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Our problem

Climate change and integro-difference equations

ut+1(ξ) =

∫
R
K(ξ − η)g0(η − st)frt(ut(η))dη, t ∈ N, ξ ∈ R.

with (ut)t density of the population at generation t,

B Long time behaviour? Persistence of the population? Critical value for
parameters?
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Impacts of Climate change2

Phenological changes

Interaction across trophic levels

Range shifts

Evolution and plasticity

Consequences of climate change on range and distribution

2Review article, Ecological and Evolutionary responses to recent climate change, Parmesan
C., Annu. Rev. Ecol. Evol. Syst. , 2006.
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Climate change and population dynamics3

Required migration

-42-

Figure 3.  A map showing areas where species might have to achieve unusually high migration
rates ($1,000 metres per year) in order to keep up with 2 × CO2 global warming in 100 years. 
Shades of red indicate the percent of 14 models that exhibited unusually high rates.

Habitat Loss

-49-

Figure 10.  Loss of existing habitat that could occur under a doubling of atmospheric CO2
concentrations.  Shades of red indicate the percent of vegetation models that predicted a change
in biome type of the underlying map grid cell. 

3Global warming and terrestrial biodiversity decline, Malcolm J.R., Markham A., 2000.6/26
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Climate change and environmental variability4

Environmental variability

Uncertainty in climate change scenario

Environmental variability caused by increasing extreme climatic events:
temperature extremes, sea levels, precipitation events

4IPCC: Climate change, 2007.
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Impact on population persistence

Persistence of the population facing habitat migration and
environmental variability?

Model describing population dynamics

Account for climate change and habitat migration

Include environmental variability

Characterise persistence
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Growth and dispersal modelling at a population scale

Spatial structure and temporal evolution

Simultaneous growth and dispersal: reaction-diffusion equations

∂tu− ∂xxu = f(u), t ∈ R+, x ∈ R

Impact of climate change: reaction-diffusion equations with forced speed

(Berestycki et al, Bouhours and Nadin, Bouhours and Giletti...)

Successive growth and dispersal: integro-difference equations

ut+1(x) =

∫
R
K(x, y)f(ut(y))dy, t ∈ N, x ∈ R

K dispersal kernel, f growth map (Kot and Schaffer ’86)
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Integro-difference equations - growth map

ut+1(ξ) =

∫
R
K(ξ, η) f(ut(η))︸ ︷︷ ︸

growth of the population at location y

dη, t ∈ N, η ∈ R

B f(u) > u: growth of the population

Self-regulating population: f(u) ≤ u for all u > C,

No Allee effect (Fisher-KPP): f(u)/u maximum at 0,

Compensatory or overcompensatory dynamics
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Integro-difference equations - dispersal kernels

ut+1(ξ) =

∫
R

K(ξ, η)︸ ︷︷ ︸
dispersion of the grown population

f(ut(η))dη, t ∈ N, ξ ∈ R

B K(ξ, η): probability to disperse from η to ξ

Difference kernel: dependence on the distance between 2 points only

K(ξ, η) = K(ξ − η)
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Integro-difference equations in heterogeneous environments

Growth and dispersal in heterogeneous environments

ut+1(ξ) =

∫
R
K(ξ, η)︸ ︷︷ ︸
dispersion

gt(η)︸ ︷︷ ︸
suitability

f(ut(η))︸ ︷︷ ︸
growth

dη, t ∈ N, ξ ∈ R

B Suitability: habitat migration due to climate change

gt(η) = g0(η − st)

st ∈ R reference point at time t

· Example: g0 ≡ 1(−L/2;L/2)

⌘0 L/2�L/2

Favorable environment

1

�L/2 + st 0

Favorable environment

L/2 + st

x

st

st

1

t = 0 −→ t > 0
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Integro-difference equations in variable environments

Variability of the environment

· Variable growth: f(u) = frt(u), (frt)t sequence of random functions
B (rt)t random per capita growth rate at 0

· Variable reference point: st = ct+ σt,
B c uncertain asymptotic migration speed (c ∈ {c1, . . . , cn}), fixed,

(σt)t stochastic process, variability of the migration speed
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Our model

General problem:

ut+1(ξ) =

∫
R
K(ξ − η)g0(η − st)frt(ut(η))dη, t ∈ N, ξ ∈ R.

