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Figure 1| Average rates of spontaneous mutation in viruses, adjusted to the rate per
genome [ d (ss) RNAviruses (+ssRNA; RNA phage
QB, poliovirus'” and Tobacco mosaic vlrus“”i‘ negative-sense ssRNA viruses (-ssRNA;
vesicular stomatitis virus, influenza Awus‘“ and measles virus”), the retrotranscribing
viruses (Retro; spleen necrosis virus, ia virus, Rous irus™®, human

immunodeficiency virus type-1 and bovine leukaemiavirus?) and the double-stranded
() RNA virus (4sRNA 96 (REF. 30)) have RN,
without any ilities. Large dsDNA viruses (dsDNA; bacteri A,
T2 and T4 (REF.65), and herpes simplexvirus type 1 REF. 11)) encode their own DNA
polymerases. The two ssDNA viruses (ssDNA; bacteriophages M13 REF. 65) and $pX174
(REF. 12)) use the DNA polymerase of their host, Escherichia coli. There are multiple
independent estimates for several of these viruses and all were included in this figure.

Duffy et al. Nature Reviews 2008
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Fig. 1. () Diversity of modeled phytoplankton types in the uppermost 260 m, averaged annually across
10 ensemble members. Diversity is defined as the number of phytoplankton types comprising greater
than 0.1% of the total biomass. (B) Zonal mean diversity, as well as the Shannon Index (10), for the miu
shown in (A). (€) Anrlual mean R* (sm:
1072 mmol N m- along a mendlonal uansm mmugh the Atlantic Ocean at 20°W in an idealized glnbal
‘model with a single limiting nutrient (12). The

in each latitude.

Barton et al. Science 2010
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‘B Zooplankton FiG. 2. Relationship between rate of mtDNA sequence diver-
- Autotrophs gence (% change per million years) and body size (in kg) for various
vertebrates. Data are from Table 2. 1, Mice; 2, dogs; 3, human—

© Bacteria
- chimpanzee; 4, horses; 5, bears; 6, geese; 7, whales; 8, newts; 9,
frogs; 10, tortoise; 11, salmon; 12, sea turtles; 13, sharks. Boxes

1071 107 1 10° represent the range of rates and body sizes for a given taxon. Solid
lines are drawn to pass through the boxes. Dashed line represents the
Body mass (g) hypothesis of rate constancy.

Hatton et al. Sci. Adv. 2021 Martin, Palumbi, PNAS 1993
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Adaptive dynamics: Darwinian evolution
¢ Heredity: transmission of phenotypes
¢ Mutation: modification of phenotypes

¢ Selection: consequence of ecological interactions
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Adaptive dynamics

Adaptive dynamics: Darwinian evolution with focus on
© Heredity: transmission of phenotypes ~~ simplified (asexual)
¢ Mutation: modification of phenotypes

¢ Selection: consequence of ecological interactions ~» focus on the
interplay between ecology and evolution

Main question: characterize long-term evolution under assumptions of
¢ large populations
¢ small mutations

® rare mutations

Goal of this talk: build macroscopic models from several combinations
of these 3 hypotheses satisfying key biological features.

Metz et al. 1996; Dieckmann and Law 1996, Geritz et al. 1997, 1998
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An individual-based (toy) model

Asexual birth and death process with logistic competition and
mutation

¢ Evolution of a quantitative phenotypic trait
¢ Trait space X =R
© A population composed of N (¢) individuals with traits

T, ..., Zn(r) € R is represented by
N(t)
vi=_ 0
i=1

¢ Measure-value pure jump Markov process
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Population dynamics

N(#)
For an individual with trait z € R in the population v, = Z Oz,
i=1

© clonal reproduction at rate b(z)
¢ reproduction with mutation at rate p(z), mutant trait = + z
with z ~ N(0,1)
N (1)

¢ death with rate d(z) + Z c(z,z;) = d(z) +/ c(z,y)v, (dy)
i=1 R
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Population dynamics

1
For an individual with trait z € R in the population v/ = Ve Z Oz,

© clonal reproduction at rate b(z)

¢ reproduction with mutation at rate ;p(z), mutant trait z + z
with z ~ N(0,0%)

N(t
© death with rate d(xz Z c(z,z;) = d(z) + / c(z, y)vi (dy)

3 scaling parameters:
¢ large population: K — +o0
® rare mutations: yu — 0

® small mutations: ¢ — 0

Metz et al. 1996; Bolker and Pacala 1997, DeAngelis and Mooij 2005
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The cube of scaling parameters
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Individual-based model

Simulations: evolutionary arms race with asymetric
competition

Trait space X = [0,4], d(z) =0,
mutation law A(0,0?) (conditioned on z + h € X))
b(z)=4—z, plz)=1, c(z,y)=c(z—y) with

Kisdi, JTB 1999; C., Ferridre, Méléard, TPB 2006
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Simulation
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Limit K — +oo alone

Theorem

Under general assumptions on the parameters and the initial
condition, assuming |1 and o constant, vE converges in
D(Ry, Mp(R)) as K — +oo to the unique (weak, measure) solution of

oru(t, ) = (1(0) - d(a) = [ clon)utt.)ay) u(t,o)

+ /IR %G (x ; y) pp(y)u(t, y)dy.

