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Ubiquitous abundance decay in the rare biosphere of 
marine plankton



Marine plankton communities in a dynamic seascape

SeaWiFS ocean color data: Chlorophyll concentration



Plankton diversity and physical forcings

Life-Forms of Phytoplankton As Survival Alternatives in An Unstable Environment
Ramon Margalef, Oceanologica Acta (1978)



Mesoscale variability of plankton communities 

Fluid dynamical niches of phytoplankton types
D'Ovidio, De Monte et al.  PNAS 2010



Marine biogeography

Ecological Geography of the Sea
Alan Longhurst, Academic Press (1998)  



Macroecological patterns of diversity

Willig, Ann Rev Ecol Evol Syst (2003) Kasner et al., PLoS One (2011)



Spatio-temporal variability of marine plankton

DARWIN model MIT (Mick Follows) Barton et al., Science (2010)



Patterns of diversity of marine plankton

De Monte et al. ISME J. (2013)Sul et al. PNAS (2013)Raes et al. Mol Syst Biol (2011)



Plankton protist communities

Barcodes: V9 of 18S rRNA gene
388 samples of plankton communities in 121 different locations in the world ocean, covering 8 oceanic regions
4 organisms' size classes: pico-nano (0.8-5 µm), nano (5-20 µm), micro (20-180 µm), meso (108-2000 µm)
Different methods of sequence clustering/taxonomic resolution: Swarms and OTUs (UCLUST 95% and 97%)
Physico-chemical (temperature, salinity, nutrients, etc.) and biological (Chl, ocean colour, diversity, etc.) context

Tara oceans: Global-scale sampling with uniform protocol

Ø ~150.000 different OTUs identified, few thousands per sample
Ø 388 samples in 121 locations

De Vargas, Audic, Henry, et al. 
Eukaryotic plankton diversity in the sunlit global ocean
Science 2015



Plankton protist communities

Malviya et al. PNAS (2016)

Latitudinal Diversity Gradients

F. Ibarbalz, L. Zinger, IBENS, Paris
+ more from Paris, Villefranche-sur-Mer, Roscoff, 
Zürich, Ohio, Kyoto, Naples, Maine
Cell (2019)

or bacterial cell density (Gregory et al., 2019). Further data and
analyses will be necessary to elucidate the underpinnings of
this result.
Differences in the form of LDGs have been proposed previ-

ously to result from contrasting strategies in energy acquisition
and processing (Hillebrand, 2004). To test this hypothesis, we
compared LDG forms across MPGs (except for prokaryotic vi-
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Figure 2. Latitudinal Patterns of Marine
Plankton Diversity
(A) LDGs at the sea surface for all MPGs (STAR

Methods).

(B) Morphological diversity as analyzed from more

than 77,000 organisms collected with the bongo

net (imaging j 300 mm). Morphological measure-

ments were normalized and subjected to a

t-distributed stochastic neighbor embedding

(t-SNE) ordination analysis using all samples

(STAR Methods). In the central 2D t-SNE ordina-

tion, each dot corresponds to an organism and its

color to its taxonomic assignation (>100 taxa). For

ease of interpretation, the points corresponding to

a subset of abundant groups are displayed sepa-

rately. The three t-SNE ordinations displayed on

the right show dots from three stations distantly

located and from different latitudes, as shown in

the map. Six images are also presented as ex-

amples of the underlying data (STAR Methods);

1-mm scale bars are shown below each picture.

(C and D) Patterns of the whole plankton com-

munity using different sampling protocols at (C)

the sea surface (16S/18S/FC/LM) or a larger inte-

grative depth of 500 m (imaging) and (D) in

mesopelagic (average depth, 540 m) or bathype-

lagic layers (BAT; average depth, 4000 m, Malas-

pina expedition). In all cases, solid lines corre-

spond to GAM smooth trends and gray ribbons to

the 95% confidence intervals of the Shannon lat-

itudinal trend predicted by the GAMs (see also

Figures S4 and S7 for individual curves and ex-

plained deviance). These trends are drawn for

illustrative purposes and were not used in down-

stream analyses. 16S and 18S refer to the different

rRNA subunit genes used as marker genes for

metagenomics and metabarcoding, respectively.

