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» Fixation probability and fixation time of new mutations widely
studied from the work of the 'Great Trinity’ (Fisher 1922,
1931, Wright 1931, Haldane 1927)

» Fundamental questions to understand how and how fast a
population can adapt to a changing environment, the
dynamics of genetic diversity, the long term behaviour of
ecological systems...
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:
Three basic mechanisms

» Heredity: offsprings acquire the genetic information of their
parents

» Mutation: permanent alteration of DNA

» Natural selection: differential survival and reproduction of
individuals due to differences in phenotype
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Eco-Evolutionary framework: take into account the underlying
environment
» Varying size populations
> Interactions with other individuals (competition for resource)
» Quantity of available resources

» In the context of stochastic individual based models: Fournier
and Méléard 2004, Champagnat 2006, Tran 2008, ...
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Fate of an initially monomorphic population:

» On a fast (ecological) time scale, population size reaches
ecological equilibrium

» If mutations to types of positive invasion fitness are possible,
population is replaced by a fitter type, if fixation

» If coexistence with this mutant is possible, a branching occurs

t B
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Figure : Champagnat and Méléard 2017




Motivations

What happens if several counterselected mutations are
necessary to produce a fit mutant?

» Evolution to self-incompatibility in hermaphroditic plants:
"Recognition of pollen by pistils expressing cognate
specificities at two linked genes leads to rejection of self pollen
and pollen from close relatives, i.e., to avoidance of
self-fertilization and inbred matings." (Gervais et al. 2011)

» Mutations from normal to cancer cells: oncogene (promotes
differentiation and proliferation), antioncogene (produces
tumor suppressor proteins), caretaker (prevents the
accumulation of DNA damage)

» More generally, positive epistasis between counterselected
mutations
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Haploid asexual population

Ecological parameters

» 3; and 0; birth rate and intrinsic
death rate

» (;j competitive pressure j — i.

» K € N rescales the competition ~
carrying capacity.

Birth and death rate

bi(X) = BiX; and di(X [5 +3 ”Jx}

Jjel

D¢
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and Kurtz 1986):

When population size of order K, rescaled population process
nj = N;/K evolves as a competitive Lotka-Volterra equation (Ethier

ni = (61 -0 — G Inl)nl

Positive equilibrium for a monomorphic population if 3; > ¢;

Bi =i —Ciinj=0<+=n; =n; = Bic___éi

)
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Invasion fitness

Sji = Bj = 6j — ¢ Khi = Bj = 6; = Gidi
= per capita growth rate of a mutant j appearing in an
i-population at its equilibrium size n;K
J is said:

> positively selected in a j-population if S;; > 0

» counterselected in a j-population if S;; <0
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nj = N;j/K
Two-dimensional Lotka-Volterra system

{ ni = (Bi — 6; — Gi,ini — Ci,nj)n;
nj = (B; = 0j = Gini — Gjjnj)n
If 7 >0, nj >0, and S;>0andS;<0
= Unique attracting stable equilibrium (0, 7;)

If 7 >0, n>0, S5;>0 and S5;>0.
= Unique attracting stable equilibrium (ﬁ,(ij), ﬁj(-ij))

[m]
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If 7, >0,

S10 >0 and Sp1 < 0,

Xo(0) = K], X1(0) =1

(Champagnat 2006) lim P(fixation of type 1) ~ S10//51 > 0,
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We are interested in the case where several successive
counterselected mutants are necessary to produce a positively
selected mutant

Assumptions
e Trait / := i mutations

e All traits unfit with respect to 0
except L:

Si0<0,1<i<L-1and S5 >0.

e All traits unfit with respect to L:
Figure : In blue (resp. red), invasive

Sy <0,0<i<L-—1 fitness of the mutant in the
! == ’ 0-population (resp. L-population)
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Fitness valley

L mutations necessary to produce a positively selected mutant
K := mutation probability per reproductive event

Mutation kernels:

( ) _ () _ KK

= uKipry or - mi =25 (O + 0ie1g),
where §; ; is the Kronecker delta (1 if / = j, O otherwise).

