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Abstract

We propose a new method to localize cracks from
far field data based on Transmission Eigenvalues
(TEs) associated with a carefully chosen artificial
background. It relies on scanning the probed do-
main with a fictitious inclusion and exploits the fact
that TEs change only if the inclusion intersects the
cracks. We explain how these TEs can be identified
from measured far field data and validate our pro-
cedure in the case of extended cracks. The method
also allows for the detection and quantification of
small cracks aggregates.
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1 Introduction

In this work, we are interested in the problem of
identifying cracks embedded in some homogeneous
background from far field data at multiple frequen-
cies. We rely on the notion of Transmission Eigen-
values. For the considered inverse problem, TEs
were usually presented as the frequencies one should
avoid to guarantee the success of some inversion
methods such as the Linear Sampling Method or the
Factorization Method. Several recent works have
tried to use TEs to recover quantitative information
on the material properties of probed domains. In
this approach, the difficulty lies in the fact that the
link between TEs and the physical parameters is not
straightforward. To bypass this problem, it has been
proposed in the literature to work with a modified
far field operator constructed from an artificial back-
ground and for which the corresponding TEs have a
more direct connection to the physical parameters
[1]. We shall exploit this idea for the imaging prob-
lem related to cracks. Let us recall that because the
cracks have empty interior, one cannot define usual
TEs if the background is homogeneous. Working
with a non homogeneous artificial background, for
instance containing an obstacle, we show that we
can define new TEs whose values depend on the rel-
ative positions between the crack and the artificial
obstacle. The numerical procedure is then as fol-
lows. First, we subtract to the measured far field F a

numerically computed far field Fnum corresponding
to an artificial sound-soft obstacle located in some
arbitrary domain Ω and we set F rel := F − Fnum.
The TEs associated with the relative far field opera-
tor F rel are then defined as the frequencies such that
there are generalized incident fields that have the
same far field both for the true reference medium
and for the artificial one. In absence of crack in Ω,
these TEs are simply the Dirichlet eigenvalues of Ω,
otherwise they are different. These TEs can be eval-
uated from F rel using the framework of generalized
linear sampling method. Varying the position of Ω,
and comparing the TEs with the Dirichlet eigenval-
ues of Ω, one is able to identify the cracks position.
In the case of small cracks aggregates, one obtains
an indicator function on the cracks density.

2 The forward scattering problem

We start by presenting the scattering problem for a
crack embedded in a homogeneous medium. Let
Γ ⊂ R3 be a portion of a non-intersecting surface
that encloses a domain with smooth boundary. The
scattering of the plane wave ui(θ ,x) := eikθ ·x of in-
cident direction θ ∈ S2 := {θ ∈ R3 | |θ | = 1} by Γ

leads us to consider the problem

Find u = ui +us such that
∆u+ k2u = 0 in R3 \Γ

σ(u) = 0 on Γ

lim
|x|→+∞

|x|(∂|x|us− ikus

)
= 0.

(1)

Here σ(u) is a generic boundary condition (Neu-
mann, Dirichlet, ...) and k > 0 is the wave num-
ber. Moreover, the last line of (1) corresponds to
the Sommerfeld radiation condition. The scattered
field us(θ ,x) has the expansion

us(θ ,x) = eik|x||x|−1 (u∞
s (θ , x̂)+O(1/|x|)

)
(2)

as |x|→+∞, uniformly in x̂= x/|x|, where u∞
s (θ , x̂)∈

C is the far field pattern in the direction x̂. The in-
verse problem we consider consists in reconstruct-
ing Γ from the knowledge of u∞

s (·, ·) : S2×S2→ C.
We define the far field operator F : L2(S2)→ L2(S2)



such that

(Fg)(x̂) =
∫
S2

g(θ)u∞
s (θ , x̂)ds(θ). (3)

By linearity of (1), Fg is nothing but the far field
pattern of the scattered field associated with the in-
cident field ui(g) :=

∫
S2 g(θ)eikθ ·x ds(θ) (Herglotz

wave function), with g ∈ L2(S2).

