Étude mathématique de quelques problèmes de transmission avec coefficients changeant de signe. Séance $n^{\circ}3$

A.-S. Bonnet-Ben Dhia, L. Chesnel*, P. Ciarlet

 * Lucas.Chesnel@cmap.polytechnique.fr

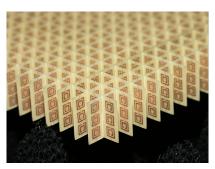
- 1 Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- 3 Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

Contexte physique

- ▶ Modélisation de phénomènes électromagnétiques en présence de matériaux négatifs tels que $\varepsilon < 0$ et/ou $\mu < 0$ pour certaines fréquences.
- Deux grandes familles de matériaux négatifs : métaux,

Contexte physique

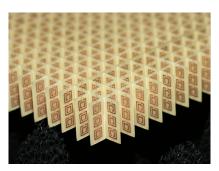
- Modélisation de phénomènes électromagnétiques en présence de matériaux négatifs tels que $\varepsilon < 0$ et/ou $\mu < 0$ pour certaines fréquences.
- Deux grandes familles de matériaux négatifs : métaux, métamatériaux.



ZOOM SUR UN MÉTAMATÉRIAU (NASA)

Contexte physique

- ▶ Modélisation de phénomènes électromagnétiques en présence de matériaux négatifs tels que $\varepsilon < 0$ et/ou $\mu < 0$ pour certaines fréquences.
- Deux grandes familles de matériaux négatifs : métaux, métamatériaux.



Zoom sur un métamatériau (NASA)

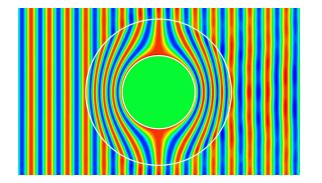
"Metamaterials are artificial materials engineered to have properties that may not be found in nature. [...] Metamaterials gain their properties not from their composition, but from their exactingly-designed structures."

Un exemple dans la nature

▶ Pour certains papillons, couleurs dues à des arrangements géométriques particuliers des écailles sur les ailes, non à des pigments chimiques.

Quelques applications des métamatériaux

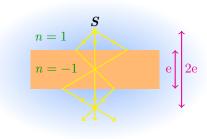
- Objectif : réaliser des structures pour contrôler la lumière.
- ► Conception de capes d'invisibilité.



Remarque : *a priori*, on pourrait utiliser la même idée pour détourner les tsunamis et les ondes sismiques.

Quelques applications des métamatériaux

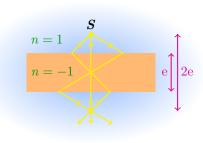
 \blacktriangleright Réalisation de matériaux à indice de réfraction négatif (n < 0).



⇒ La réfraction négative à l'interface métamatériau/diélectrique pourrait permettre de concevoir des lentilles parfaites, des pièges à photons...

Quelques applications des métamatériaux

Réalisation de matériaux à indice de réfraction négatif (n < 0).

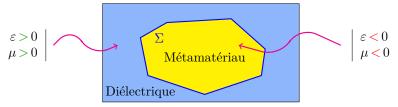


⇒ La réfraction négative à l'interface métamatériau/diélectrique pourrait permettre de concevoir des lentilles parfaites, des pièges à photons...

Des applications potentielles assez extraordinaires mais ...

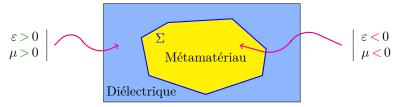
Difficulté

- ... des problèmes épineux de modélisation et de simulations numériques.
- Dans les applications, présence d'interfaces matériau nég./matériau pos..



Difficulté

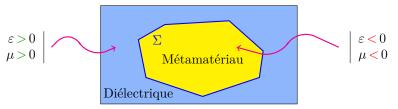
- ... des problèmes épineux de modélisation et de simulations numériques.
- ▶ Dans les applications, présence d'interfaces matériau nég./matériau pos..



ightharpoonup Problèmes de transmission originaux (littérature quasi-vierge) en raison du changement de signe des coefficients ε et μ au niveau de l'interface Σ .

Difficulté

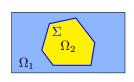
- ... des problèmes épineux de modélisation et de simulations numériques.
- Dans les applications, présence d'interfaces matériau nég./matériau pos..



- Problèmes de transmission originaux (littérature quasi-vierge) en raison du changement de signe des coefficients ε et μ au niveau de l'interface Σ .
- ▶ De façon générale, on s'intéresse aux questions suivantes :
- 2
- Ces problèmes de transmission avec changement de signe sont-ils bien posés?
- S'ils ne le sont pas, pourquoi (retour à la physique)?
- Méthodes numériques pour approcher les solutions?

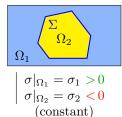
Considérons le problème modèle suivant :

$$(\mathscr{P}) \ \middle| \ \text{Trouver} \ u \in \mathrm{H}^1_0(\Omega) \ \text{tel que} : \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{dans} \ \Omega.$$



► Considérons le problème modèle suivant :

$$(\mathscr{P}) \ \middle| \ \text{Trouver} \ u \in \mathrm{H}^1_0(\Omega) \ \text{tel que} : \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{dans} \ \Omega.$$



Considérons le problème modèle suivant :

$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ dans } \Omega.$$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \ v|_{\partial\Omega} = 0 \}$
- f est un terme source dans $\mathrm{H}^{-1}(\Omega)$

$$\begin{aligned}
\sigma|_{\Omega_1} &= \sigma_1 > 0 \\
\sigma|_{\Omega_2} &= \sigma_2 < 0 \\
\text{(constant)}
\end{aligned}$$

Considérons le problème modèle suivant :

$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ dans } \Omega.$$

- $\mathrm{H}_0^1(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); \ v \mid_{\partial\Omega} = 0 \}$
- f est un terme source dans $\mathrm{H}^{-1}(\Omega)$

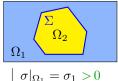
$$\begin{array}{c|c} \sigma|_{\Omega_1} = \sigma_1 > 0 \\ \sigma|_{\Omega_2} = \sigma_2 < 0 \\ \text{(constant)} \end{array}$$

▶ Il est important de savoir montrer que (\mathscr{P}) possède une unique solution dépendant continûment de la donnée, solution que l'on pourra ensuite chercher à approcher numériquement.