Imaging refers to the identification method for

large eukaryotes captured with nets. FC refers to

flow cytometry for the picoplankton and LM to

the light microscopy-based survey of micro-

phytoplankton (STAR Methods). Numbers refer to

the filter mesh size.

ruses) by conducting a segmented linear
regression analysis and using the inferred
parameters in a clustering analysis (abso-
lute latitudinal breakpoints and slopes
of the segment regressions; STAR
Methods; Figure S5). Confirming our
above assumption, parasites and endo-
photosymbionts did not cluster directly
with their hosts. Endophotosymbionts
have extensive free-living populations
(Decelle et al., 2012), and parasitic pro-

tists might experience relatively long-lasting free-living stages
under the form of resistant cysts waiting for host availability
(Siano et al., 2010), which could explain this result. Rather,
we found that MPGs with similar broad trophic modes (phototro-
phic versus heterotrophic/chemotrophic) tended to exhibit
similar LDG forms. However, we noticed two particular excep-
tions: photosynthetic protists clustered with heterotrophs

Cell 179, 1084–1097, November 14, 2019 1087

Community composition differs from site 
to site (average Jaccard index <0.15)
OTUs display biogeographical patterns



Plankton protist communities

Carradec et al. Nature Comm 2018De Vargas, Audic, Henry, et al. Science 2015



Measuring community diversity

Rank-Abundance plot

Ecological community characterized by:

K species of abundance (n1,....,nK) N = ∑ ni organisms

Diversity indicators:
Species richness K 
Shannon Index H = ∑ nilog ni



Species Abundance 
Distribution

Fit with theoretical models 
to determine the qualitative 
shape of the distribution

Measuring community diversity: SAD

Ecological community characterized by:

K species of abundance (n1,....,nK) N = ∑ ni organisms



Empirical vs theoretical SADs

Theoretical models based on mechanistic or statistical hypotheses predict different functional forms for 
the abundance distributions. The most commonly used are (Poisson) lognormal and log-series.

Fitting empirical distributions has led to inconclusive results as to the underlying mechanisms.

Problems with model-fitting:

1. different hypotheses give rise to the same distributions

2. there are parameter values for which different distributions are indistinguishable

3. based on the hypothesis that all members of the community obey the same ecological process



Community decomposition

Endemic and 'visitor' species obey different distributions

Magurran & Henderson, Nature (2003)



Plankton protist communities

Huge number of rare species
Regular abundance decay for rare species
Variability of abundant species



Adaptive algorithm for community decomposition

Aim: identify the largest community component that is well fitted 
by a family of distributions.

ni = τ

ni = τ

→ Identification of abundant and non-abundant OTUs

→ Quantitative comparison of best-fit parameters among samples

1. Set an abundance threshold τ for abundances (take only 102 <ni ≤ τ)

2. Maximize the likelihood τ to fit the data below the threshold  and 
compute p-value

3. Loop on τ and choose the largest value of τ for which the data 
represent a random realization of the fitting distribution (p-value ≥ 0.1)



Neutral, density-dependent model for community assembly

Engen 1978, He 2005
Ser-Giacomi et al. 2018

Negative binomial beta distribution:

Birth & death rates

α =
χ
𝑏 β =

µ
𝑑



Neutral, density-dependent model for community assembly

Engen 1978, He 2005
Ser-Giacomi et al. 2018

Negative binomial beta distribution:

Birth & death rates

∼

α =
χ
𝑏 β =

µ
𝑑



Fit to empirical distributions

Ser-Giacomi et al. 2018

Abundant 
OTUs

Rare OTUs

α, β

𝜆

𝑟



372 out of 388 samples fitted by the negative binomial beta 
distribution

The non-dominant component comprises more than 99% of OTUs

Abundance decay is dominated by the power-law trend (~ 4 decades)

𝝀 = 𝟏. 𝟓𝟑 ± 𝟎. 𝟎𝟖 (CV < 8%)

Small but significant variation with size class: abundance decay 
is slower in smaller organisms

Quantifying variation of rare protist diversity



Spatial variation of best-fit parameters

Variation of best-fit parameters of the same amplitude as 
contextual parameters, but no systematic co-variation.

