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General theme

Evolutionary ecology of fluxes
o Evolution & ecology of dispersal
o Spatial structure, networks of populations
o Food webs & other interaction networks



General theme

Evolutionary ecology of fluxes
o Evolution & ecology of dispersal
o Spatial structure, networks of populations
o Food webs & other interaction networks

o Ultimately: (spatial) network of (interaction) networks



Spatially structured networks
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Spatially structured networks
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Spatially structured networks




Today'’s outline

CONSEQUENCES OF DISPERSAL IN ECOSYSTEMS

1. Ecosystem stability

2. Patch dynamics on networks



ECOSYSTEM STABILITY



Ecosystem stability

The question:

Does species diversity and the variability of
specles lnteractions stabilize ecosystems?
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Dwersmty stabilizes ecosystems...
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... or does (t?

Stable?
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Mathematical stability



Formalization

Assume a feasible equilibrium X* of

dX
— =G(X
o = G

where
X =abundance vector for all the S species

G(X) = dynamics of the system (competition,
predation, mutualism...)



Linearization

Assume a feasible equilibrium X*
Linearize the dynamics around the equilibrium

d(X - X"
dt

~ 0G(X").(X = X)

Jacobian matrix J

Stable equilibrium <=> All eigenvalues of J
(locally) have negative real parts



The Jacobian matrix of a random
ecosystem

Assume that the system s “random” and properly
scaled, Le. the Jacobian looks like

—m B(c) x N (0,67)

B(C) x N (O, 02)

where B (c) = Bernoullt distribution
N (0,62) = Gausslan distribution



Empirical spectral distribution

Eigenvalues of J in the complex plane

= empurical spectral distribution (ESD)




Empirical spectral distribution

For large S, the system s stable if and only if

G«/C(S —1) <m

May 1972




Sequels to May’s paper

Three “classic” lines of investigation after
“May’s paradox”:

1. Rephrasing the “stability” criterion
2. Jointly studying feasibility & stability

3. Extending May's approach to more detalled
cases



A recent example

Stability criteria for complex ecosystems

Stefano Allesina'? & Si Tang’

Following line (3) : dissected May’s arguments by
Interaction type

o predation (-/+)
o mutualism (+/+)
o competition (-/-)

Allesina & Tang 2012



A recent example

Main result from Allesina & Tang

Empitrical spectral distribution (ESD) changes by
Interaction type

Allesina & Tang 2012



@ Our own sequel
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iple of the analysis
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Principle of the analysis

What we need...

Deterministic

Random | o
part of the =: radius ' centre BRI RUT

Jacobian PN Jacobian




Principle of the analysis

Support of the ESD of X = A + B (size = n) with
* Arandom, mean =0,sd =o¢
* B determintistic, ESD = g

= Zs that verity

(Lo
—u

Tao et al. 2010



Spatial structure in the Jacobian

—(m+d)lI +A, (d/(n—-1))I

(d/(n—-1))I —(m+d)I+A, (d/(n-1))I
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Among patches

_ Within patches



o \/C(S “1)<m Determintistic part

(d/(n-1))1

(d/(n-1))1

Among patches

_ Within patches



o Jo(S—1)<m Deterministic part

Eigenvalues of the deterministic part of the
Jacobian change from

(-m-m,....-m)

\ )
|

S times
to

(-m-m,....-m,-m-dn/n-1),...,-m-dn/An-1))

\ J\ )
| |

AR ES (n-1)S times
— The deterministic effect of d'is to “push” a
fraction of the ESD to the left of the complex
plane




0

Among patches

Within patches

Random part




J\/C(S ~1)<m Random part

» Connectance goes from cto ¢/n
» System size goes from Sto nS

= Variance’



Computing the variance: large d

Depends on the correlation p among A'’s
V=V[Al]/n,

n,=n/[1+(n-1)p

o c(S—-1)/n, <m



Computing the variance: small d

No change n variance, but change tn ESD centre
When d'is small, a different approximation:

GQ/C(S —1) <m+d

approximately valid whatever the value of p



it looks like...

What




it looks like...

What




What it looks like...

Je(S-DH(n-1/n
m+nd/(n-1)



Extensions

» Works with non-complete (but regular) spatial
graphs

» Works with species-specific dispersal rates

= Stimulations (with feasibility constraints) show
the same results

* One thing you can't study from J alone is the
feedback between d and the homogeneity of A
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Feedback between dand A

Predicted decline due to
heterogeneous patches

\

High dispersal
= synchronizing dynamics
= more homogeneous A
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Take-home messages

. Stabilization requires heterogeneity of
feedbacks among patches and dispersal

. Dispersal can homogenize feedbacks

. Optimal stabllity is achieved at intermediate
dispersal rates



Perspectives

» dispersal when not diffusive
o density-dependent dispersal

Dispersal

Density of...
... conspecifics, preys, predators



Perspectives

» dispersal when not diffusive
o density-dependent dispersal

» putting together dispersal at different scales
(non trans-specific definttion of patches)




Perspectives

» dispersal when not diffusive
o density-dependent dispersal

» putting together dispersal at different scales
(non trans-specific definttion of patches)

= explictt link between feasibility and stability

» random network of patches (not regular)



PATCH DYNAMICS ON
NETWORKS



Patch dynamics on networks

The question:

Does metapopulation network structure affect
specles occupancy?




