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A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

Introduction

A model with two habitats

z ∈ R: phenotypical trait

ni (z): the density of the population’s phenotypical
distribution in patch i

Ni : the total population’s size in patch i :

Ni =

∫ ∞
−∞

ni (y)dy .

We consider asexual reproduction
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Introduction

A model with two habitats – equilibriums
We want to characterize the stationary solutions

−Vm

ε2

∂2

∂z2 nε,i (z) = nε,i (z)wi (z ,Ni ) + mjnε,j(z)−minε,i (z).

The fitness of trait z in patches i = 1, 2:

wi (z ,Ni ) = ri − gi (z − θi )2 − κiNi , θ1 = −θ, θ2 = θ.

Vm = ε2 : The variance of the mutation kernel × the probability of
mutation.

Assumptions:

ε is small

max (r1 −m1, r2 −m2) > 0 =⇒ Non-extinction
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Introduction

What we bring comparing to previous works

Quantitative genetics:

A single Gaussian distribution: Ronce, Kirkpatrick (2001),
Hendry, Day, Taylor (2001)

One or two Gaussian distributions: Yeaman,
Guillaume (2009), Débarre, Ronce, Gandon (2013)

What we do:

We provide a robust method to characterize analytically the
mutation-migration-selection equilibrium (i.e. the stationary
solution nε,i (z) )– going beyond the Gaussian
approximation.
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Introduction

What we bring comparing to previous works

Adaptive dynamics:

Main results for symmetric habitats: Meszéna, Czibula, Geritz
(1997), Day (2000), Fabre, Méléard, Porcher, Teplitsky,
Robert (2012)

What we do:

To characterize the equilibriums, we provide some preliminary
results in the adaptive dynamics framework, without making
any symmetry assumption.

We make a connection between notions in adaptive
dynamics and quantitative genetics.
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Introduction

The Hamilton-Jacobi approach for evolutionary biology
An old method to study the asymptotic behavior of
reaction-diffusion equations:

Freidlin (1985), Evans, Souganidis, Barles, ...

In evolutionary biology: asymptotic behavior of populations
(nonlocal models):

Heuristics by: Diekmann, Jabin, Mischler, Perthame (2005)
Rigorous derivation for homogeneous and heterogeneous
environments, interaction with resource, etc.: Barles, Bouin,
Champagnat, Jabin, Lam, Lorz, Lou, M., Méléard, Perthame,
Souganidis, Taing, Turanova, Wakano

Towards more quantitative results: approximation of the
phenotypical distribution:

Homogeneous environments : M. , Roquejoffre
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Preliminary results in adaptive dynamics

Some notions from adaptive dynamics

Effective fitness

Consider a resident population (n1(z), n2(z)), with the total
population’s sizes (N1 =

∫
R n1(y)dy ,N2 =

∫
R n2(y)dy).

Then, the effective growth rate W (z ;N1,N2), associated with
trait z in the resident population (n1(z), n2(z)), is the largest
eigenvalue of :

A(z ;N1,N2) =

(
w1(z ;N1)−m1 m2

m1 w2(z ;N2)−m2

)
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Preliminary results in adaptive dynamics

Some notions from adaptive dynamics

Adaptive dynamics framework–Demographic equilibria
Since there are two habitats, we consider only monomorphic and
dimorphic equilibria:

• A monomorphic equilibrium is characterized by

nM
i (z) = NM

i δ(z − zM)

with
(

NM
1

NM
2

)
the right eigenvector associated with the

dominant eigenvalue W (zM ;NM
1 ,N

M
2 ) = 0 of A(zM ;NM

1 ,N
M
2 ).

• A dimorphic equilibrium is characterized by:

nD
i (z) = νa,iδ(z − zD

a ) + νb,iδ(z − zD
b ), νa,i + νb,i = ND

i

with
(
νk,i
νk,j

)
the right eigenvectors associated with the largest

eigenvalues W (zD
k ;ND

1 ,N
D
2 ) = 0 of A(zD

k ;ND
1 ,N

D
2 ).
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Preliminary results in adaptive dynamics

Some notions from adaptive dynamics

Adaptive dynamics framework–Evolutionary equilibria

Evolutionary stable strategies (ESS):

•The monomorphic strategy zM∗ is an ESS if for any mutant
z0 6= zM∗,

W (z0;NM∗
1 ,NM∗

2 ) < 0.