Fournier, Méléard, AAP 2004, C., Ferriére, Méléard, TPB 2006
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oo, then o — 0

(1,1,1)

(0,1,0)
1
1
1
1
1
1
i
1
; Integro-
H 1/K Differential
' Equation
|
|
1
U
(0,0,0)
(0,0,1)



oo, then o — 0

Simulation
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Small mutations and long time: concentration limit

1
o

Dy, (t,2) — (b(z) () - /R (2, y)uo (£, y)dy

—|—u/ p(z — Uh)G(h)dh) Uy (t, )
R
+ 1 / p(z — oh) (uy (t,z — oh) — uy(t, ) G(h)dh.
9 Jr
Hopf-Cole transformation:

Uy (t, ) = exp (M), or fBy(t,z) =0clnu,(t,z)

gives
9,8, (t,7) = b(a / oz, y)us(t, y dy—i—u/ oz — oh)G(h)dh
p(z — oh) [ (5” (t, ‘”_”h) Bolt, x)> —1] G(h)dh.
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Hamilton-Jacobi equation

We expect 5, — (8 solution to the Hamilton-Jacobi equation
03(t. ) =b(z) ~ d(2) ~ [ el urldy) + up(a)
R
+,up(:1:)/ (efarfi(m)h - 1) G(h)dh,
R

where p; is the limit of w, (¢, -), with the constraint

lim sup max S, (¢, z) = 0.
o—0 T

Diekmann et al. 2005; Barles, Perthame 2008;
Mirrahimi et al. 2009; Mirrahimi, Roquejoffre, 2018
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Hamilton-Jacobi limit
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Simulation
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Simulation
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Simulation
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The “tail problem”

Example of dynamics of the function 5(¢, z):
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The “tail problem”

Example of dynamics of the function 5(¢, z)

/ / \
/ M\
| \ ;/

¢ The dynamics is strongly influenced by exponentially small initial
population densities in favorable regions far away from the initial
population

¢ Positive population densities everywhere ~~ no local extinction
© Evolutionary time-scale is too fast (¢/0)

Perthame and Gauduchon, MMB 2010, Mirrahimi et al., SIAM JMA 2012
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The selection process has sufficient time between two mutations to
eliminate disadvantaged traits (time scale separation):

succession of phases of mutant invasion, and competition between
traits

the outcome of competition is given by the deterministic
population dynamics obtained above

Time scales:
of individual mutations: i
of mutations at the populations level: I%ﬂ
of ecology (changes in the population densities): 1

of mutant invasion: log K (time for a super-critical branching
process to reach K)

Metz et al. 1996, C. SPA 2006
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(Very) rare mutations: K — 400 and u — 0

Assume that 1/5 — ng 0z with ng > 0. If

VC >0, logK < L < exp(CK),
Kp

then (VgKu,t > 0) converges for f.d.d. to a pure jump Markov process
(Ay, t > 0) with values in the set of positive measures on R with finite
support.

Under assumptions preventing coexistence of several traits,

Ay = n(Xe) 6,
where fi(z) = ﬂ%w—) and (Xi)i>0 is Markov with generator
_ _ _ e+ oh o))t
Lo(@) = [ (ol + o) = pla)p(@)n(@ LD 6nyan

where f(y,z) = b(y) — d(y) — c(y,z)n(z) is the fitness function.