3 The relative far field operator

Let Ω be an arbitrary bounded domain of R3. Intro-
duce Fnum : L2(S2)→ L2(S2) the far field operator
defined as F in (3) replacing us by ũs, ũs being the
solution of the exterior Dirichlet problem

∆ũs + k2ũs = 0 in R3 \Ω

ũs +ui = 0 on ∂Ω

lim
|x|→+∞

|x|(∂|x|ũs− ikũs) = 0.
(4)

Note that Fnum does not depend on the data and can
be computed numerically. Finally, we define the rel-
ative far field operator

F rel := F−Fnum.

One can show that F rel admits a factorization F rel =
GrelHrel for certain operators Grel, Hrel that we do
not explicit here. The TE are then defined as the
values of k > 0 such that Grel has a non trivial ker-
nel. Using the Rellich lemma, one can prove the
following characterization.

Theorem 1 TEs coincide with the k > 0 such that
there is a non trivial w ∈ H1(Ω\Γ) solving

∆w+ k2w = 0 in Ω\Γ

w = 0 on ∂Ω

σ(w) = 0 on Γ∩Ω.
(5)

From this proposition, we observe that when Γ∩
Ω = /0, the TEs are nothing but the eigenvalues of
the Dirichlet laplacian in Ω. In the next section, we
will explain how to compute TEs from F . Hence
scanning the probed domain with different Ω, one
can identify the cracks using TEs. In the particular
case of sound-hard cracks, i.e. when σ(w) = ∂νw, ν

being a unit normal vector to Γ, the spectrum of (5)
consists of real positive eigenvalues 0≤ τΓ

1 ≤ τΓ
2 ≤

. . . satisfying the following min-max principle:

τ
Γ
j = min

W∈W Γ
j

max
w∈W\{0}

‖∇w‖2
L2(Ω\Γ)

‖w‖2
L2(Ω\Γ)

, (6)

where W Γ
j denotes the sets of j-dimensional sub-

spaces of

V Γ := {v ∈ H1(Ω\Γ)|v = 0 on ∂Ω}.

Consequently, given two cracks Γ1 ⊂ Γ2 ⊂Ω, since
V Γ1 ⊂ V Γ2 , we obtain that τ

Γ1
j ≥ τ

Γ2
j for all j ∈ N.

This monotonicity result, which also holds in the
case of sound-soft cracks, allow us to quantify crack
densities in Ω.

4 Imaging with TE’s computed from far field
data

The computation of TEs exploits the behaviour of
the solution g∈L2(S2) of the far field equation F relg≈
Φ∞

z , where Φ∞
z is the far field of the fundamental

solution Φz of the Helmholtz equation (with a Dirac
source term at z∈R3). To state our result, we define
the cost function such that, for α > 0, g ∈ L2(S2),

Jα(g) = αP(g)+‖F relg−Φ
∞
z ‖L2(S2), (7)

with the penalty term P(g)= |〈Fnumg,g〉|+|〈Fg,g〉|.
Let gα

z be a minimizing sequence of Jα .

Theorem 2 Assume that k is such that F rel : L2(S2)−→
L2(S2) has dense range. Then k2 is an eigenvalue of
(5) if and only if the set of point z for which P(g) is
bounded as α → 0 is nowhere dense in Ω.

As a consequence, the eigenvalues τΓ
j coincide with

the peaks in the curve k 7→
∫

Ω
P(gα

z )dz for small val-
ues of α . In Figure 1, we provide a numerical re-
sult in 2D. We identify a sound-hard crack by work-
ing with a collection of artificial backgrounds with
sound-soft disks. For each disk, the distance be-
tween TEs and Dirichlet eigenvalues is materialized
by the contrast in the red colour. Note that when the
radius of the disks tends to zero, the Dirichlet eigen-
values blow up. Therefore, to obtain a thin resolu-
tion, it is necessary to work at high frequencies with
a k large band.

Figure 1: Detection of a sound-hard crack using TEs for
artificial backgrounds with sound-soft disks.

References

[1] L. Audibert, L. Chesnel, H. Haddar, Transmis-
sion eigenvalues with artificial background for
explicit index identification, C. R. Acad. Sci.
Paris, Ser. I, vol. 356, 6:626-631, 2018.