• The dimorphic strategy {zD∗
a , zD∗

b } is an ESS if for any mutant
z0 6∈ {zD∗

a , zD∗
b },

W (z0;ND∗
1 ,ND∗

2 ) < 0.
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Preliminary results in adaptive dynamics

Identification of the ESS

Migration in both directions – Identification of the ESS
Theorem:
Assume that m1 > 0, m2 > 0. There exists a unique ESS.
(i) The ESS is dimorphic if and only if

m1m2

4g1g2θ4 < 1 (1)

C1 < α2r2 − α1r1 (2)

C2 < β1r1 − β2r2. (3)

with Ci , αi and βi constants depending on m1,m2, g1, g2, κ1, κ2, θ
which can be determined explicitly.

Then the dimorphic ESS is
given by {−zD∗, zD∗} with

zD∗ :=
√
θ2 − m1m2

4θ2g1g2
.

(ii) If the above conditions are not satisfied then the ESS is
monomorphic.
For symmetric habitats, the ESS is given by {zM∗ = 0}.
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Preliminary results in adaptive dynamics

Identification of the ESS

The source-sink case; identification of the ESS

Theorem: Assume that m1 > 0, m2 = 0.
• There exists a unique ESS in each habitat (not necessarily the
same).

• In habitat 1 the ESS is always monomorphic and it is given by
{−θ}

• In habitat 2 there are two possibilities: (i) the ESS is dimorphic
if and only if

m1
(r1 −m1)

κ1
< 4g2θ

2 r2
κ2
.

Then the dimorphic ESS is given by {−θ, θ}.

(ii) Otherwise, the ESS in the second patch is also monomorphic
and is given by {−θ}.
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A method to describe selection-mutation-migration equilibria
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A method to describe selection-mutation-migration equilibria

The selection-mutations-migration equilibria- the method
We want to approximate the equilibrium (nε,1(z), nε,2(z)):
−ε2 ∂2

∂z2 nε,1(z) = nε,1w1(z ,Nε,1) + m2nε,2(z)−m1nε,1(z),

−ε2 ∂2

∂z2 nε,2(z) = nε,2w2(z ,Nε,2) + m1nε,1(z)−m2nε,2(z).

assuming that ε is small.

We make a WKB ansatz

nε,i (z) =
1√
2πε

exp
(uε,i (z)

ε

)
.

Note that a common Gaussian approximation is given by

nε,i (z) = Ni√
2πεσ

exp
(
−(z−z∗)2

εσ2

)
= 1√

2πε
exp
(− 1

2σ2
(z−z∗)2+ε log Ni

σ

ε

)
.

12 / 25



A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A method to describe selection-mutation-migration equilibria

The selection-mutations-migration equilibria- the method
We want to approximate the equilibrium (nε,1(z), nε,2(z)):
−ε2 ∂2

∂z2 nε,1(z) = nε,1w1(z ,Nε,1) + m2nε,2(z)−m1nε,1(z),

−ε2 ∂2

∂z2 nε,2(z) = nε,2w2(z ,Nε,2) + m1nε,1(z)−m2nε,2(z).

assuming that ε is small. We make a WKB ansatz

nε,i (z) =
1√
2πε

exp
(uε,i (z)

ε

)
.

Note that a common Gaussian approximation is given by

nε,i (z) = Ni√
2πεσ

exp
(
−(z−z∗)2

εσ2

)
= 1√

2πε
exp
(− 1

2σ2
(z−z∗)2+ε log Ni

σ

ε

)
.

12 / 25



A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A method to describe selection-mutation-migration equilibria

The selection-mutations-migration equilibria- the method
We want to approximate the equilibrium (nε,1(z), nε,2(z)):
−ε2 ∂2

∂z2 nε,1(z) = nε,1w1(z ,Nε,1) + m2nε,2(z)−m1nε,1(z),

−ε2 ∂2

∂z2 nε,2(z) = nε,2w2(z ,Nε,2) + m1nε,1(z)−m2nε,2(z).

assuming that ε is small. We make a WKB ansatz

nε,i (z) =
1√
2πε

exp
(uε,i (z)

ε

)
.

Note that a common Gaussian approximation is given by

nε,i (z) = Ni√
2πεσ

exp
(
−(z−z∗)2

εσ2

)
= 1√

2πε
exp
(− 1

2σ2
(z−z∗)2+ε log Ni

σ

ε

)
.

