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L Introduction

Darwinian evolution of a structured population density

m We study the
Darwinian evolution 7

of a population

structured by

phenotypical traits,

and(or) space, ‘

under selection and
mutation
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L Introduction

m We study the long time
behavior of a population
density, assuming that

mutations are rare or small.

m We expect to observe:
speciation, extinction and
branching
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Figure: Morbidostat : a
selective pressure is applied
continuously to the bacterial
population

Rosenthal et Elowitz, Nature Genetics
2012
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m Game theory: Maynard Smith, Hofbauer, Sigmund, ...

m Classical adaptive dynamics: Dieckmann, Gertiz, J. A. J.
Metz, Kisdi, Meszéna, Diekmann, Jacobs, Gyllenberg, H.
Metz,...

m Stochastic methods: Méléard, Champagnat, Ferriére,
Fournier, Bolker, Pacala, Lambert,...

m Integro-differential models: Perthame, Desvillettes, Jabin,
Mischler, Carrillo, Calsina, Cuadrado, Barles, Raoul, Génieys,...
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LModels structured by phenotypical traits

A model with a single nutrient

n 1 1 — X
fine = TR )+ L [ K by )ty o) dy,

I(t) = /]Rd n(x) nz(x, t) dx.

m x € R?: phenotypical m /.(t): total consumption

tratt m R(x,I.): growth rate

m b(x, I-): mutation birth
rate

m n.(x,t): density of trait x
m K(z): mutation probability
kernel

m 7(x): consumption rate m ¢: a small parameter
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LModels structured by phenotypical traits

Another way to model the mutations
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LModels structured by phenotypical traits

A simple typical growth rate: R(x,)=1———1

Dynamics of the dominant trait
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LModels structured by phenotypical traits

No blow up, no extinction

min [R(x, Im) + b(x, )] =0, ;2%)2 [R(x,Im) + b(x, Im)] =0,

x€ERY

Im < 1(0) < Iy.
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LModels structured by phenotypical traits

No blow up, no extinction

min [R(x, Im) + b(x,Im)] =0,  max [R(x, Iu) + b(x, Iu)] =0,
xERY x€Rd

Im < 1(0) < Iy.
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0 /31



Selection-mutation models: diversification of populations

LModels structured by phenotypical traits

No blow up, no extinction

min [R(x, Im) + b(x, Im)] = 0, max [R(x, Im) + b(x, Im)] = 0,
x€ERY x€Rd
Im < 1:(0) < I
- Iy < /E(t) < Iy.

Limited resource = competition between traits.

0 /31
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Further assumptions

e 0<K(z), [K(z)dz=1,
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Further assumptions

e and some regularity assumptions...
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LModels structured by phenotypical traits

Further assumptions

e and some regularity assumptions...

— after extraction of a subsequence, (/). converges a.e. to /(t).
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L The Hamilton-Jacobi approach

Some notations

m n(x, t): weak limit of n.(x,t) as ¢ vanishes

m We expect n to concentrate as Dirac masses

t
m Hopf-Cole transformation: n.(x, t) = exp (M>
€
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L The Hamilton-Jacobi approach

Theorem (Barles, M., Perthame - 2009)

Under the previous assumptions, after extraction of a subsequence,
u- converges locally uniformly to a continuous function u, a
viscosity solution to

%u = R(x, I(t)) + b(x, I(t)) / K(z) exp(Vu-z) dz,
e u(x,t) =0,

u(0, x) = u°(x),
I(t) — I(t) a.e, /n(x) n(x, t)dx = I(t) a.e.

e—0
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The case of Laplacian

After extraction of a subsequence, u. converges locally uniformly
to a continuous function u, a viscosity solution to

2 u=|Vul®+ R(x,I(t))

max u(x,t) =0,
x€eR9

u(0,x) = u¥(x).

Barles, M., Perthame - 2009
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L The Hamilton-Jacobi approach

Consequences...
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L The Hamilton-Jacobi approach

Convergence to a monomorphic population

In 1-d : Under monotonicity conditions on R, weakly in the sense of
measures and after extraction of a subsequence, we have

ne(x, t) — n(x, t) = p(t) o(x — x(t)),

E—

with R (x(t),/(t)) =0 and p(t) = ,7{;({2))-

G. Barles, B. Perthame - 2008
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L The Hamilton-Jacobi approach

Multi-d: Concavity assumptions

—2K; < D?R(x,1) < —2K; <0

as symmetric matrices for 0 < | < [y,
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Convergence to a monomorphic population [competitive
exclusion]

Theorem (Lorz, M., Perthame - 2011)

Under the previous assumptions, after extraction of a subsequence,

the sequence (n.). converges weakly in the sense of measures to a
single Dirac mass

ne — o) (x —X(1)),

p(t):%, R(%(£), (1) =0 ae,

and I(t) is non-decreasing.
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R(x,y,1) =3 — 1.5/ — 5.6(y + 1.1x%).
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L The Hamilton-Jacobi approach

Canonical equation

"Canonical equation" refers to a differential equation for the
position of the dominant trait(s) in trait space.

