a(X,-)dN/
j=1

with N = (N}, ..., NM) a multivariate Hawkes process
AN{ = MNdt + dM]

and )\{ an estimator of the intensity of a Hawkes process or a Cox model :

+
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Appendix : assumptions on kernels and bandwidths

1) K has a compact support [—1, 1]
1 1
/_1 K(u)du=1 and |K|3= /_1 K%(u)du < oc.
2) nh>1land 0 < h < 1.
3) Card(Hy,) <n
4) For some a >0, > 3. % = O(In%(n))
5) Forall b>0, }7, 4, exp(—b/h) < 400
6) For j € {0, 1,2} the function x + 2/ K (z) is integrable and
/]RxK(x)da: =0 and /RacQK(x)dx < 0.
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Appendix : Adaptive selection of the bandwidth

» |dea : introduction of a pseudo-estimator
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Appendix : Adaptive selection of the bandwidth

» |dea : introduction of a pseudo-estimator
1 " T Kh(t — u) T 7.
ap(t) = — ————dN;(u), S(u, = E[ePo %
0= 5 20 [ S N S o) = B

» Estimation of an upper bound of the excess risk : E(ay) = Kj, * o

Ellaf—aoll3 < C{El|a; —anl3+Ellan—Knraol -+ Kyrao—aol }}
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Appendix : Adaptive selection of the bandwidth

» |dea : introduction of a pseudo-estimator
1 " T Kh(t — U) T 7.
ap(t) = — ————=dN;(u), S(u, = E[e”0 <4
0= 5 20 [ S N S o) = B

» Estimation of an upper bound of the excess risk : E(ay) = Kj, * o

Ellaf—aoll3 < C{El|a; —anl3+Ellan—Knraol -+ Kyrao—aol }}

> IE||(3423 — ap,||3 bounded by a constant that does not depend on h :

Ellaf, - aoll§ < C(B, Bo) +C{llag — Ky aol B+ Ellan — K ol 3}
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Appendix : Adaptive selection of the bandwidth

» |dea : introduction of a pseudo-estimator
1 " T Kh(t — U) T 7.
ap(t) = — ————=dN;(u), S(u, = E[e”0 <4
0= 5 20 [ S N S o) = B

» Estimation of an upper bound of the excess risk : E(ay) = Kj, * o

Ellaf—aoll3 < C{El|a; —anl3+Ellan—Knraol -+ Kyrao—aol }}

> IE||(3423 — ap,||3 bounded by a constant that does not depend on h :

Ella7, — aol 3 < C(8, Bo) +C{ llao — K+ ol § +El an — K+ ol 3}

» Estimation of h* instead of the oracle :

h* = argmin{”ao — K, % a0||% +E||lan — Ky, *a0||§}.
heH
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