12 / 25



A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A method to describe selection-mutation-migration equilibria

The selection-mutation-migration equilibria- the method
An expected asymptotic expansion:

uε,i (z) = ui (z) + εvi (z) + ε2wi (z) + O(ε3),

which means, in terms of nε,i ,

nε,i (z) =
1√
2πε

exp
(ui (z)

ε
+ vi (z) + εwi (z) + O(ε2)

)

We compute these coefficients using
−ε ∂2

∂z2 uε,1 = | ∂∂z uε,1|2 + w1(z ,Nε,1) + m2 exp
(uε,2−uε,1

ε

)
−m1,

−ε ∂2
∂z2 uε,2 = | ∂∂z uε,2|2 + w2(z ,Nε,2) + m1 exp

(uε,1−uε,2
ε

)
−m2.
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A method to describe selection-mutation-migration equilibria

How to compute ui
We present the method in the case :m1 > 0, m2 > 0.

Theorem:
(i) As ε→ 0, (nε,1, nε,2) converges to (n∗1, n

∗
2), the equilibrium

corresponding to the unique ESS of the metapopulation.

(ii) As ε→ 0, both sequences (uε,i )ε converge to a viscosity
solution to 

−| ∂∂z u|2 = W (z ,N∗1 ,N
∗
2 ), in R,

maxz∈R u(z) = 0.

Moreover, apart from a very particular set of parameters,

supp n∗1 = supp n∗2 = {z | u(z) = 0} = {z |W (z ,N∗1 ,N
∗
2 ) = 0}.

and hence the solution u is unique.

14 / 25



A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A method to describe selection-mutation-migration equilibria

How to compute ui
We present the method in the case :m1 > 0, m2 > 0.

Theorem:
(i) As ε→ 0, (nε,1, nε,2) converges to (n∗1, n

∗
2), the equilibrium

corresponding to the unique ESS of the metapopulation.

(ii) As ε→ 0, both sequences (uε,i )ε converge to a viscosity
solution to 

−| ∂∂z u|2 = W (z ,N∗1 ,N
∗
2 ), in R,

maxz∈R u(z) = 0.

Moreover, apart from a very particular set of parameters,

supp n∗1 = supp n∗2 = {z | u(z) = 0} = {z |W (z ,N∗1 ,N
∗
2 ) = 0}.

and hence the solution u is unique.

14 / 25



A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

A method to describe selection-mutation-migration equilibria

How to compute ui
We present the method in the case :m1 > 0, m2 > 0.

Theorem:
(i) As ε→ 0, (nε,1, nε,2) converges to (n∗1, n

∗
2), the equilibrium

corresponding to the unique ESS of the metapopulation.

(ii) As ε→ 0, both sequences (uε,i )ε converge to a viscosity
solution to 

−| ∂∂z u|2 = W (z ,N∗1 ,N
∗
2 ), in R,

maxz∈R u(z) = 0.

Moreover, apart from a very particular set of parameters,
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How to compute u
Such solution u can be computed explicitly:

(i) Monomorphic ESS : Assume that the unique ESS is
monomorphic and is given by {zM∗}. Then u is given by

u(z) = −
∣∣ ∫ z

zM∗

√
−W (x ;NM∗

1 ,NM∗
2 )dx

∣∣.
(ii) Dimorphic ESS : Assume that the unique ESS is dimorphic
and is given by {zD∗

a , zD∗
b }. Then u is given by

u(z) = max
(
−|
∫ z
zD∗
a

√
−W (x ;ND∗

1 ,ND∗
2 )dx |,

,−|
∫ z
zD∗
b

√
−W (x ;ND∗

1 ,ND∗
2 )dx |

)
.
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Asymptotic expansions for u, vi and wi
We present the results in the monomorphic case.
The dimorphic case can be analyzed following similar arguments.

When u < 0, nε,i is exponentially small.
⇒ Only the values of vi and wi near the ESS point zM∗

matter.

We indeed compute

u(z) = −A
2
(z − zM∗)2 + B(z − zM∗)3 + C (z − zM∗)4+O(z−zM∗)5.

vi (z) = log(
√

ANM∗
i ) + Di (z − zM∗) + Ei (z − zM∗)2+O(z−zM∗)3.

wi (z) = Fi + O(z − zM∗).

This is enough to obtain a good approximation of the population’s
distribution : moments approximated with an error of order ε2.
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Approximation of the moments

• Total population: Nε,i = NM∗
i (1+ ε(Fi +

Ei
A + 3C

A2 ) + O(ε).

