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o Ultimately: (spatial) network of (interaction) networks 
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Today’s outline 

CONSEQUENCES OF DISPERSAL IN ECOSYSTEMS 
 

1. Ecosystem stability 
 
 

2. Patch dynamics on networks 



ECOSYSTEM STABILITY 



Ecosystem stability 

The question:  
Does species diversity and the variability of 
species interactions stabilize ecosystems? 
 

time 



Diversity stabilizes ecosystems… 

Dominant view until the 70’s 
 
“a larger number of paths through each species is 
necessary to reduce the effects of overpopulation 
of one species” – MacArthur 1955 
 



… or does it? 



Mathematical stability 



Formalization 

Assume a feasible equilibrium X* of 
 
 
 

where  
X =abundance vector for all the S species  
G(X) = dynamics of the system (competition, 
predation, mutualism…) 
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Linearization 

Assume a feasible equilibrium X* 
Linearize the dynamics around the equilibrium 
 
 
 
 
 
Stable equilibrium   All eigenvalues of J 
 (locally)   have negative real parts 
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The Jacobian matrix of a random 
ecosystem 

Assume that the system is “random” and properly 
scaled, i.e. the Jacobian looks like 
 
 
 
 
 
where  B (c) = Bernoulli distribution 
  N (0,σ²) = Gaussian distribution 

 

 

2

2

( ) 0,

( ) 0,

m c

m

c

m





  
 

 
  

 
  

J

B

B

Ν

Ν



Empirical spectral distribution 
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Eigenvalues  of J in the complex plane 
 
= empirical spectral distribution (ESD) 

For large S, the system is stable if and only if 
 
 
 

May 1972  
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Sequels to May’s paper 

Three “classic” lines of investigation after 
“May’s paradox”: 
 
1. Rephrasing the “stability” criterion 

 
2. Jointly studying feasibility & stability 

 
3. Extending May’s approach to more detailed 

cases 



A recent example 

 
Following line (3) : dissected May’s arguments by 
interaction type 
o predation (-/+) 
o mutualism (+/+) 
o competition (-/-) 

Allesina & Tang 2012 



A recent example 

Main result from Allesina & Tang 
Empirical spectral distribution (ESD) changes by 
interaction type 

Allesina & Tang 2012 



Our own sequel 

S species S species 
n patches 

dispersal among patches 

Dominique Gravel Mathew Leibold 
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Principle of the analysis 

Support of the ESD of X = A + B (size = n) with  
• A random, mean = 0, sd = σ 
• B deterministic, ESD = µB 

= z’s that verify 
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Tao et al. 2010 



Spatial structure in the Jacobian 
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Deterministic part 

Among patches 

Within patches 
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Deterministic part 

Eigenvalues of the deterministic part of the 
Jacobian change from 

(-m,-m,…,-m) 
 
to 

(-m,-m,…,-m,-m-dn/(n-1),…,-m-dn/(n-1)) 
 

 

 The deterministic effect of d is to “push” a 
fraction of the ESD to the left of the complex 
plane 

S times 

S times (n-1)S times 
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Random part 
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Random part 

 Connectance goes from c to c/n 
 

 System size goes from S to nS 
 

 Variance? 

 1  c S m



Computing the variance: large d 

Depends on the correlation ρ among A’s 
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Computing the variance: small d 

No change in variance, but change in ESD centre 
When d is small, a different approximation: 
 
 
 
 
approximately valid whatever the value of ρ 
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What it looks like… 
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What it looks like… 
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Extensions 

 Works with non-complete (but regular) spatial 
graphs 
 

 Works with species-specific dispersal rates 
 

 Simulations (with feasibility constraints) show 
the same results 
 

 One thing you can’t study from J alone is the 
feedback between d and the homogeneity of A  
 



Feedback between d and A 



Feedback between d and A 
Predicted decline due to 
heterogeneous patches 

High dispersal                             
= synchronizing dynamics        
= more homogeneous A 

High dispersal => larger biomass    
=> stronger feedback 



Take-home messages 

1. Stabilization requires heterogeneity of 
feedbacks among patches and dispersal 
 

2. Dispersal can homogenize feedbacks 
 

3. Optimal stability is achieved at intermediate 
dispersal rates 



Perspectives 

 dispersal when not diffusive 
o density-dependent dispersal 
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Perspectives 

 dispersal when not diffusive 
o density-dependent dispersal 

 
 putting together dispersal at different scales 

(non trans-specific definition of patches) 
 

 explicit link between feasibility and stability 
 

 random network of patches (not regular) 



PATCH DYNAMICS ON 
NETWORKS 



Patch dynamics on networks 

The question: 
Does metapopulation network structure affect 
species occupancy? 



