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Introduction

Chemostat

J. Monod (1950) and A.
Novik and L. Szilar (1950)
have developed a procedure
allowing to

* maintain a population
of bacteria at a
stationary size

o while keeping the
bacteria growth rate at
a positive level.

~~+ chemostat
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Introduction

A chemostat is a bioreactor in which liquid is continuously injected
while volume is kept constant by an equal outflow:
allows to control the growth rate of a microorganism in a constant
environment (temperature, pH, nutrient concentration...)
used to grow cells or to perform a biochemical process (e.g.
wastewater treatment)
The chemostat is an efficient device to make bacteria adapt to given
environmental conditions, for example in order to improve nutrients
consumption (e.g. nitrogen or phosphorus in wastewater).
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Introduction

Our Goal: Study adaptation in a multi-resources chemostat model.
Basic chemostat model (system of ODEs)

t=u(—1—d+nR), R=1-R— Rnu.
Multi-resources extensions have been studied in many contexts,
but very little is known in general about their long time behavior
(Smith and Waltman, 1995)
Nearly no individual-based stochastic models (Crump and Young,
1979)
In the context of adaptive dynamics, individual-based models are
widely used (Metz, Geritz et al. 1996, Doebeli and Dieckmann
2003, Fournier and Méléard, 2004, C. 2006, Méléard, Tran, 2009,
C. and Méléard, 2011, Klebaner et al. 2011, Collet, Méléard,
Metz 2011), but nearly all deal with direct competition.
Recently, the PDE approach for adaptive dynamics (Diekmann,
Jabin, Mischler, Perthame, 2005) was also extended to
multi-resources chemostat models (Mirrahimi, Perthame,
Wakano, 2011) o)
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Introduction

Adaptive dynamics

Basic idea (Metz et al. 1996): look at the invasion and fixation of a
mutant type in a population, to construct a fitness landscape and
describe the long-time evolution of the population.
Assumptions:

o large populations

e rare mutations

o small mutation steps

Our contribution:
o Obtain general large-time behavior results for multi-resources
chemostat ODE systems

o Construct an individual-based multi-resources chemostat model

o Characterize the adaptive dynamics of this model in the limit of
rare mutations.
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Evolutionary banching
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The model
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The model

Individual-based model

o K scales the size of the population (large K means large
population)

o ux scales the probability of mutation (small g means rare
mutations)

Birth-death-mutation discrete process coupled with a piecewise
deterministic dynamics for r continuous resources with concentrations
RE(t),..., RE(t):
¢ each individual is characterized by a phenotypic trait z (rate of
nutrient intake, body size at maturity, age at maturity...) in a
compact subset X of R?

« a population of N¥(#) individuals holding traits

1
K

1 Qo

T, ..., Tn(y) € X is represented by l/tK =
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The model

The model
oe

Transitions

o Each individual with trait z gives birth at (inhomogeneous) rate
Z e ) to a single individual.

77k( ) represents the consumption efficiency of resource k by
bacteria with trait z. At each birth time:

o with probability (1 — ux)p(z), clonal reproduction (trait z)
« with probability pxp(z), mutation; the mutant trait is = + h
where h has given law m(x, h)dh.
o Each individual with trait z dies or is removed from the
chemostat at rate d(z).

» Resources concentrations are solution to

N(t)

dRF(t
4B ) _ = gi—Rf - Zflk ) | = g—Ri =R WS ).

dt

1 Qo

gr > 0 is incoming concentration of resource k.

)
Pl
i)
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An example

Example

Two resources, one-dimensional trait having opposite effects on the
two resources consumption.

X =[-1,1], pxp(z)=p

m(z,h)dh = N(0,02) (conditioned on z + h € X)
o r=2 (2resources), g1 =g2=1
o d(z) =1+ 2? minimum at 0.

o m(z) =2(z —1)%, na(z) =2(z +1)%
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An example

Simulations

o 5000 10000 o 1000 2000 3000
R, R
Rz R
0.5 0.5

0 5000 10000 0 1000 2000 3000
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K =100, p=0.1, 0 = 0.01 K =300, p=0.1, 0 = 0.01
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The model
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Limit of large population

K — +00 without time scaling

Theorem

If RX(0) = R(0) € RY,, ik — 0 when K — 400 and v{’ converges in
distribution to a deterministic measure vy = > ., u;(0)d,,, then
((vE,RE(t)),t > 0) converges in distribution to the function

((XCiy wi(t)da,, R(1)), t > 0), where

1 Qo

Multi-resources and multi-species chemostat ODE system.
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Long time behavior of chemostat systems
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Assumptions

Assumptions

,
(A1) For all z € X, Z ng(z) g > d(z).
k=1
(A2) For all n > 1 and distinct zy,- -+ , z, € X, the equation
T

0k (i) gk .
d(z;) — n =0, 1<:i<
(z:) = L4370 () e

k=1

has at most one solution (uy,---,u,) € R}.