C. SPA 2006; C., Méléard, PTRF 2011; C., Jabin, Méléard JMPA 2014
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Simulation: trait substitution sequence
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Convergence to the TSS
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Rare mutations
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Rare mutations

Biological criticism: too rare mutations

The scaling limit leading to the T'SS has been also criticized by
biologists:

¢ strictly monomorphic populations are unrealistic

© time scale of evolution is too long (KLH)

¢ mutations are too rare

Intermediate approach: less rare mutations

¢ allowing to take into account non-extinct but negligible
populations may have a strong influence on long term evolution

¢ allowing for local extinction

Waxman, Gavrilets, JEB 2005
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A discretized model

Discretized state space X = {id, 0 < ¢ <1/} with step ¢
Population state (Ng* (),..., Nfj;(t))
¢ Symmetric mutations to the closest trait

Competition kernel ¢ = 1 for simplicity

We define

_ log(1+ N (tlog K))

ie. NX(tlogK)= K8 ® _1,
IOgK ? 1e ’L( Og )

BE(t)

© BE(t) =0 : the population with trait id is extinct

© BE(t) € (0,1) : the population with trait id is non-extinct but
negligible w.r.t. the dominant population (of the order of K).
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A scaling with (less) rare mutations

Define the relative fitness function S(i;¢) = r(id) — () with
r(z) = b(z) — d(z).

Assume p = K= with a € (0,1) and that N<(0) = | K50 | with
max; 3;(0) = B,(0) =1 for a unique .
Then (BX)o<i<1/s converges in probability in L2, (R%) to a piecewise

loc

affine function (Bi)o<i<1/s such that

0 ife=2"(t),
Be(t)=3 max{S(i; € (1)), i:8,() = Be(t) + |6 — jla, VEAT <G < EVi}  ifBe() >0,
max{S(i; £*(£)), i # £:8;(£) = Be()+|£ — jla, VEA i< <LV i} VO ifBe(t) =0,

where £*(t) € {0,...,1/8} is such that £*(0) = iy and £*(t) = j for all
J and t such that j # (*(t—) and B;(t—) = 1; otherwise, £* is
constant.

Durrett, Mayberry, AAP 2011; Bovier, Coquille, Smadi, AAP 2019;
C., Méléard, Tran, AAP 2021; Coquille, Kraut, Smadi, EJP 2021
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Scaling with less rare mutations
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EDO for the exponents
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Simulation with @ = 0.5
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Simulation with @ = 0.5
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Perspectives: small mutations and vanishing grid mesh

Complex limit dynamics: the Hamilton-Jacobi approach suggests that
a scaling with small mutations instead of rare mutations should give
simpler dynamics ~~ vanishing grid mesh

We assume
¢ grid mesh dx, such that hx = dx log K — 0
g gI‘ldXK:{Z(;KOSZS]./(SK—].}
¢ an individual with trait £dx gives birth to a mutant individual
with trait jox at rate p(¢dx )hx G(hx(j — 1))
¢ ~~ total mutation rate of the order of p(fdx)
¢ ~- mutation size of the order of 1/log K
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Expected convergence

For all z, t, let ix be the integer such that = € [ixdk, (ix + 1)dk) and
define the piecewise affine interpolation function

X

B (1) = B0 (1= i) + 80 () (o i)

Conjecture (informal)

Assume EK (0,-) converges in L™ to 3y > 0. Then EK converges to
the solution of the Hamilton-Jacobi equation with constraint and cutoff

BB (t, 2) = b(x) +p(z) — d(z) — e+ ip () /

L (e_z‘vﬁ(t’z) —1) G(z)dz

such that 5(0,2) = Bo(z) with cutoff corresponding to extinction.

First results in: C., Méléard, Mirrahimi, Tran, JEP 2023; PhD A. Jeddi



Small mutations
[e]e] J

A scaling with vanishing grid mesh

Hamilton-Jacobi
equation for
(0,1,0) the exponents

HJ

(1,1,1)

---------- CEAD
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EDO
(0,0,1) TSs
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Simulation
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Simulation
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General approach: design macroscopic models allowing to
describe the evolutionary dynamics in a simpler (?) way

Great variety of dynamics starting from the same
individual-based model

All are concentration limits (to evolving Dirac masses), but with
very different levels of diversity, evolutionary time-scales and
macroscopic behaviors

~~ provides a large range of modeling tools, but prediction from
these models must be done carefully!

Parameter scalings motivated by discussions in the biological
literature and interactions with biologists
~~ Mathematics can help shed light on the biological debate

Great diversity of mathematical tools, and several open problems

. and this is not the end of the story
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CEAD
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Canonical
diffusion
of AD 55

Fournier, Méléard, AAP 2004
Diekmann et al. TPB2005; Barles et al.MAA 2009

C. SPA 2006; C., Méléard, PTRF 2011

Baar, Bovier, C., AAP 2017
Durrett, Mayberrry 2011; C., Méléard, Tran 2021
Coquille, Kraut, Smadi, EJP 2021

dashed line: T. Paul, 2024+

C., Méléard, Mirrahimi, Tran, JEP 2023

C., Hass, AAP 2024

Conclusion
oe
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