Ubiquitous distribution of rare species



Non-abundant OTUs and biogeography

Spatial information on community diversity is 
concentrated in the 1% most abundant species



Ecological basis of the statistical regularity

Non-abundant OTUs:

Local balance of linear birth and death

Strong correlation of density/dispersal-dependent corrections



Equivalence of non-abundant species

Plankton species differ substantially in their local growth rates (‘fitness’)

Abundant species are directly engaged in competition, and shape biogeography 

Non-abundant species are likely non-growing, locally non-adapted, sharing 
ecological histories with similar spatio-temporal statistics

→ ‘effective’ neutrality

Is a neutral model the best to describe plankton communities?



Effective neutrality in a niche model

Matthieu Baron, ENS Physics, Paris

Giulio Biroli, ENS Physics, Paris



Microbial seed bank

Microbial seed banks: the ecological and evolutionary implications of dormancy
Jay T. Lennon & Stuart E. Jones

9, 119-130 (2011)



Temporal intermittency



Generalized Lotka-Volterra equations:

Figure 2: Schematic description of the Mainland-Island model. The population dynamics is sim-
ulated in a local ecosystem, which is in contact with a regional pool of individuals belonging to
species i = 1, ..., S. Individuals of species i arrive at a rate �i in the local ecosystem.

with i=1,...,S and S the total number of species in the global pool and Ni the abundance (or
density) of species i . Parameters have the following meaning:

• �i is the immigration rate of individual of type i coming from the pool. This term ensures
that no species will go completely extinct from the ecosystem.

• ri is the individual growth rate of the species i. The population of species i will experience an
exponential growth of rate ri when the intra and interspecific density-dependent competition
are negligible.

• Ki is the carrying capacity of the species i, meaning the maximum population reached by
this species in the absence of interaction with other species

• ↵ is the interaction matrix between species. For example, if both ↵ij and ↵ji are positive, i
and j have a negative influence on each other, and it is called a competitive interaction. In
the contrary, if they are both negative, it is a mutualistic interaction. They can also be of
opposite sign, as it is the case for a predator and its prey. We choose to take ↵ii = 0 8i, so
that all the information about intraspecific interaction is contained in Ki.

In the following, for reasons of simplicity, we will assume all carrying capacities Ki = K and growth
rate ri = r, so that they don’t vary across species. The equation 1 can then be rescaled so that
they are both equal to one. We will also take all the immigration rates �i equal.

The simplified equation then writes:

dNi

dt
= �+Ni(1�Ni)�

SX

j=1

↵ijNiNj (2)

The interaction matrix alpha is chosen randomly. ↵ij are independent and identically dis-
tributed random variables. We chose to distribute them following a Gaussian law. Thus, the
distribution of the interaction strength is controlled by two parameters: µ = mean(↵ij) and
� = std(↵ij) . Taking µ < 0 means that species have on average mutualistic interactions, meaning
that they take benefit from the presence of each other. In contrary, taking µ > 0 means that most
of interactions are competitive. We will see later that the model we used is in fact inadapted to
the modelling of ecosystems with mutualistic interactions, so we will not study this case, and will
focus on competitive interactions. It is important to note that the results described below should
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The interaction parameters are randomly chosen from a Gaussian distribution 
of average μ and standard deviation σ

Model for ecosystem dynamics

1. Species have a logistic growth
2. Species interact (their growth depends on the density of other species) 
3. Immigration



Phase diagram for weak interactions

depend on the probability law followed by the ↵ij , although we can retrieve the same qualitative
behaviours for different kinds of distributions.

With this model, immigration from the regional pool prevents species from going completely
extinct. In fact, species that would go extinct without immigration decay until they reach a
population close to �. At this point, the immigration compensates the decay of the population,
therefore the population stabilizes. Consequently, we will often call the species i with Ni ⇠ �

"extinct" species.
When � ⌧ Ni ⌧ 1, we say that species i is "rare" and when Ni ⇠ 1, it is "abundant".