(A1) means that the trivial equilibrium (0,...,0,g1,...,gx) of the
chemostat system is unstable.
(A2) means that there is at most one equilibrium with prescibed

surviving species.
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Long time behavior of chemostat systems
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Assumptions

How to check (A2)?

Proposition

Assumption (A2) holds if for all distinct zy, ..., %11, the vectors

m (1) nr(21) d(z)

M (Try1) Nr(Tr+1) d(zr41)
are linearly independent, and for all distinct z, . .., z,, the vectors

(1) m(z)

(@) \ne(a)

1@ o

are also linearly independent.
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Long time behavior of chemostat systems
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Long-time behavior

Long-time behavior of chemostat systems

Theorem (C., Jabin, Raoul, 2010)

Under Assumption (A2), for all n > 1 and all distinct xy,- - ,z, € X,
there exists a unique (i, R) in (Ry)™T" such that any solution

(u(t), R(t)) of the chemostat system with u;(0) > 0 for any 1 <4 < n,
converges to (i, R).

We shall denote by (i (x), 2(x)) this equilibrium, where
X = (21,...,Zpn)-
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Long time behavior of chemostat systems
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Long-time behavior

Some consequences of the theorem

In particular, the chemostat system can only have a single locally
stable equilibrium, and it is actually globally stable.

The case of a single trait: If n =1, since the trivial equilibrium
(0,91,...,9r) is unstable, (u(z), R(z)) is the unique solution to

r

m(z)gr . 2) = k.
2 @m0 RO Gy
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Long time behavior of chemostat systems
ocoe

Long-time behavior

Some consequences of the theorem

The case of two trait: If n = 2, the equilibrium (u(z1),0, R(21)) is
stable iff f(z;21) < 0, where

Y) gk
fysz) +Zl+nkwu T)’

If both (@(z1),0, R(71)) and (0, %(z2), R(72)) are unstable, i.e. if
f(a1;22) > 0 and f(a; 1) > 0, then there exists a stable equilibrium
where both traits coexist.

More generally, if z, ..., z, coexist, we define the invasion fitness of a
new (mutant) trait y as

k=1
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Limit of rare mutations
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General idea

Limit of rare mutations (Metz et al. 1996)

o The selection process has sufficient time between two mutations
to eliminate disadvantaged traits (time scale separation)
o The assumption of large populations allows one to assume a

deterministic population dynamics
~~ one can predict the outcome of competition between several

traits.
o Succession of phases of mutant invasion, and phases of
competition between traits
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Limit of rare mutations
oe

General idea

Simulations: rare mutations

o 1000 2000 3000 0 10000 20000
R, R
R, R
05 0.5

o 1000 2000 3000 o 10000 20000
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K =300, p=0.1, 0 =0.01 K =300, p =0.0003, ¢ =0.06
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Limit of rare mutations
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Convergence to the PES

Convergence to the PES

Theorem

Assume (A). If vl = w55, with & — u(z) in probability when
K — +o0o. Assume also that R (0 ) Ry (z) in probability for all
1<k<rand

1
VC >0, logK « —— < exp(CK),
Kug

then, the process ((Vf;KHK,RK(t/K,uK)), t > 0) converges for f.d.d. to
a pure jump Markov process (A, R (1)), t > 0) with explicit jump
rates and taking values in

d
Mg = {(Z Ui (X)0s; R(x)) ;d>1 2,3, €X coem’st}.

=1

1@ o

When A, is monomorphic, it is called Trait Substitution Seq. (TSS);
when it is polymorphic, we call it Polymorphic Evolution Seq. (PES). -

Pl
i)



Limit of rare mutations
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Convergence to the PES

Monomorphic case: the TSS

o Until the first coexistence time, the trait dynamics is given by a
Markov jump process (X;, ¢ > 0) such that Xy = z and with
infinitesimal generator

Ap(z) = /(</>(x +h) = ¢(z))p(z) (Z nk(ﬂf)Rk(m’)> u(z)
k

o+ hi )l
S, (et W) By "

o Each jump corresponds to a successful invasion of a new mutant
trait

o The first coexistence time is the first time ¢ such that
f(Xi, Xi—) > 0 and f(X;—, X¢) > 0.
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Limit of rare mutations
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Idea of the proof

Before the first mutation in a monomorphic population

((vE,1), RE (1)) is close to the solution of the monomorphic
chemostat system. ~
~ reaches an e-neigborhood of (%(z), R(z)) in finite time.

Large deviations (Feng and Kurtz, 2006): the exit time from this
e-neighborhood behaves as exp(KC. ), with C; ; > 0.

Before this exit time, the rate of mutation is close to
prp(z) (g n(2) Ri(w)) Ku(z).

