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Introduction

Darwinian evolution of a structured population density

We study the
Darwinian evolution

of a population
structured by
phenotypical traits,
and(or) space,

under selection and
mutation
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Introduction

We study the long time
behavior of a population
density, assuming that
mutations are rare or small.

We expect to observe:
speciation, extinction and
branching

Figure: Morbidostat : a
selective pressure is applied
continuously to the bacterial
population

Rosenthal et Elowitz, Nature Genetics
2012
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Introduction
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Models structured by phenotypical traits

A model with a single nutrient


∂
∂t nε =

nε
ε
R
(
x , Iε

)
+

1
ε

∫
1
εd

K (
y − x
ε

) b(y , Iε) nε(y , t) dy ,

nε(·, t = 0) = n0
ε(·),

Iε(t) =

∫
Rd
η(x) nε(x , t) dx .

x ∈ Rd : phenotypical
trait
nε(x , t): density of trait x
K (z): mutation probability
kernel
η(x): consumption rate

Iε(t): total consumption
R(x , Iε): growth rate
b(x , Iε): mutation birth
rate
ε: a small parameter
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Models structured by phenotypical traits

Another way to model the mutations


∂
∂t nε − ε∆nε =

nε
ε
R
(
x , Iε

)
,

nε(·, t = 0) = n0
ε(·),

Iε(t) =

∫
Rd

η(x) nε(x , t) dx .
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Models structured by phenotypical traits

A simple typical growth rate: R(x , I ) = 1− x2

2
− I

Dynamics of the dominant trait
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Models structured by phenotypical traits

No blow up, no extinction

min
x∈Rd

[R(x , Im) + b(x , Im)] = 0, max
x∈Rd

[R(x , IM) + b(x , IM)] = 0,

Im ≤ Iε(0) ≤ IM .

=⇒ Im ≤ Iε(t) ≤ IM .

Limited resource =⇒ competition between traits.
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Models structured by phenotypical traits

Further assumptions

• 0 ≤ K (z),
∫
K (z) dz = 1,

• − C ≤ ∂(R + b)

∂I
(x , I ) ≤ −C−1 < 0

• and some regularity assumptions...

=⇒ after extraction of a subsequence, (Iε)ε converges a.e. to I (t).
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The Hamilton-Jacobi approach

Some notations

n(x , t): weak limit of nε(x , t) as ε vanishes

We expect n to concentrate as Dirac masses

Hopf-Cole transformation: nε(x , t) = exp
(
uε(x , t)

ε

)
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The Hamilton-Jacobi approach

Theorem (Barles, M., Perthame - 2009)

Under the previous assumptions, after extraction of a subsequence,
uε converges locally uniformly to a continuous function u, a
viscosity solution to


∂
∂t u = R(x , I (t)) + b(x , I (t))

∫
K (z) exp(∇u · z) dz ,

max
x∈Rd

u(x , t) = 0,

u(0, x) = u0(x),

Iε(t) −→
ε→0

I (t) a.e.,
∫
η(x) n(x , t)dx = I (t) a.e..
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The Hamilton-Jacobi approach

The case of Laplacian

After extraction of a subsequence, uε converges locally uniformly
to a continuous function u, a viscosity solution to


∂
∂t u = |∇u|2 + R(x , I (t))

max
x∈Rd

u(x , t) = 0,

u(0, x) = u0(x).

Barles, M., Perthame - 2009
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The Hamilton-Jacobi approach

Consequences...

x̄(t) ∈ supp n(t, ·)

=⇒ u(x̄(t), t) = 0

=⇒ R( x̄(t), I (t)) = 0
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The Hamilton-Jacobi approach

Convergence to a monomorphic population

In 1-d : Under monotonicity conditions on R , weakly in the sense of
measures and after extraction of a subsequence, we have

nε(x , t) −−⇀
ε→0

n(x , t) = ρ̄(t) δ(x − x̄(t)),

with R (x̄(t), I (t)) = 0 and ρ̄(t) = I (t)
η(x̄(t)) .

G. Barles, B. Perthame - 2008
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The Hamilton-Jacobi approach

R(·, I )

x̄
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The Hamilton-Jacobi approach

Multi-d: Concavity assumptions

− 2K 1 ≤ D2 R(x , I ) ≤ −2K 1 < 0

as symmetric matrices for 0 ≤ I ≤ IM ,

−2 L1 ≤ D2u0
ε ≤ −2 L1,

4 L2
1 ≤ K 1 ≤ K 1 ≤ 4 L2

1.
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The Hamilton-Jacobi approach

Convergence to a monomorphic population [competitive
exclusion]

Theorem (Lorz, M., Perthame - 2011)

Under the previous assumptions, after extraction of a subsequence,
the sequence (nε)ε converges weakly in the sense of measures to a
single Dirac mass

nε −−⇀
ε→0

ρ(t) δ (x − x̄(t)) ,

ρ(t) =
I (t)

η(x̄(t))
, R

(
x̄(t), I (t)

)
= 0 a.e.,

and I (t) is non-decreasing.
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The Hamilton-Jacobi approach

R(x , y , I ) = 3− 1.5I − 5.6(y2 + 1.1x2).
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The Hamilton-Jacobi approach

Canonical equation
"Canonical equation" refers to a differential equation for the
position of the dominant trait(s) in trait space.