The initial problem: a model for seed 
exchange networks 

CESAB NetSeed 

Doyle McKey Francisco Laso 



A model for seed exchange networks 

 Simplest model to capture specificities of seed 
exchange networks 

 Dynamic processes:  
o extinction of variety in farmer’s fields,  
o diffusion of variety through exchange between 

farmers, 
o background diffusion (getting the variety from 

NGOs, markets, nature, etc.) 

 On a directed network 



Parallel with metapopulations 

 Seed exchange = colonisation 
 

 Extinction of variety = extinction of population 
 

 Background diffusion = external source of 
propagules 



Parallel with epidemics 

 Seed exchange = infection by contact 
 

 Extinction of variety = patient recovery 
 

 Background diffusion = self-infection 



Modeling approach 

empty 

full 

t 

empty 

full 

t + extinction 

empty 

full 

t + 1 
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1 – ψ  

     
#

1 1
occupiedneighbours

d c

Three processes: extinction (e), background diffusion (d), 
diffusion through exchange (c) 



An approximation for occupancy 

Method: the N-intertwined model 
 
What does this mean? 

= take expectation after extinction 
& take expectation after colonization 

 
(i.e. not computing full proba of having n 
occupied nodes at time t+1 as a function of 
having k infected nodes at time t) 



Deriving the approximation 
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First, consider a complete graph of size N (i.e. all 
nodes are linked) 

probability that an 
occupied patch stays 

occupied 

probability that a patch 
ends up empty after 
extinction episode 

(already empty or goes 
extinct)  

probability that the 
empty patch is 

colonized, either 
through c or d 



A network = a matrix 

1 

4 

2 3 

N1 N2 N3 N4 

N1 0 1 1 0 

N2 1 0 0 1 

N3 0 1 0 0 

N4 0 1 0 1 

out of 

to
 

Network representation Adjacency matrix 



From complete graphs to a more 
general model 

N in a complete graph ≈ # of neighbours 
 
→ average degree in general? 
 
 
But… the average degree experienced by a particle 
diffusing on a network  
≠ the expectation of the degree among nodes! 
 



The “average degree” 
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The “average degree” 

proba in 
network 4/7 1/7 1/7 

“average 
degree” 

13/7 ≈ 1.86 1/7 



The “average degree” 

proba in 
network 4/7 1/7 1/7 

“average 
degree” 

13/7 ≈ 1.86 1/7 

proba among 
edges 4/13 2/13 3/13 33/13 ≈ 2.53 4/13 



The “average degree” 

 This demonstration = what happens from one 
node to the next (i.e. the relevant quantity is the 
expected squared degree) 
 

 Taking paths of infinite length within the 
network, what matters is the dominant 
eigenvalue / spectral radius of the adjacency 
matrix 



Deriving the approximation 
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Now consider that N can be replaced by the spectral 
radius ρ 
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In principle, occupancy could be deduced from the 
knowledge of c, d, e and ρ 



What does this approximation say? 
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What does this approximation say? 

e/(1-e) 

q 
=
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c = 0.1 
c = 0.2 
c = 0.3 

Inflexion point at     
 

= two regimes (driven by c vs. driven by d) 
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Does the approximation work? 
   Maxime Dubart’s MSc 1 internship 

 
 
 

 Topologies: regular, E-R, exponential, scale-free 
 Set d and c at given values 
 Vary reciprocity at a given ρ 

 
 Patterns of q as a function of e/(1-e) 



General fit 

r = 0.5 
c = 0.1 
d = 0.001 
ρ = 16.25 



General fit 

r = 0.5 
c = 0.1 
d = 0.001 
ρ = 16.25 

The approximation overestimates q 
 

However, comparing topologies at fixed ρ yields a 
consistent ranking (≠ at fixed average degree) 



Effect of reciprocity 
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ρ = 16.25 

r = 1 
c = 0.1 
d = 0.001 
ρ = 16.25 



Effect of reciprocity 
r = 0.5 
c = 0.1 
d = 0.001 
ρ = 16.25 

r = 1 
c = 0.1 
d = 0.001 
ρ = 16.25 When controlling for ρ, independent of 

reciprocity 



Take-home messages 

1. Two phases for occupancy: c and d-driven 
 

2. Networks with same ρ but different 
reciprocities yield similar occupancies 
 

3. Networks with same ρ but different average 
degrees yield similar occupancies 
 

4. At given ρ, consistent ranking of topologies 
(Erdős-Rényi > Exponential > Scale-free) 



Immediate perspective 

Evolution of colonization capacity under the 
competition-colonization trade-off 

Erdős-Rényi Scale-free 



Thank you! 
Co-authors: 
M. Dubart, D. Gravel, F. Laso, M. Leibold, D. McKey 
 
Working groups on networks 

       MIRES & DyBRES 
 
 

NIMBioS Food Web 

CESAB NetSeed 