On the time scale K#ux: mutation rate

p(x) (X Mk (2) Ri(2)) ().

° °
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Limit of rare mutations
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Idea of the proof

After the first mutation: competition phase

between 0 and t;: the number of mutant individuals is close to

a branching process with birth rate >, 7. (y)R(z) and death rate
d(y)

~ survival probability [ (y: 2] /(5 ni(y) R(x))

between t; and ts: close to the chemostat system

after to: the number of resident individuals is close to a
sub-critical branching process

If log K < KLW the next mutation occurs after this phase with
high probability.

Ug
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Limit of rare mutations
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Idea of the proof

PES after the first coexistence

After the first coexistence time, two traits Xy, Y; are coexisting, and
Ay = (X, YVi)ox, + (X, Yi)dy,

where the jump process (X;, Y;) is obtained as follows.

¢ A mutant born from X; appears with rate
p(Xe) (3, me(Xe) Ri(Xe, Y)) wa (Xy, Yy) and a mutant born from
Y, appears independently with rate
p(Ye) (3 me(YVe)Ri( Xy, Yy)) a(Xy, Y2).

* Once a mutant trait z has appeared, it invades the population
with probability [f(z; Xy, Y3)]+/ (Zk e (2) Ry (X4, Yt)).

o If the mutant invades, the new state of A is given by

(E(Xtv Yta Z)) R(Xta Yt) Z))
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Evolutionary branching in dim 1

Evolutionary banching
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Evolutionary branching in dim 1
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Canonical equation and Evolutionary singularities

Evolutionary singularities

Assume that X C R (dimension 1).
o Since f(z,z) = 0, we have 01f(z,z) + O2f (z,2) = 0.
o For any z € &,
flz+ea—e)=201f(z,2) e+ O(e?)
flz —e,x+¢)=—=201f(z,2) e + O()
~~ when mutations are small, coexistence can only occur in the
neighborhood of points z* such that 0, f(z*,2*) = 0.

Such a point is called an evolutionary singularity.
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Evolutionary branching in dim 1
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Canonical equation and Evolutionary singularities

The Canonical Equation of Adaptive Dynamics

o Small mutations: size of mutations scaled by e, i.e. m(z, h)dh
replaced by Lm(z,2)dh.

o Renormalized PES: A°®.

 Rescaled time: t/e2.

Theorem
The processes (Ai/sfz,t > 0) converge in law as € — 0 to
(@(z(t))0z(), t > 0), where x is solution of the ODE

% = [1r@)a@nsws)mis, k.

This is the canonical equation of adaptive dynamics (Dieckmann and
Law, 1996).

1 Qo

~» Evolutionary branching can only occur in the neighborhood of a
stable evolutionary singularity and on a longer scale than t/s2. -
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Evolutionary branching in dim 1
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Branching criterion

A definition of evolutionary branching

For any n > 0, we say that there is n-branching at the evolutionary
singularity = if

o There exist t > 0 such that the support of AS is composed of a
single trait in (z* —n,x* +n).

o There exist s > t such that the support of A5 is composed of two
traits distant of more than n.

o Between s and t, the support of A® is always a subset of
[* —n,2* +n] composed of at most 2 traits.
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Evolutionary branching in dim 1
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Branching criterion

Branching criterion

o Assume z* = 0. We have 0,f(0;0) = 0.
o Let a = 011f(0;0) and ¢ = Ja2f(0;0). Assume that a # 0 and
a+c#0.
o The evolutionary singularity z* = 0 is stable for the canonical
equation if
c>a.

When ¢ > a, for all sufficiently small n > 0, there exists g > 0 s.t.
for all e < g,

o If a > 0, then P°(n-branching) = 1.

1 Qo

o If a <0, then P*(n-branching) = 0.
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Evolutionary branching in dim 1
O0@000000

Branching criterion

Coevolution with the fitness landscape
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Evolutionary branching in dim 1
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Branching criterion

Coevolution with the fitness landscape
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Evolutionary branching in dim 1
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Branching criterion

Coevolution with the fitness landscape

1
! ' ' ' 'SIMUVDISCDET_DDdens023.xt’
"SImul'DISCDET_DDAn023.txt
Y
08 -
06 | .
04 - g
oz R

1 Qo

Lot

N



Evolutionary branching in dim 1
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Branching criterion

Coevolution with the fitness landscape
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Evolutionary branching in dim 1
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Branching criterion

Coevolution with the fitness landscape
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Evolutionary branching in dim 1
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Branching criterion

Coevolution with the fitness landscape

1
! ' ' ' 'SIMUVDISCDET_DDdens036.ixt’
"SImul'DISCDET_DDAn036.1xt
Y

08 -
06 | .
04 E
02 ke o T

1 Qo

Lot

N



Evolutionary branching in dim 1
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Branching criterion

Coevolution with the fitness landscape
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