When the population is large (large K), does the mutant L get
fixed, how the fixation time of the mutant L depends on L, the
scaling of ux with respect to K, and the parameters?
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Results

Deterministic limit (K, ux) — (oo, p), then p— 0
Stochastic limit (K, k) — (o0, 0)

On the extinction of the population
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Deterministic limit (K, pg) — (oo, 1), then p — 0

Notation: rescaled population

Xo(t) Xi(t) X (t)
XK(t):( "K i LK )

We will first consider the case of frequent mutations, when ik
does not go to 0 when K goes to infinity.
Proposition (Ethier and Kurtz, 1986)

Suppose that limk_... X®(0) = x(0) in probability. Then, for each
T € Ry, (XK(t),0 <t < T) converges in probability, as K — oo,
to the deterministic process x* = (x}', ..., x}") unique solution to:

dx"

L
= <(1 —W)Bi =5 — Ci,ijL)X:H ) miiBxf
i=0 J
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Deterministic limit (K, pg) — (oo, 1), then p — 0

Theorem
Take as initial condition x*(0) = (xo,0,...,0). Then fori € X, as
1 — 0, uniformly on bounded time intervals,

g [t (¢ Tog (/)] (1 (10
log(1/11) ool (tlogu)“( )

I

where x;(t) is piece-wise linear.

0| 2(t) 0 xalt)

nlt) Ak

alt)

Figure : 1-sided mutation kernel Figure : 2-sided mutation kernel
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Deterministic limit (K, pg) — (oo, 1), then p — 0

» i-population stabilizes around O(pf) in a time of order one

» [-population grows exponentially with a rate S

» Swap between populations 0 and L (Lotka-Volterra system)




Deterministic limit (K, pg) — (oo, 1), then p — 0

Results
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» j-population (i # L) decays exponentially with a rate given by
the lowest fitness of its left neighbours ming<;<; |Sj |

» When a j-population decreasing more slowly than the
i + 1-population reaches a size higher than 1/pk* the
(7 + 1)-population size, the (i 4 1)-population starts decreasing
exponentially with the same rate as the j-population
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Deterministic limit (K, pg) — (oo, 1), then p — 0
|
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» First phase: when the (i + 1)-population reaches a size higher

than 1/u = the i-population size, the i-population
growing exponentially with a rate 5

starts

it
N
»
i
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» Second phase: when the i + 1-population reaches a size higher
than 1/uk* the i-population size, the i-population starts

decreasing with a slower rate (the same as the one
(7 + 1)-population)

of the
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Stochastic limit (K, pg) — (oo, 0)

>

Dynamics and time scale of the invasion process depend on
the scaling of uk with respect to K.

» For simplicity, no more back mutations

» We consider a mutation probability of the form:

K = C,,Kil/o‘./ Cu, > 0.

(Durrett and Mayberry 2011): constant population size or Yule
process models, with directional mutations and increasing
fitness, and (Champagnat, Méléard and Tran 2019+):
horizontal transfer; case with a trade-off between larger birth
rates for small trait values and transfer to higher traits.
In a time of order one, there will be of order K,ui = CLKl_i/O‘
mutants of type /

» If L < «, large mutation regime, type L mutants appear rapidly.

» If L > «, slow mutation regime, first type L mutants appear
after a long and stochastic time.
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Remark

:
Reminiscent of the deterministic limit

» When « > L, small fluctuations around deterministic evolution

» One "just needs" to replace y by K—1/«
Notation

t(L, o) ;= —— +su {(1
(L, ) a5 p

i1
0<i<L-— }
ot

N
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Stochastic limit (K, pg) — (o0, 0)
: :

Theorem
Assume that L < o < o0.

» It takes a time of order t(L, ) log K for the L-population to
outcompete the other populations and enter in a
neighbourhood of its monomorphic equilibrium size i K.

