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The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given
by a system of Lotka-Volterra equations:

dxi(t)

dt
= xi

ri − θxi +
N∑
j=1

Aij

Nδ
xj



where

I ri is the intrinsic growth rate of species i

I θ > 0 is a friction coefficient (intraspecific competition)

I Aij stands for the interactions j → i.

For complex multispecies systems, interaction are rarely available and a random
model for matrix A may be relevant (cf. May).

I δ is a parameter controlling the interaction j → i strength.

Interaction Value of δ Comment

strong δ ∈ (0, 1/2) -
moderate δ = 1/2 RMT regime
weak δ ∈ (1/2, 1) Perturbation theory
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The Lotka-Volterra model II: equilibrium

I The equilibrium x∗ (if it exists) is given by

dxi(t)

dt
= 0 ⇐⇒ xi

ri − θxi +
∑
`∈[N ]

Ai`

Nδ
x`

 = 0 ∀i ∈ [N ]

Feasibility

I The equilibrium is feasible if x∗i > 0 for all i.

I If the equilibrium is feasible, then

dxi(t)

dt
= 0 =⇒ θx∗ = r +

A

Nδ
x∗

Stability

I Given the jacobian J (x∗), which is explicit for Lotka-Voltera systems

J (x∗) = diag(x∗)

(
−θIN +

A

Nδ

)

The model is stable if Re (eigenvalues of J (x∗)) < 0
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No feasible equilibrium for moderate interactions

Consider a LV system with moderate interactions:

dxi(t)

dt
= 0 =⇒ θx∗ = r +

A
√
N
x∗ =⇒ x∗ =

(
θIN −

A
√
N

)−1

r

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Dougoud et al. establish that there is no feasible
equilibrium with proba 1

P{x∗i < 0 for some i ∈ [n]} −−−−→
N→∞

1

Reference

I ”The feasibility of equilibria in large ecosystems: A primary but neglected concept
in the complexity-stability debate”,
Dougoud, Vikenbosch, Rohr, Bersier, Mazza, PLoS Comput. Biology, 2018
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Elements of proof

Consider the equation of feasible equilibrium for (simplified) LV (θ = 1, r = 1)

x = 1 +
A

α
√
N
x

where

I x is a N × 1 unknown vector,

I 1 is a N × 1 vector of ones,

I A is a N ×N matrix with i.i.d. entries N (0, 1),

I α is a positive scalar parameter to be tuned.

Questions

I Does this system admit a solution x =

(
I −

A

α
√
N

)−1

1 ?

I Is this solution feasible?
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Non-Hermitian random matrices I

Matrix model

Let AN be a N ×N matrix

AN =

A11 · · · A1N

...
...

AN1 · · · ANN



I Consider matrix AN√
N

I Beware that the eigenvalues are
complex!

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Non-hermitian matrix eigenvalues, N= 1000

Re(spectrum)

Im
(s
pe
ct
ru
m
)

Figure: Distribution of AN/
√
N ’s

eigenvalues and the circular law (in red)

Theorem: The Circular Law (Ginibre, Metha, Girko, Götze et al., Tao &
Vu, etc.)

The spectrum of YN converges to the uniform probability on the disc
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Non-Hermitian random matrices II

Spectral radius and spectral norm

I Theorem (Geman)

ρ

(
A
√
N

)
a.s.−−−−→
N→∞

1 .

I Theorem (Bai, Yin) ∥∥∥∥ A
√
N

∥∥∥∥ a.s.−−−−→
N→∞

2 .

Corollary

As a consequence, if α > 1 then
(
I − A

α
√
N

)
is eventually invertible and

x =

(
I −

A

α
√
N

)−1

1

is well-defined.
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Non-Hermitian random matrices III: Fluctuations of x’s components

Theorem (Geman, Hwang)

I Let M fixed, α > 4 and xk =

[(
I − A

α
√
N

)−1
1

]
k

I then  x1
·
xM

 D−−−−→
N→∞

NM
(
1M ,

1

α2 − 1
IM

)

Corollary

I If α > 4 fixed, the probability to obtain a positive solution goes to zero:

P
{

inf
k∈[N ]

xk > 0

}
≤ P

{
inf

k∈[M ]
xk > 0

}
∼ ΦM −−−−−→

M→∞
0 .

where Φ =
∫∞
−
√
α2−1

N (dx).

Conclusion

I Feasible solutions for x = 1 +
A

α
√
N
x are eventually extremely rare.
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Feasibility of the solution

Consider the system

x = 1 +
A

α
√
N
x where α = αN −−−−→

N→∞
∞ .

Denote by α∗N =
√

2 log(N) .

Theorem (phase transition, Bizeul-N. ’19)

I If
αN

α∗N
≤ 1− δ for N � 1 then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 .

I If
αN

α∗N
≥ 1 + δ for N � 1 then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .

About the logarithmic factor

N 102 103 104 105 106

1
α∗
N

0.33 0.27 0.23 0.21 0.19

I The quantity 1
α∗
N

= 1√
2 logN

vanishes extremely slowly as N increases.
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Phase transition (gaussian case)

I We plot the frequency of positive solutions over 10000 trials for the system

x = 1 +
1

κ
√

log(N)

A
√
N
x

as a function of the parameter κ.

