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I Fixation probability and �xation time of new mutations widely

studied from the work of the 'Great Trinity' (Fisher 1922,

1931, Wright 1931, Haldane 1927)

I Fundamental questions to understand how and how fast a

population can adapt to a changing environment, the

dynamics of genetic diversity, the long term behaviour of

ecological systems...
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Three basic mechanisms

I Heredity: o�springs acquire the genetic information of their

parents

I Mutation: permanent alteration of DNA

I Natural selection: di�erential survival and reproduction of

individuals due to di�erences in phenotype
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Eco-Evolutionary framework: take into account the underlying
environment

I Varying size populations

I Interactions with other individuals (competition for resource)

I Quantity of available resources

I In the context of stochastic individual based models: Fournier

and Méléard 2004, Champagnat 2006, Tran 2008,...
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Fate of an initially monomorphic population:

I On a fast (ecological) time scale, population size reaches

ecological equilibrium

I If mutations to types of positive invasion �tness are possible,

population is replaced by a �tter type, if �xation

I If coexistence with this mutant is possible, a branching occurs

Figure : Champagnat and Méléard 2011
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What happens if several counterselected mutations are
necessary to produce a �t mutant?

I Evolution to self-incompatibility in hermaphroditic plants:

"Recognition of pollen by pistils expressing cognate

speci�cities at two linked genes leads to rejection of self pollen

and pollen from close relatives, i.e., to avoidance of

self-fertilization and inbred matings." (Gervais et al. 2011)

I Mutations from normal to cancer cells: oncogene (promotes

di�erentiation and proliferation), antioncogene (produces

tumor suppressor proteins), caretaker (prevents the

accumulation of DNA damage)

I More generally, positive epistasis between counterselected

mutations
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Model and fate of a �t mutant

Fitness valley

Results
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Haploid asexual population

Ecological parameters
I βi and δi birth rate and intrinsic

death rate

I Ci ,j competitive pressure j → i .

I K ∈ N rescales the competition ≈
carrying capacity.

Birth and death rate

bi (X ) = βiXi and di (X ) =
[
δi +

∑
j∈I

Ci ,j

K
Xj

]
Xi
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Monomorphic population

When population size of order K , rescaled population process

ni = Ni/K evolves as a competitive Lotka-Volterra equation (Ethier

and Kurtz 1986):

ṅi = (βi − δi − Ci ,ini )ni

Positive equilibrium for a monomorphic population if βi > δi

βi − δi − Ci ,ini = 0⇐⇒ ni = n̄i =
βi − δi
Ci ,i
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Invasion of a positively selected mutant

Invasion �tness

Sji = βj − δj −
Cj ,i

K
Kn̄i = βj − δj − Cj ,i n̄i

= per capita growth rate of a mutant j appearing in an

i-population at its equilibrium size n̄iK

j is said:

I positively selected in a j-population if Sji > 0

I counterselected in a j-population if Sji < 0
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ni = Ni/K , nj = Nj/K

Two-dimensional Lotka-Volterra system{
ṅi = (βi − δi − Ci ,ini − Ci ,nj)ni
ṅj = (βj − δj − Cj ,ini − Cj ,jnj)nj

If n̄i > 0, n̄j > 0, and Sji > 0 and Sij < 0.

⇒ Unique attracting stable equilibrium (0, n̄j)

If n̄i > 0, n̄j > 0, Sji > 0 and Sij > 0.

⇒ Unique attracting stable equilibrium (n̄
(ij)
i , n̄

(ij)
j )
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If n̄0, n̄1 > 0, S10 > 0 and S01 < 0, X0(0) = bn̄0Kc, X1(0) = 1

(Champagnat 2006) lim
K→∞

P(�xation of type 1) ∼ S10/β1 > 0,

total time ∼ logK

S10
+

logK

|S01|
.
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Model and fate of a �t mutant
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We are interested in the case where several successive
counterselected mutants are necessary to produce a positively
selected mutant

Assumptions
• Trait i := i mutations

• All traits un�t with respect to 0

except L:

Si0 < 0, 1 ≤ i ≤ L−1 and SL0 > 0.

• All traits un�t with respect to L:

SiL < 0, 0 ≤ i ≤ L− 1.
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Figure : In blue (resp. red), invasive
�tness of the mutant in the
0-population (resp. L-population)
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I L mutations necessary to produce a positively selected mutant

I µK := mutation probability per reproductive event

I Mutation kernels:

m
(1)
ij = µKδi+1,j or m

(2)
ij =

µK
2

(δi+1,j + δi−1,j),

where δi ,j is the Kronecker delta (1 if i = j , 0 otherwise).