3.2 Quick presentation of the results in the weak interaction limit
The random Lotka-Voltera model have been studied in detail in the limit of weak interspecific
interactions [6, 7, 8], with tools of the physics of disordered systems. In the thermodynamic
limit, the behaviour of the system depends on two parameters: m = Sµ = S < ↵ij > and
s = S

1
2� = S

1
2 std(↵ij). The system experiences sharp phase transitions, and its behaviour do not

depend on S, keeping fixed values of s and m.

3.2.1 phase diagram

Three different phases can be observed depending on m and s:

• Above a threshold value of s depending on m, or if m is sufficiently negative, some species
have mutualistic interactions that are strong enough to overpass the carrying capacity term,
which is supposed to avoid an infinite growth of the population. In this case, the population
of these species explodes after a finite amount of time. In this phase, the model clearly fails
to reproduce a realistic behaviour, so we will exclude it from our study.

• if s <
p
2 and if there is no unbounded growth, the system has a unique stable fixed point,

in which most of the species cohabit at the equilibrium, and a fraction of them are extinct.

• if s >
p
2 and if there is no unbounded growth, there is a phase transition toward what is

called the "multiple attractors phase". In this phase, there is a huge number of unsta-
ble or marginally stable fixed points. Consequently, the system displays a complex chaotic
dynamics.
The phase diagram is drawn figure 3.

Figure 3: Phase diagram of the Generalized Lotka-Voltera model in the weak interaction limit,
figure taken from [6]

.
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The chaotic regime produces SADs with a power law of exponent 1

Roy et al. 
Numerical implementation of dynamical mean field theory for disordered systems: 
application to the Lotka–Volterra model of ecosystems
Journal of Physics A: Mathematical and Theoretical (2019)

3.2.2 SAD in the multiple attractors phase

Shape of the SAD

The multiple attractor phase is particularly interesting as some species display an intermittent
behaviour, with an alternance of very low abundance periods (N(t) ⇡ �) when they would go com-
pletely extinct without immigration, and high abundance periods (N(t) ⇡ 1). This boom-and-bust
dynamics is what we expected for planktonic species, which undergo blooms and shifts in domi-
nance known as "successions". Moreover, the SAD has an interesting shape in this phase. Indeed,
theoretical results show that, in the limit when � �! 0, the SAD scales like P (N) / 1

Nlog2(N)

for rare species. This profile is very well fitted by a power law distribution of exponent -1, as we
can see on figure 4. This power-law behaviour is an important feature of the behaviour of the
system in this phase, however it can be instructive to look at some other features, like the number
of abundant species.

Figure 4: Species Abundance distribution in the multiple attractor phase, in the weak interaction
limit. The parameters used to generate the SAD are (S = 1500, m = 4, s = 2, � = 10�10). The
distribution of abundance of species which are rare and not extinct (� ⌧Abundance⌧ 1) is well
fitted by a power law of exponent -1. The exponent was obtained by fitting adaptively the SAD.
The fit is represented as a blue line.

Number of abundant species

We operationally define abundant species as those whose abundance deviates from those fitted
by the power-law distribution. Their number can be obtained by integrating the SAD for abun-
dances larger than the upper bound of the fitted interval. For instance, for the SAD represented
figure 4, There are approximately 360 abundant species, meaning 24% of the total number of
species. The proportion of abundant species do not depend on the total number of species, so the
number of abundant species is proportional to S. However, it depends on m and s, but stays of the
order of one. Consequently, in the large S limit, there are always a very large number of coexist-
ing abundant species. This also makes the total population size of the ecosystem proportional to S.
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Open questions
Is plankton different from other microbial communities?
Lucie Zinger, IBENS 

To what extent plankton species are ‘equivalent’?
Giulio Biroli, Dept. of Physics, ENS

What is the role of ocean transport?
Francesco d’Ovidio, LOCEAN; Mick Follows, MIT

What are the best descriptors of diversity in plankton 
communities?
Arne Traulsen, MPI Evolutionary Biology, Plön, Germany

Looking for a post-doc to work at the Max Planck 
Institute of Evolutionary Biology, Plön, Germany 



Thank you