0| woft)

nt)

> Then stays close to this equilibrium for at least a time eXV,

where V is a positive constant.
25 / 35



Motivations
:

Model and fate of a fit mutant
:

Stochastic limit (K, pg) — (o0, 0)

Fitness valley

Case0<a<lL

Results
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KMLO’J = CMKI T >>1

K,u la] +1 K1

<<1
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Stochastic limit (K, pg) — (o0, 0)

Notation
o0

Z |)2 - p)k+1 ;

= Expected number of individuals in an excursion of a subcritical
branching process of birth and death rates b and d such that

b/(b+ d) = p (Van Der Hofstad 2016, Britton and Pardoux
2018+)

For la] +1<i<L—1, set

pi = Bi/(Bi + 0i + CioXo)-

o = = = = 9ac
27 / 35
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Stochastic limit (K, pg) — (oo, 0)

Typical trajectories:

>

i-populations (1 < i < |«]) reach a size of order K/ > 1 in
a time of order one

Last 'large’ population: |a]-population, which reaches a size
of order K ple = K1-lal/e after a time of order one
i-populations (|«| +1 < i < L), describe a.s. finite excursions,
whose a proportion of order ui produces a mutant of type
i+1

The term A(p;) is the expected number of individuals in an
excursion of an j-population (— uxA(p;j))-

Every L-mutant has a probability S;o//3, to produce a
population which outcompetes all the other populations
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t .

:
’ ol +3
!77‘ S HFJ*‘ la]+2
t Tt
] fjﬁ\, :, f\; i 1 \fj ﬁ\ o] +1
A e eith
’_LL JJ' ‘H_Lr —L—L J-U—IUJJ_UJ_U—H_L‘ LHJ_LFJ:J_LUJ' L lal
Theorem
Assume that 0 < a < L.
>
n _
Fixation time ~ Exp 00--la) 1

L-1
Sto
Kk Api
|510||5|_aJ0| lu’K H (p )luK

i=la]+1 'BL
> Then stays close to this equilibrium for at least a time e
where V is a positive constant.

KV
=

[m]

N
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On the extinction of the population

» Key advantage of stochastic logistic birth and death processes
on constant size processes: we can compare time scales of
mutation processes and population lifetime.

» Quantification of the lifetime of populations with interacting
individuals is a tricky question (Chazottes, Collet, Méléard
2016, 2017).

» Not able to determine necessary and sufficient conditions for
the L-mutants to succeed in invading before the population
extinction. However we managed to provide some bounds.
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Notation

po(K) := VK exp (—K (ﬁo — o+ doln (

ﬁO

If x >0, t>1/po(K) and Xo monomorphic population

drv (P (Xo(t) € .), 80(.)) = o(1).

DA
31/ 35



e
Motivations Model and fate of a fit mutant Fitness valley Results
:
On the extinction of the population
:

0000000000000 00e000

L

To = inf{t > O,ZX,-(t) =0} B :=inf{t>0,X.(t) >0}
i=0

Theorem

IfKp < po(K), thenP(Ty < B) — 1.
K—o0
Proof

1. Coupling of the 0-population size with a larger population
2. First type 1 mutant has no time to appear
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On the extinction of the population

: :
Assumption
B <d;, 1<i<L-1.
Theorem

If Kt < po(K), then

P(To < By) K—) 1
Proof

» Coupling of the 0-population size with a larger population

» Bounding of the probability that a type 1 individual has a
L-mutant in its line of descent
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On the extinction of the population

Possible generalizations

» If coexistence possible between 0 and L (S;g, Sor > 0), same
invasion phase, but X{¢ and XX stabilise around (n(()OL), n(LOL))
positive fixed point of the 2-species Lotka-Volterra system.
Moreover, unfit mutant populations stay microscopic if
5i7{07L} =B — i — Ci70n(()0L) — C,'7Ln§_0L) <0V1Zi<L-—-1.
In the 1-sided case, those stay of order Ku', while in the
2-sided case, they stay of order Kpmin{i.L=i},

H

» Mutation probability could depend on the trait.

» If order of mutations not important, each individual bearing k
mutations can be labeled by the trait k. = L! ways of
reaching an individual of trait L with a sequence of L
mutations. = invasion time of the population L divided by L!.
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