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The Lotka-Volterra model

A popular model to describe the dynamics of interacting species in foodwebs is given
by a system of Lotka-Volterra equations:

dmit A’L
dt():l‘z Ti—emi-‘rz ]xj

where
> r; is the intrinsic growth rate of species i

> 0 > 0 is a friction coefficient (intraspecific competition)

v

A;; stands for the interactions j — i.

For complex multispecies systems, interaction are rarely available and a random
model for matrix A may be relevant (cf. May).

> 0 is a parameter controlling the interaction j — ¢ strength.

[ Interaction [ Value of 5 [ Comment ]
strong 6€(0,1/2) | -
moderate 0=1/2 RMT regime
weak 6 € (1/2,1) | Perturbation theory
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The Lotka-Volterra model Il: equilibrium

> The equilibrium x* (if it exists) is given by

M:O — ( — Oz; ):0 Vi € [N]
ZEN]

dt

Feasibility

» The equilibrium is feasible if for all i.

> If the equilibrium is feasible, then

dx;i(t) A
= Ox* = —x*
at xr T+ Né:l:

Stability

> Given the jacobian J(x*), which is explicit for Lotka-Voltera systems

J(x*) = diag(z™) (—OIN + %)

The model is stable if | Re (eigenvalues of J(x*)) < 0 ‘
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No feasible equilibrium for moderate interactions

Consider a LV system with moderate interactions:
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No feasible equilibrium for moderate interactions

Consider a LV system with moderate interactions:

dz;(t) 0 —  Oa* n A, — N (9[ A )*1
— T =17 —x €r = —_ — T
dt VN NTUN

An puzzling result from Mazza et al.

Building upon Geman and Hwang, Dougoud et al. establish that there is no feasible
equilibrium with proba 1

P{z; < 0 for some i € [n]} —— 1
N— o0

Reference

> "The feasibility of equilibria in large ecosystems: A primary but neglected concept
in the complexity-stability debate”,
Dougoud, Vikenbosch, Rohr, Bersier, Mazza, PLoS Comput. Biology, 2018
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A
r=1+—==x
oV N

where
» xisa N X 1 unknown vector,
» 1 isa N x 1 vector of ones,
» Aisa N x N matrix with i.i.d. entries N'(0, 1),

> « is a positive scalar parameter to be tuned.

Questions

A -1
> Does this system admit a solution | @ = (I — 7) 117
"

VN

> Is this solution feasible?
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Matrix model
Let Ay be a N x N matrix

A oo AN
Ay =
An1 -+ ANN
» Consider matrix | A%
VN

> Beware that the eigenvalues are
complex!



Non-Hermitian random matrices |

Non-hermitian matrix eigenvalues, N= 1000
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Figure: Distribution of Ay /v/N's

eigenvalues and the circular law (in red)

Theorem: The Circular Law (Ginibre, Metha, Girko, Gotze et al., Tao &

Vu, etc.)

‘ The spectrum of Yy converges to the uniform probability on the disc ‘




Non-Hermitian random matrices |1

Spectral radius and spectral norm
» Theorem (Geman)
A a.s.
P \/N N—o0
» Theorem (Bai, Yin)
|7l 52
VN '

N—o0



Non-Hermitian random matrices |1

Spectral radius and spectral norm
» Theorem (Geman)
A a.s.
P\YN) Voo
» Theorem (Bai, Yin)

A as.
VNI Nooo 7
Corollary
. A . . .
As a consequence, if a > 1 then (I — m) is eventually invertible and

A -1
m:([—i) 1
av N

is well-defined.
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Theorem (Geman, Hwang)

-1
> Let M fixed, a > 4 and zp = |:(I — i) 1]
k

10



Non-Hermitian random matrices |ll: Fluctuations of x's components
Theorem (Geman, Hwang)
-1
> Let M fixed, & > 4 and =, = |:(I — i) 1]
k

x1 » 1
. 1y, ———1
o Mo (1 gy i)

M

> then

10



Non-Hermitian random matrices |ll: Fluctuations of x's components
Theorem (Geman, Hwang)
-1
> Let M fixed, & > 4 and =, = |:(I — i) 1]
k

o D N (1 L
. _D 1
N—oco M M’oc271 M

M

> then

Corollary

> If o > 4 fixed, the probability to obtain a positive solution goes to zero:
IP’{ inf xk>0} < IP{ inf xk>0} ~ oM — 5 0.
kE[N] ke[M] M — o0

where ® = ffom./\/'(d:r)



Non-Hermitian random matrices |ll: Fluctuations of x's components
Theorem (Geman, Hwang)

-1
> Let M fixed, a > 4 and zp = |:(I — i) 1]
k
> then

T » 1

. — Nu (1M,72 IM)
N—oo as —1

M

Corollary

> If o > 4 fixed, the probability to obtain a positive solution goes to zero:
IP’{ inf xk>0} < IP{ inf xk>0} ~ oM — 5 0.
kE[N] ke[M] M — o0
where ® = [~ Tz_l./\/'(d:r).