I When the population is large (large K ), does the mutant L get

�xed, how the �xation time of the mutant L depends on L, the

scaling of µK with respect to K , and the parameters?
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Model and fate of a �t mutant

Fitness valley

Results

Deterministic limit (K , µK )→ (∞, µ), then µ→ 0

Stochastic limit (K , µK )→ (∞, 0)
On the extinction of the population
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Deterministic limit (K , µK ) → (∞, µ), then µ → 0

Notation: rescaled population

XK (t) =

(
X0(t)

K
,
X1(t)

K
, ...,

XL(t)

K

)
We will �rst consider the case of frequent mutations, when µK

does not go to 0 when K goes to in�nity.

Proposition (Ethier and Kurtz, 1986)

Suppose that limK→∞ XK (0) = x(0) in probability. Then, for each

T ∈ R+, (XK (t), 0 ≤ t ≤ T ) converges in probability, as K →∞,

to the deterministic process xµ = (xµ0 , . . . , x
µ
L ) unique solution to:

dx
µ
i

dt
=
(

(1− µ)βi − δi −
L∑

i=0

Ci ,jx
µ
j

)
x
µ
i + µ

∑
j

mjiβjx
µ
j .
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Deterministic limit (K , µK ) → (∞, µ), then µ → 0

Theorem
Take as initial condition xµ(0) = (x̄0, 0, . . . , 0). Then for i ∈ X , as

µ→ 0, uniformly on bounded time intervals,

log
[
x
µ
i (t · log (1/µ))

]
log(1/µ)

→ xi (t),

(
x
µ
i (t log

1

µ
) �

(
1

µ

)xi (t)
)

where xi (t) is piece-wise linear.
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Figure : 1-sided mutation kernel
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Figure : 2-sided mutation kernel
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Deterministic limit (K , µK ) → (∞, µ), then µ → 0

x
µ
i (t log 1

µ) �
(

1
µ

)xi (t)

I i-population stabilizes around O(µiK ) in a time of order one

I L-population grows exponentially with a rate SL0

I Swap between populations 0 and L (Lotka-Volterra system)
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Deterministic limit (K , µK ) → (∞, µ), then µ → 0

x
µ
i (t log 1

µ) �
(

1
µ

)xi (t)

I i-population (i 6= L) decays exponentially with a rate given by

the lowest �tness of its left neighbours min0≤j≤i |SjL|
I When a i-population decreasing more slowly than the

i + 1-population reaches a size higher than 1/µK∗ the
(i + 1)-population size, the (i + 1)-population starts decreasing

exponentially with the same rate as the i-population
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Deterministic limit (K , µK ) → (∞, µ), then µ → 0

x
µ
i (t log 1

µ) �
(

1
µ

)xi (t)

I First phase: when the (i + 1)-population reaches a size higher

than 1/µK∗ the i-population size, the i-population starts

growing exponentially with a rate SL0
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Deterministic limit (K , µK ) → (∞, µ), then µ → 0

x
µ
i (t log 1

µ) �
(

1
µ

)xi (t)

I Second phase: when the i + 1-population reaches a size higher

than 1/µK∗ the i-population size, the i-population starts

decreasing with a slower rate (the same as the one of the

(i + 1)-population)

22 / 35



Motivations Model and fate of a �t mutant Fitness valley Results

Stochastic limit (K , µK ) → (∞, 0)

I Dynamics and time scale of the invasion process depend on

the scaling of µK with respect to K .
I For simplicity, no more back mutations
I We consider a mutation probability of the form:

µK = cµK
−1/α, cµ, α > 0.

I (Durrett and Mayberry 2011): constant population size or Yule

process models, with directional mutations and increasing

�tness, and (Champagnat, Méléard and Tran 2019+):

horizontal transfer; case with a trade-o� between larger birth

rates for small trait values and transfer to higher traits.
I In a time of order one, there will be of order Kµi = c iµK

1−i/α

mutants of type i
I If L < α, large mutation regime, type L mutants appear rapidly.
I If L > α, slow mutation regime, �rst type L mutants appear

after a long and stochastic time.
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Stochastic limit (K , µK ) → (∞, 0)

Remark
Reminiscent of the deterministic limit.

I When α > L, small �uctuations around deterministic evolution.

I One "just needs" to replace µ by K−1/α

Notation

t(L, α) :=
L

αSL0
+ sup

{(
1− i

α

) 1

|SiL|
, 0 ≤ i ≤ L− 1

}
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Stochastic limit (K , µK ) → (∞, 0)

Theorem
Assume that L < α <∞.

I It takes a time of order t(L, α) logK for the L-population to

outcompete the other populations and enter in a

neighbourhood of its monomorphic equilibrium size n̄LK.