• Mean: µε,i = 1
Nε,i

∫
znε,idz = zM∗ + ε

(
3 B

A2 +
Di
A

)
+ O(ε2).

• Variance: σ2
ε,i =

1
Nε,i

∫
(z − µM

ε,i )
2nε,i (z)dz = ε

A + O(ε2).

• Skewness:
sε,i = 1

σ3ε,iNε,i

∫
(z − µε,i )3nε,i (z)dz = 6 B

A
3
2

√
ε+ O(ε

3
2 ).
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Numerics and comparison with previous results

Symmetric habitats with monomorphic ESS

Comparison between numerical and analytical solution for
nε,1(z)(at left) and nε,2(z) (at right) with ε = 0.1.

rmax = 3, g = 1, θ = 0.5, κ = 1, m = 1.

In particular, we correct the approximation of the variance:

σ2
ε,i = ε/

√
g(1− 2gθ2/m) + O(ε2),
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Symmetric habitats with monomorphic ESS

Comparison of the solutions n1 and n2 with Gaussian distribution
with fixed variance (previous approximation given in Debarre et al.
2013).
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Numerics and comparison with previous results

Symmetric habitats with monomorphic ESS

Numerical Analytical Gaussian approx
N1 2.68 2.68 2.75
N2 2.68 2.68 2.75
µ1 - 0.06 - 0.07 0
µ2 0.06 0.07 0
σ2

1 0.13 0.14 0.03
σ2

2 0.13 0.14 0.03
s1 0.04 0 0
s2 - 0.04 0 0

Comparison between numerical and analytical values for the total
populations, the mean trait, the variance and the skewness in the
two habitats, for ε = 0.1.
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Numerics and comparison with previous results

Symmetric habitats with dimorphic ESS

rmax = 3, g = 1, θ = 0.5, κ = 1, m = 0.2.

Comparison between numerical and analytical solution for
nε,1(z)(at left) and nε,2(z) (at right) with ε = 0.01.
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Numerics and comparison with previous results

Symmetric habitats with dimorphic ESS

rmax = 3, g = 1, θ = 0.5, κ = 1, m = 0.2.

Comparison of the solutions nε,1(z)(at left) and nε,2(z) (at right)
with the Gaussian approximations with fixed variance.
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Numerics and comparison with previous results

Symmetric habitats with dimorphic ESS
Numerical Analytical Gaus. approx

µa,1 - 0.455 - 0.455 -.458
µa,2 - 0.431 - 0.433 - 0.458
µb,1 0.431 0.433 .458
µb,2 0.455 0.455 0.458
σ2

a,1 0.011 0.011 0.010
σ2

a,2 0.012 0.011 0.010
σ2

b,1 0.012 0.011 0.010
σ2

b,2 0.011 0.011 0.010
sa,1 0.049 0.036 0
sa,2 0.081 0.036 0
sb,1 - 0.081 - 0.036 0
sb,2 - 0.049 - 0.036 0
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Conclusion

We provide an analytic approximation of the
selection–mutation–migration equilibrium which goes beyond
the Gaussian approximations.

We make a connection between the tools in quantitative
genetics and adaptive dynamics.

The method could be adapted to study : other fitness
functions or mutation kernels, several habitats, the dynamics
of the poplation’s distribution.

We introduce a robust method based on
Hamilton-Jacobi equations that can also be used in
other contexts.
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Thank you for your attention !
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Numerics and comparison with previous results

Non-symmetric habitats with monomorphic ESS

r1 = 20, g1 = 1, κ1 = 1, m1 = 0.5, θ = 0.5.

r2 = 0.3, g2 = 4, κ2 = 1, m2 = 0.2.

Comparison between numerical and analytical solution for nε,1(z)
and nε,2(z) with ε = 0.01.
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Source–sink case with dimorphic ESS

r1 = 3, g1 = 1, κ1 = 1, m1 = 0.5, θ = 0.5.

r2 = 4, g2 = 1, κ2 = 1, m2 = 0.

Comparison between numerical and analytical solution for nε,1(z)
and nε,2(z) with ε = 0.01.
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Numerics and comparison with previous results

Source-sink case with monomorphic ESS

r1 = 3, g1 = 1, κ1 = 1, m1 = 0.5, θ = 0.5.

r2 = 1, g2 = 1, κ2 = 1, m2 = 0.

Comparison between numerical and analytical solution for nε,1(z)
and nε,2(z) with ε = 0.01.
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