Conclusion

> Feasible solutions for |z =1 + x | are eventually extremely rare.

A
aVN




A logarithmic correction implies feasibility
Feasibility
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Feasibility of the solution
Consider the system

=1+
«

Denote by | ajy = v/2log(N) |

x where
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Theorem (phase transition, Bizeul-N. '19)
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"
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Feasibility of the solution

Consider the system

=1+

o7

Denote by | ajy = v/2log(N) |

Theorem (phase transition, Bizeul-N. '19)

ay
"
XN

> If

<1-34

an
=
N

>1+96

for N > 1 then

for N > 1 then

x where

a=ay — 0.

N—o0

]P’{ inf xp > 0}
k€E[N]

—0
N— oo

IP’{ inf xp > 0}
kE[N]

—1
N —o0
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Feasibility of the solution
Consider the system

=1+

x where a=ay — .
av N N —o0

Denote by | ajy = v/2log(N) |

Theorem (phase transition, Bizeul-N. '19)

» 1f| XN <1 5| for N> 1 then ]P’{ inf zk>0}—>0
ay kE[N] N—o0

> 1f| 2N > 1 45 | for N> 1 then IP’{ inf a:k>0}—>1
ay kE[N] N—o0

About the logarithmic factor

N 102 103 | 10% 10° 106

1 0.33 0.27 0.23 0.21 0.19
N

> The quantity ﬁ = #g]\f vanishes extremely slowly as IV increases.

12



A logarithmic correction implies feasibility

Simulations
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Phase transition (gaussian case)

Homogeneous case, Gaussian entries

1.0+ — n = 1000
—-- n =400
——- threshold

> We plot the frequency of positive solutions over 10000 trials for the system
1+ 1 A
= s
Kky/log(N) VN

as a function of the parameter k.
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Phase transition (gaussian case)

Homogeneous case, Gaussian entries

1.0+ — n = 1000
—-- n =400
——- threshold

> We plot the frequency of positive solutions over 10000 trials for the system

1 A
= Kk+/log(N) ﬁm

as a function of the parameter k.

T

> A phase transition occurs at the critical value k = v/2.



Phase transition (non-gaussian case)

Homogeneous case, Bernoulli entries

104 — n = 1000
—-- n =400
—=~ threshold

> Same simulations for (centered and normalized) Bernouilli entries.



Phase transition (non-gaussian case)

Homogeneous case, Bernoulli entries

104 — n = 1000
—-- n =400
—=~ threshold

> Same simulations for (centered and normalized) Bernouilli entries.

» The phase transition does not seem to depend on the distribution of the entries.



A heuristics at critical scaling ayy = /21log(N)

Probability at critical scale
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—— Empirical average
0.925 ——- Heuristics H
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> At the critical scaling, we have the heuristics

[P’{ inf xk>0}%17
kE[N]

€ €

4w log(N) + 8w log(N)

based on Gumbel approximation of the minimum of independent A/ (0, 1).
> Solid line corresponds to the frequency of positive solutions over 10000
simulations at critical scaling - dotted line corresponds to the heuristics formula



A logarithmic correction implies feasibility

Stability
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Stability
Theorem (Bizeul, N.)

> Recall aj, = \/2log(N). Let

A
=1+ ——=x and et :liminfa—*N
av N N—oo aN
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> Assume that (feasibility).

L«
£+ = liminf 2
N—oo a}‘v
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Stability
Theorem (Bizeul, N.)

> Recall aj, = \/2log(N). Let

A
=1+ ——=x and £+=1iminfa—N
avV N N—oco a}‘v

> Assume that (feasibility). Recall the formula for the jacobian

J = diag(x) ( In + )
—di _ A

& N aV'N
Then

1
Re(A\) < —(1—-— 1
i e < = (1= g5) rorh

> In particular, feasibility implies stability.