The initial problem: a model for seed
exchange networks
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A model for seed exchange networks

= Simplest model to capture specificities of seed
exchange networks

* Dynamic processes:
o extinction of variety in farmer’s fields,

o diffusion of variety through exchange between
farmers,

o background diffusion (getting the variety from
NGOs, markets, nature, etc.)

= On a directed network



Parallel with metapopulations

= Seed exchange = colontsation
» Extinction of variety = extinction of population

» Background diffusion = external source of
propagules

Spatial network structure and metapopulation persistence

Luis J. Gilarranz *, Jordi Bascompte

Integrative Ecology Group, Estacion Bioldgica de Doiiana, CSIC, C/Américo Vespucio s/n, E-41092 Sevilla, Spain



Parallel with epidemics

» Seed exchange = infection by contact
» Extinction of variety = patient recovery

» Background diffusion = self-infection

Epidemics in networks with nodal self-infection and the epidemic threshold

Piet Van Mieghem' and Eric Cator

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031,
2600 GA Delft, The Netherlands
(Received 10 May 2012; published 30 July 2012)




Modeling approach

Three processes: extinction (e), background diffusion (a),
diffusion through exchange (¢

t t + extinction t41
' Y
empty empty e

€ _Z—(p

full full full
1-e 1

W= (1 —d ) (1 —C )#Occupiedneighbours




An approximation for occupancy

Method: the N-intertwined model

What does this mean?
= take expectation after extinction
& take expectation after colonization

(Le. not computing full proba of having n
occupled nodes at time #+1 as a function of
having & infected nodes at time 9



Deriving the approximation

First, consider a complete graph of size NV (Le. all
nodes are linked)

P =(=ep +[1=(1-e)p. Jfi-(1-a)(1-c) "

L J L ) \ J
Y 1 Y

probability that an probability that the
occupted patch stays empty patch s
occupled colonized, either

through cor d
probability that a patch

ends up empty after
extinction episode
(already empty or goes
extinct)



A network = a matrix

out of

N1 N2 N3 N4

NL 0 1 1 0
o N2 1 0 o0 1
wud
N3 0 1 0 O
NA 0 1 0 1

Network representation Adjacency matrix



From complete graphs to a more
general model

Nin a complete graph = # of neighbours
— average degree ln general?

But... the average degree experienced by a particle

diffusing on a network
# the expectation of the degree among nodes!



The “average degree”
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The “average degree”
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The “average degree”



The “average degree”

verage
ell

1/7 1/7 1/7 13/7 =~ 1.86



The “average degree”

?

d) { "average
( ) degree”
proba in

network 4/7 1/7 1/7 1/7 13/7 = 1.86

proba among



The “average degree”

» This demonstration = what happens from one
node to the next (L.e. the relevant quantity is the
expected squared degree)

» Taking paths of infinite length within the
network, what matters s the dominant
elgenvalue / spectral radius of the adjacency
matrix



Deriving the approximation

Now consider that Vcan be replaced by the spectral
radius p

P =(=ep +[1=(1-e)p.Jfi-(1-d)(1-c)

\ 4

oo [0 006 )

In principle, occupancy could be deduced from the
knowledge of ¢ 4@ eand p



What does this approximation say?




What does this approximation say?




What does this approximation say?




Does the approximation work?
Maxime Dubart’'s MSc 1 internship

Topologies: regular, E-R, exponential, scale-free
Set dand cat given values
Vary reciprocity at a given p

Patterns of g as a function of ¢/(1-¢)
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General fit

The approximation overestimates g

However, comparing topologies at fixed p yields a
consistent ranking (# at fixed average degree)



Effect of reciprocity

r=0.5
c=0.1
d = 0.001
o =16.25

c=01
d = 0.001
o =16.25




Effect of reciprocity

c=0.1
d = 0.001
o =16.25

_— ™ i e [N W

When controlling for p, independent of
reclprocity



Take-home messages

. Two phases for occupancy: cand d-driven

. Networks with same p but different
reciprocities yield similar occupancies

. Networks with same p but different average
degrees yleld similar occupancies

. At given p, consistent ranking of topologies
(Erdbs-Renyt > Exponential > Scale-free)



Immediate perspective

Evolution of colonization capacity under the
competition-colonization trade-off

ErdGs-Rényi Scale-free



Thank you!

Co-authors:
M. Dubart, D. Gravel, F. Laso, M. Lelbold, D. McKey

Working groups on networks ANS@:-
MIRES & DyBRES
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