Ts

0

-1

-2

-3

-4

x0(t)

x1(t)

x2(t)

x3(t)

x4(t)

-5

-6

x5(t)

x6(t)

I Then stays close to this equilibrium for at least a time eKV ,

where V is a positive constant.
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Stochastic limit (K , µK ) → (∞, 0)

Case 0 < α < L

Kµ
bαc
K = cµK

1− bαc
α � 1, Kµ

bαc+1
K = cµK

1− bαc+1
α � 1

26 / 35



Motivations Model and fate of a �t mutant Fitness valley Results

Stochastic limit (K , µK ) → (∞, 0)

Notation

λ(ρ) :=
∞∑
k=0

(2k)!

(k!)2
ρk (1− ρ)k+1 ,

= Expected number of individuals in an excursion of a subcritical

branching process of birth and death rates b and d such that

b/(b + d) = ρ (Van Der Hofstad 2016, Britton and Pardoux

2018+)

For bαc+ 1 ≤ i ≤ L− 1, set

ρi := βi/(βi + δi + Ci ,0x̄0).
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Stochastic limit (K , µK ) → (∞, 0)

Typical trajectories:

I i-populations (1 ≤ i ≤ bαc) reach a size of order Kµi � 1 in

a time of order one

I Last 'large' population: bαc-population, which reaches a size

of order Kµbαc ∼= K 1−bαc/α after a time of order one

I i-populations (bαc+ 1 ≤ i ≤ L), describe a.s. �nite excursions,

whose a proportion of order µK produces a mutant of type

i + 1

I The term λ(ρi ) is the expected number of individuals in an

excursion of an i-population (→ µKλ(ρi )).

I Every L-mutant has a probability SL0/βL to produce a

population which outcompetes all the other populations
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Stochastic limit (K , µK ) → (∞, 0)

Theorem
Assume that 0 < α < L.

I

Fixation time ∼ Exp

 n̄0β0...βbαc−1
|S10|...|Sbαc0|

Kµ
bαc
K

 L−1∏
i=bαc+1

λ(ρi )µK

 SL0

βL


I Then stays close to this equilibrium for at least a time eKV ,

where V is a positive constant.
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On the extinction of the population

I Key advantage of stochastic logistic birth and death processes

on constant size processes: we can compare time scales of

mutation processes and population lifetime.

I Quanti�cation of the lifetime of populations with interacting

individuals is a tricky question (Chazottes, Collet, Méléard

2016, 2017).

I Not able to determine necessary and su�cient conditions for

the L-mutants to succeed in invading before the population

extinction. However we managed to provide some bounds.

30 / 35



Motivations Model and fate of a �t mutant Fitness valley Results

On the extinction of the population

Notation

ρ0(K ) :=
√
K exp

(
−K

(
β0 − δ0 + δ0 ln

(
δ0
β0

)))

Chazottes, Collet, Méléard 2016
If x > 0, t � 1/ρ0(K ) and X0 monomorphic population

dTV (PxK (X0(t) ∈ .), δ0(.)) = o(1).
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On the extinction of the population

T0 := inf{t ≥ 0,

L∑
i=0

Xi (t) = 0} BL := inf{t ≥ 0,XL(t) > 0}.

Theorem
If Kµ� ρ0(K ), then P (T0 < BL) →

K→∞
1.

Proof

1. Coupling of the 0-population size with a larger population

2. First type 1 mutant has no time to appear
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On the extinction of the population

Assumption

βi < δi , 1 ≤ i ≤ L− 1.

Theorem
If KµL � ρ0(K ), then

P (T0 < BL) →
K→∞

1.

Proof

I Coupling of the 0-population size with a larger population

I Bounding of the probability that a type 1 individual has a

L-mutant in its line of descent

33 / 35



Motivations Model and fate of a �t mutant Fitness valley Results

On the extinction of the population

Possible generalizations

I If coexistence possible between 0 and L (SL0, S0L > 0), same

invasion phase, but XK
0 and XK

L stabilise around (n
(0L)
0 , n

(0L)
L ),

positive �xed point of the 2-species Lotka-Volterra system.

Moreover, un�t mutant populations stay microscopic if

Si ,{0,L} := βi − δi − Ci ,0n
(0L)
0 − Ci ,Ln

(0L)
L < 0 ∀ 1 ≤ i ≤ L− 1.

In the 1-sided case, those stay of order Kµi , while in the

2-sided case, they stay of order Kµmin{i ,L−i}.

I Mutation probability could depend on the trait.

I If order of mutations not important, each individual bearing k

mutations can be labeled by the trait k . ⇒ L! ways of
reaching an individual of trait L with a sequence of L

mutations. ⇒ invasion time of the population L divided by L!.
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On the extinction of the population

THANK YOU FOR YOUR ATTENTION!
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