Elements of proof
A heuristics for the proof of feasibility



Reminder on Gaussian extreme values

> Let (Zg)ke[ny i-i-d. N(0,1) random variables, Denote by

Mpy = max Z; and
ke[N]

ay = v/2log(N) and
> Then
P{ay(My = By) < =}

P{ay(My +BY) > z}

My = min Z, ,
R= 7

* * 1

BNy =an — 20 log(4m log(NV))
AN

———  Gumbel(z) = e e "

——  Gumbel(—z)
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Reminder on Gaussian extreme values

> Let (Zg)ke[ny i-i-d. N(0,1) random variables, Denote by

Mpy = max Z; and
ke[N]

ay = v/2log(N) and
> Then

P{ay(My = By) < =}

P{ay(My + By) > o}

> and
EMpy ~ +/2log(N)

My = min Z, ,
N ke 7k
1
By =an — log(4 log(IN))
2a7\,

———  Gumbel(z) = e e "
N —oco

——  Gumbel(—z)
N —o0

and EMpy ~ —+/2log(N)

20
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1. Unfold the resolvent.
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Tk

2. Notice that
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N——
=2y
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Notice that
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Tk

Notice that

Conclude
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o™

- 14 1 [A1], I 1
n a /N a?
——
=2y
VA R
= 1+7k+7§
@

Zk = = Xier Are ~ N(0,1)

minge (] Zk

kE[N] [e

and the Zy's are i.i.d.

1— v/2log(N)

«

~
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A heuristics for the critical scaling

1. Unfold the resolvent.

S (DN

- 14 1 [A1], " 1
n a /N a?
N——
=2y
VA R
= 1_5,_7]“_;'_75
«

2. Notice that | Z;, = %ﬁ SN Ape ~ N(0,1)

3. Conclude

. minge(n] Zk
min zp, ~ 14 ——m—F—
k€E[N] @

2log(N)

and the Zy's are i.i.d.

1 v/2log(N)
- o
<1-9¢
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A heuristics for the critical scaling

1. Unfold the resolvent.

S (DN

1 [A1], 1 A2 A N\
= 1+ = + S5 —= I—
a N a N aV/N .
N——
=2y =Ry,
VA R
= 1+7k+7§
(0%

2. Notice that | Z;, = \/% Zé\;l Age ~N(0,1) | and the Z's are i.i.d.

3. Conclude

mingeny Z, N ~ 1_ v/2log(N)

minz, ~ 14+4+———1~+... =
kE[N] [e [e]
2log(N
> 0 g VW)
2log(N
< 0 g M)
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where
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A

VN

)Q(I*f

A
VN

)]

k

1. [Extreme values of dependent variables| Sufficient to prove that

maxye(n] R

P

oaa*

N —oo
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Elements of proof

Recall that the feasible solution & = (xj) writes

Z R,
=1t

where

Ry,

(

A

VN

)Q(I*f

A
VN

)]

k

1. [Extreme values of dependent variables| Sufficient to prove that

maxke[N] Rk

LA

oaa*

N —oo

2. [Sub-Gaussiannity of Ry] if

EeMik <e

K2x2

2

then

EmI?XRk < K+/2log(N)

3. [Gaussian Concentration] if A — Ry (A) is K-Lipschitz, then

for GAUSSIAN entries (or entries € LST)

Ee* e <e

2

K22

= | The main effort is to prove that A — Ry (A) is K-Lipschitz.
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Non-homogeneous case

Let r is IV X 1 deterministic. We are interested in the equation
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Let r is NV X 1 deterministic. We are interested in the equation

Pmin(n) = ming rg

x| where Tmax(N) = maxy g,

A
VN oo(n) = /T Sy 12

Theorem

Assume that there exist x, K > 0 such that‘ k< Ppin(n) < Pmax(n) < K ‘ then

> if 2N < (1 - 6) -2 then P{kirbfv]zk >o} ~= 0
N €

T () T
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Non-homogeneous case |

Let r is NV X 1 deterministic. We are interested in the equation

Pmin(n) = ming rg

x| where Tmax(N) = maxy g,
av N

or(n) = \/ % >k Tz

Theorem

Assume that there exist x, K > 0 such that‘ k< Ppin(n) < Pmax(n) < K ‘ then

> if SN < (1-9) UT(T(L)) then IP’{ inf zk>0}—>0
*N Tmax (T k€E[N] N—o0
i N _or(n)_ i
> if ok >(1496) - then P{kgbfv] T > 0} ~o= 1

— 00
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Non-homogeneous case |l

Non-Homogeneous case, Gaussian entries

104 — n = 1000
—-- n =400 !
——- thresholds /7 :
| 1
0.8 1
1
2 1
£ 1
2 i
2 0.6 !
s i
z |
£ 1
5 044 1
F |
(] 1
@ 1
w 1
0.2 :
i
1
i
0.0 !
T

0.5 ty 15 2 2.5 tz

> In the non-homogeneous case, there is a transition buffer

ay or(n)  or(n)

a}‘v rmax(n) ’ rmin(n)

and not a sharp transition at SN 1.
N

3.5
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