x 7→ K(x) continuous, uniformly bounded and positive in R,

x 7→ g0(x) compactly supported in Ω0, nonnegative, bounded by 1,

st = ct+ σt,

(σt, rt)t bounded, independent, identically distributed random variables,

fr : R+ → R+, continuous, increasing with fr(u) = 0 for all u ≤ 0,

0 < fr(u) ≤ m for all positive continuous function u and r = f ′r(0)

if u, v constants such that 0 < v < u then fr(u)v < fr(v)u
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Changing the reference frame

Problem in the non moving frame:

ut+1(ξ) =

∫
R
K(ξ − η)g0(η − st)frt(ut(η))dη, t ∈ N, ξ ∈ R.

x = ξ − c(t+ 1), y = η − ct and ūt(y) := ut(y + ct)

ūt+1(x) =

∫
R
K(x− y + c)g0(y − σt)frt(ūt(y))dy.

σt ∈ (σ, σ) =⇒ Ω := (inf Ω0 + σ, sup Ω0 + σ̄), “support” of the problem

Dropping the bar

ut+1(x) =
∫

Ω
K(x− y + c)g0(y − σt)frt(ut(y))dy, t ∈ N, x ∈ Ω,

Previous work:

· Zhou-Kot (’11): ut+1(ξ) =
∫

Ω+ct
K(ξ − η)f(ut(η))dη, c fixed, Ω

compact,

· Hardin et al (’88), Jacobsen et al (’14): Integro-difference equations in
variable environments
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Large time behaviour

ut+1(x) =

∫
Ω

K(x− y + c)g0(y − σt)frt(ut(y))dy, t ∈ N, x ∈ Ω,

Theorem

Assumptions:

· u0 non negative, non trivial, bounded,

· fr KPP, increasing.

Then ut converges in distribution to a random variable u∗ as t→ +∞,
independently of the initial condition u0, and u

∗ such that

u∗(x) =

∫
Ω

K(x− y + c)g0(y − σ∗)fr∗(u∗(y))dy.

Denoting by µ∗ the distribution associated with u∗:

µ∗({0}) = 0 or µ∗({0}) = 1.

=> extinction of the population with probability 0 or 1 only, independently of
the initial condition.

19/26



Climate change in population dynamics Integro-difference equations The model Persistence criterium Numerical simulations

Persistence criterion

What does determine whether µ∗({0}) = 0 or µ∗({0}) = 1?

Define

Λt :=

(∫
Ω

ũt(x)dx

)1/t

,

where (ũt)t the solution of the linearised problem around 0:

ũt+1(x) = Lαt ũt(x) :=

∫
Ω

K(x− y + c)g0(y − σt)rtũt(y)dy.

Theorem

lim
t→+∞

Λt = Λ ∈ [0,+∞), with probability 1.

And,

If Λ < 1, the population will go extinct, in the sense that µ∗({0}) = 1,

If Λ > 1, the population will persist, in the sense that µ∗({0}) = 0.
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Characterisation of Λ

Λ = eE[ln(r0)] · limt→+∞K
1/t
t

Kt =

∫
Ω

. . .

∫
Ω︸ ︷︷ ︸

t+1 terms

K(x−y1+c)g0(y1−σt−1) · · ·K(yt−1−yt+c)g0(yt−σ0)u0(yt)dyt . . . dx

No variability for the shifting speed: σt ≡ 0

=⇒ Λ = eE[ln(r0)] · λc

with λc principal eigenvalue of

Kc[u](x) :=

∫
Ω0

K(x− y + c)g0(y)u(y)dy,

The particular case of Gaussian Kernel

λc = e
− c2

2(σK )2 λ0,

Λ decreasing with c =⇒ existence of a critical speed for persistence:

c∗ =
√

2(σK)2 (ln(λ0) + E[ln(r0)]) > 0
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Critical speed for Gaussian kernel

2 possible environments: bad (σ, r) or good (σ, r), with

P (Good) = P (bad) = 0.5, σ ≤ 0 ≤ σ, 0 < r ≤ r

Critical speed as a function of the variance of the dispersal kernel
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Consequence of the variability

Persistence criterion as a function of the variance of the growth rate r

Fixed expectation, increasing the variance
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B Negative effect of variability on persistence
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Consequence of the variability

Persistence criterion as a function of the variance of the deviation
speed σ

Fixed expectation, increasing the variance
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Conclusion

=> Long time behaviour of the solution and characterisation of persistence

=> Critical migration speed for Gaussian Kernel

=> Consequences of variability on population persistence

Future investigations:

Approximation of λc (principal eigenvalue)

Critical migration speed (σ ≡ 0) for other kernel

effect of variability on Λ (analysis)
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