D3R(-, 1) € L®(RY), D3u? e [®(RY).

Theorem (Lorz, M., Perthame - 2011)

Under the previous assumptions, X(-) belongs to W1 (R+; R9)
and satisfies

%(t) = (=D2u(x(t),1)) " VLR(X(1), I(t)), X(0) = x°.

Furthermore, we have I(t) € WH*°(R™).
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L The Hamilton-Jacobi approach

(a) asymmetric I.D. (b) symmetric I.D.

R(x,y,1) =2 —1—0.6(x*>+ y?).

Dynamics of the density n with asymmetric initial data (left) and
symmetric initial data (right).

21 / 31



Selection-mutation models: diversification of populations

L The Hamilton-Jacobi approach

A model with several resources

ns('» t= 0) = ng(')7
H(t) = 7 (x) n-(x, t) dx.
Rd

In this model we can observe polymorphism and branching

Champagnat, Jabin, 2011
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LSpatial models

Spatial models
X . space, v trait

Otn — alAyn — AN = 2 R(x, v, I(t,x)),
Y
I(t,x) /¢ n(t, x, v)dv.
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LSpatial models

A model with two favorable habitable zones:

1 L LRI (x, 1) 4 12p2 — Lp1p0
Oenz —eln: = ZnzRY(x, I7) + 2 cvong,
2 2 _1.2p2 Lyint — 1,22
Oen? —eAn? = In?R%(x,12)+ 1 nz,

:/zb(x)ngdx, I? :/w(x)ngdx.

m One can write a similar model for K favorable habitable zones.
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The stationary problem

—2An! = nlRY(x, I1}) +v?n2 —vinl  in B(0),
—e2An? = n?R%(x, I2) +vinl — 1202 in BL(0),
Vni-i =0 in 0B(0),

= [ueantae 1= [utond
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Theorem (M. - 2012)

Under some assumptions, after extraction of a subsequence, both
sequences (ul). and (u?). converge to a continuous function u that
is a viscosity solution to the following equation

—|Vul? = H(x, I, 1?), in BL(0),

maxyep, (0) U(x) =0,

with H(x, I*, 1) the largest eigenvalue of the matrix

A— RY(x, ') — vt 2
B vl R2(x,1?) —v? )°
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LSpatial models

Consequences...

1 n2 2

- —n.

nt—n
e—0

e—0

suppn C QNT, fori=1,2

Q ={xe€ B;(0)|u(x) =0}
F={xeB(0)|H(x,I*, -, I") = max H(x,I',---, 1) =0}
XEB[_(O)

In particular, the population has an Evolutionary Stable Distribution
(ESD)
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If the support of n’, for i = 1,2, is a set of distinct points:
supp n' C {x1,x2,- - ,x}, we then have

/
nizzpjd(X—Xj), fori=1,2,

1
with < pfg ) is the eigenvector corresponding to the largest

J
eigenvalue of the matrix A at the point x;, which is 0, and

> o) =1,
]
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The gray layers represent the value of nl(left) and n?(right).
Migration rates : v! =12 = 1.

RY(x,1) =5—(x+1)?+x—1, R?(x,/) =5—(x—1)2—x—1
The optimal trait in the first patch is x = —0.5 and in the
second patch is x = 0.5.

Initially: the trait in the first patch is x = —0.3 and in the
second patch is x = 0.3.

At the final time: the trait in both patches is x = 0.
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]

The gray layers represent the value of nl(left) and n?(right).
Migration rates : v1 = 12 = 0.5.

RY(x,1) =32—(x+1)2+.1xx—1,

R%(x,1) =32—(x—1)2—.1xx—1I

The optimal trait in the first patch is x = —0.95 and in the
second patch is x = 0.95.

Initially: the trait in the first patch is x = —0.2 and in the
second patch is x = 0.2.

At the final time: two traits x = —0.6 and x = 0.6 are present
in both patches.
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LSpatial models

Thank you for your attention !

31 / 31



	Introduction
	Models structured by phenotypical traits
	The Hamilton-Jacobi approach
	Spatial models