I A phase transition occurs at the critical value κ =
√

2.
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Phase transition (non-gaussian case)

I Same simulations for (centered and normalized) Bernouilli entries.

I The phase transition does not seem to depend on the distribution of the entries.
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A heuristics at critical scaling α∗N =
√

2 log(N)

I At the critical scaling, we have the heuristics

P
{

inf
k∈[N ]

xk > 0

}
≈ 1−

√
e

4π log(N)
+

e

8π log(N)

based on Gumbel approximation of the minimum of independent N (0, 1).
I Solid line corresponds to the frequency of positive solutions over 10000

simulations at critical scaling - dotted line corresponds to the heuristics formula
16
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Stability

Theorem (Bizeul, N.)

I Recall α∗N =
√

2 log(N). Let

x = 1 +
A

α
√
N
x and `+ = lim inf

N→∞

αN

α∗N

I Assume that `+ > 1 (feasibility). Recall the formula for the jacobian

J = diag(x)

(
−IN +

A

α
√
N

)
Then

max
λ∈spec(J )

Re(λ) ≤ −
(

1−
1

`+

)
+ oP (1)

I In particular, feasibility implies stability.
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Reminder on Gaussian extreme values

I Let (Zk)k∈[N ] i.i.d. N (0, 1) random variables, Denote by

MN = max
k∈[N ]

Zk and M̌N = min
k∈[N ]

Zk ,

α∗N =
√

2 log(N) and β∗N = α∗N −
1

2α∗N
log(4π log(N))

I Then

P {α∗N (MN − β∗N ) ≤ x} −−−−→
N→∞

Gumbel(x) = e−e
−x

P
{
α∗N (M̌N + β∗N ) ≥ x

}
−−−−→
N→∞

Gumbel(−x)

I and
EMN ∼

√
2 log(N) and EM̌N ∼ −

√
2 log(N)
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A heuristics for the critical scaling

1. Unfold the resolvent.

xk =

[(
I −

A

α
√
N

)−1

1

]
k

= 1 +
1

α

[A1]k√
N︸ ︷︷ ︸

:=Zk

+
1

α2

[(
A
√
N

)2 (
I −

A

α
√
N

)−1

1

]
k︸ ︷︷ ︸

:=Rk

= 1 +
Zk

α
+
Rk

α2

2. Notice that Zk = 1√
N

∑N
`=1 Ak` ∼ N (0, 1) and the Zk’s are i.i.d.

3. Conclude

min
k∈[N ]

xk ≈ 1 +
mink∈[N ] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

> 0 if

√
2 log(N)

α
< 1− δ

< 0 if

√
2 log(N)

α
> 1 + δ
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Elements of proof
Recall that the feasible solution x = (xk) writes

xk = 1 +
Zk

α
+
Rk

α2
where Rk =

[(
A
√
N

)2 (
I −

A

α
√
N

)−1
]
k

1. [Extreme values of dependent variables] Sufficient to prove that

maxk∈[N ]Rk

αα∗
P−−−−→

N→∞
0 and

mink∈[N ]Rk

αα∗
P−−−−→

N→∞
0 .

2. [Sub-Gaussiannity of Rk] if

EeλRk ≤ e
K2λ2

2 then Emax
k

Rk ≤ K
√

2 log(N)

3. [Gaussian Concentration] if A 7→ Rk(A) is K-Lipschitz, then

EeλRk ≤ e
K2λ2

2

for GAUSSIAN entries (or entries ∈ LSI)

⇒ The main effort is to prove that A 7→ Rk(A) is K-Lipschitz.
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Non-homogeneous case I

Let r is N × 1 deterministic. We are interested in the equation

x = r +
A

α
√
N
x where


rmin(n) = mink rk
rmax(n) = maxk rk

σr(n) =
√

1
N

∑
k r

2
k

Theorem

Assume that there exist κ,K > 0 such that κ ≤ rmin(n) ≤ rmax(n) ≤ K then

I if αN
α∗
N
≤ (1− δ) σr(n)

rmax(n)
then P

{
inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 .

I if αN
α∗
N
≥ (1 + δ)

σr(n)
rmin(n)

then P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .
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Non-homogeneous case II

I In the non-homogeneous case, there is a transition buffer

αN

α∗N
∈
[
σr(n)

rmax(n)
,
σr(n)

rmin(n)

]
and not a sharp transition at αN

α∗
N
∼ 1.

26



Feasibility and stability in Ecological Networks

Lotka-Volterra Models for Moderate Interactions

A logarithmic correction implies feasibility

Elements of proof

Hand waving
Non-Homogeneous case
Extensions and open questions

27



Extensions and Open Questions

Remark on a technical bottleneck

I Concentration is highly robust to estimate the extreme values of the Rk’s

regardless of their dependence :-) .. but extremely Gaussian-dependent :-(

Open questions

I Study of sparse models.

I Equilibria with persistent and extinct species.

I Dynamical study of large Lotka-Volterra systems, etc.

References

I Positive solutions for Large Random Linear Systems, Bizeul and Najim,
arXiv:1904.04559

I On-going project 80 PRIME — CNRS (KARATE) with François Massol and
others

LotKA-VolterRA models – when random maTrix theory meets theoretical Ecology
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