D3R(·, I ) ∈ L∞(Rd ), D3u0
ε ∈ L∞(Rd ).

Theorem (Lorz, M., Perthame - 2011)

Under the previous assumptions, x̄(·) belongs to W 1,∞(R+;Rd )
and satisfies

˙̄x(t) =
(
−D2u

(
x̄(t), t

))−1 · ∇xR
(
x̄(t), I (t)

)
, x̄(0) = x̄0.

Furthermore, we have I (t) ∈W 1,∞(R+).
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The Hamilton-Jacobi approach

(a) asymmetric I.D. (b) symmetric I.D.

R(x , y , I ) = 2− I − 0.6(x2 + y2).

Dynamics of the density n with asymmetric initial data (left) and
symmetric initial data (right).
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The Hamilton-Jacobi approach

A model with several resources


∂
∂t nε − ε∆nε =

nε
ε
R
(
x , I 1ε , · · · , IKε

)
,

nε(·, t = 0) = n0
ε(·),

I jε(t) =

∫
Rd

ηj(x) nε(x , t) dx .

In this model we can observe polymorphism and branching.

Champagnat, Jabin, 2011
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Spatial models

Spatial models

x : space, v : trait

∂tn − α∆xn − β∆vn =
n
γ
R(x , v , I (t, x)),

I (t, x) =

∫
ψ(v)n(t, x , v)dv .
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Spatial models

A model with two favorable habitable zones:
∂tn1

ε − ε∆n1
ε = 1

εn
1
εR

1(x , I 1ε ) + 1
εν

2n2
ε − 1

εν
1n1
ε ,

∂tn2
ε − ε∆n2

ε = 1
εn

2
εR

2(x , I 2ε ) + 1
εν

1n1
ε − 1

εν
2n2
ε ,

I 1ε =

∫
ψ(x)n1

εdx , I 2ε =

∫
ψ(x)n2

εdx .

One can write a similar model for K favorable habitable zones.
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Spatial models

The stationary problem


−ε2∆n1

ε = n1
εR

1(x , I 1ε ) + ν2n2
ε − ν1n1

ε in BL(0),

−ε2∆n2
ε = n2

εR
2(x , I 2ε ) + ν1n1

ε − ν2n2
ε in BL(0),

∇ni
ε · ~n = 0 in ∂BL(0),

I 1ε =

∫
ψ(x)n1

εdx , I 1ε =

∫
ψ(x)n2

εdx .

ni
ε = exp

(
ui
ε

ε

)
, i = 1, 2.
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Spatial models

Theorem (M. - 2012)

Under some assumptions, after extraction of a subsequence, both
sequences (u1

ε )ε and (u2
ε )ε converge to a continuous function u that

is a viscosity solution to the following equation
−|∇u|2 = H(x , I 1, I 2), in BL(0),

maxx∈BL(0) u(x) = 0,

with H(x , I 1, I 2) the largest eigenvalue of the matrix

A =

(
R1(x , I 1)− ν1 ν2

ν1 R2(x , I 2)− ν2

)
.

26 / 31



Selection-mutation models: diversification of populations

Spatial models

Consequences...

n1
ε −−⇀
ε→0

n1, n2
ε −−⇀
ε→0

n2.

supp ni ⊂ Ω ∩ Γ, for i = 1, 2

Ω = {x ∈ BL(0) | u(x) = 0}

Γ = {x ∈ BL(0) |H(x , I 1, · · · , IK ) = max
x∈BL(0)

H(x , I 1, · · · , IK ) = 0}

In particular, the population has an Evolutionary Stable Distribution
(ESD)
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Spatial models

If the support of ni , for i = 1, 2, is a set of distinct points:
supp ni ⊂ {x1, x2, · · · , xl}, we then have

ni =
l∑

j=1

ρi
j δ(x − xj), for i = 1, 2,

with
(
ρ1
j
ρ2
j

)
is the eigenvector corresponding to the largest

eigenvalue of the matrix A at the point xj , which is 0, and

∑
j

ρi
jψ(xj) = I i .
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Spatial models

The gray layers represent the value of n1
ε(left) and n2

ε(right).
Migration rates : ν1 = ν2 = 1.
R1(x , I ) = 5− (x +1)2 + x − I , R2(x , I ) = 5− (x −1)2− x − I
The optimal trait in the first patch is x = −0.5 and in the
second patch is x = 0.5.
Initially: the trait in the first patch is x = −0.3 and in the
second patch is x = 0.3.
At the final time: the trait in both patches is x = 0.
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Spatial models

The gray layers represent the value of n1
ε(left) and n2

ε(right).
Migration rates : ν1 = ν2 = 0.5.
R1(x , I ) = 3.2− (x + 1)2 + .1× x − I ,
R2(x , I ) = 3.2− (x − 1)2 − .1× x − I
The optimal trait in the first patch is x = −0.95 and in the
second patch is x = 0.95.
Initially: the trait in the first patch is x = −0.2 and in the
second patch is x = 0.2.
At the final time: two traits x = −0.6 and x = 0.6 are present
in both patches.
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Spatial models

Thank you for your attention !
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