Considérons le problème modèle suivant :

$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ dans } \Omega.$$

- $\mathrm{H}_0^1(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); \ v|_{\partial\Omega} = 0 \}$
- f est un terme source dans $\mathrm{H}^{-1}(\Omega)$



$$\begin{array}{c|c} \sigma|_{\Omega_1} = \sigma_1 > 0 \\ \sigma|_{\Omega_2} = \sigma_2 < 0 \\ \text{(constant)} \end{array}$$

 \blacktriangleright Il est important de savoir montrer que (\mathscr{P}) possède une unique solution dépendant continûment de la donnée, solution que l'on pourra ensuite chercher à approcher numériquement.

DÉFINITION. Nous dirons que le problème (\mathscr{P}) est bien posé si l'opérateur div $(\sigma \nabla \cdot)$ est un isomorphisme de $H_0^1(\Omega)$ dans $H^{-1}(\Omega)$.

1 On réécrit (\mathcal{P}) sous forme variationnelle.

$$(\mathscr{P}) \quad \Leftrightarrow \quad \left(\mathscr{P}_V\right) \, \middle| \, \begin{array}{l} \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}^1_0(\Omega), \end{array} \right.$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $\ell(v) = \langle f, v \rangle_{\Omega}$.

1 On réécrit (\mathcal{P}) sous forme variationnelle.

$$(\mathscr{P}) \quad \Leftrightarrow \quad \left(\mathscr{P}_V\right) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}^1_0(\Omega),$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $\ell(v) = \langle f, v \rangle_{\Omega}$.

2 Dans le cas classique où $\sigma \geq C > 0$ sur Ω , on trouve

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2$$

1 On réécrit (\mathcal{P}) sous forme variationnelle.

$$(\mathscr{P}) \quad \Leftrightarrow \quad \left(\mathscr{P}_V\right) \, \middle| \, \begin{array}{l} \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}^1_0(\Omega), \end{array} \right.$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $\ell(v) = \langle f, v \rangle_{\Omega}$.

2 Dans le cas classique où $\sigma \geq C > 0$ sur Ω , on trouve

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}_0^1(\Omega)}^2,$$

1 On réécrit (\mathcal{P}) sous forme variationnelle.

$$(\mathscr{P}) \quad \Leftrightarrow \quad \left(\mathscr{P}_V\right) \, \middle| \, \begin{array}{l} \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}^1_0(\Omega), \end{array} \right.$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $\ell(v) = \langle f, v \rangle_{\Omega}$.

2 Dans le cas classique où $\sigma \geq C > 0$ sur Ω , on trouve

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}_0^1(\Omega)}^2,$$

ce qui prouve que $a(\cdot,\cdot)$ est coercive sur $H_0^1(\Omega)$.

1 On réécrit (\mathscr{P}) sous forme variationnelle.

$$(\mathscr{P}) \quad \Leftrightarrow \quad \left(\mathscr{P}_V\right) \, \middle| \, \begin{array}{l} \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que}: \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}^1_0(\Omega), \end{array} \right.$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $\ell(v) = \langle f, v \rangle_{\Omega}$.

2 Dans le cas classique où $\sigma \geq C > 0$ sur Ω , on trouve

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}_0^1(\Omega)}^2,$$

ce qui prouve que $a(\cdot,\cdot)$ est coercive sur $\mathrm{H}^1_0(\Omega)$.

 $\ensuremath{\mathfrak{F}}$ On déduit du théorème de Lax-Milgram que ($\ensuremath{\mathscr{P}}$) est bien posé.

▶ Dans le cas où σ change de signe, on peut construire des fonctions non nulles $u \in H^1_0(\Omega)$ telles que

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 = 0.$$

▶ Dans le cas où σ change de signe, on peut construire des fonctions non nulles $u \in H^1_0(\Omega)$ telles que

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 = 0.$$

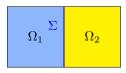
Ceci prouve que $a(\cdot,\cdot)$ n'est pas coercive.

▶ Dans le cas où σ change de signe, on peut construire des fonctions non nulles $u \in H^1_0(\Omega)$ telles que

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 = 0.$$

Ceci prouve que $a(\cdot, \cdot)$ n'est pas coercive.

▶ Pour un domaine symétrique par rapport à l'interface Σ, avec $\sigma_2 = -\sigma_1$,



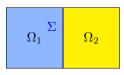
vous avez montré que (\mathcal{P}) possède un noyau de dimension infinie.

▶ Dans le cas où σ change de signe, on peut construire des fonctions non nulles $u \in H_0^1(\Omega)$ telles que

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 = 0.$$

Ceci prouve que $a(\cdot, \cdot)$ n'est pas coercive.

▶ Pour un domaine symétrique par rapport à l'interface Σ, avec $\sigma_2 = -\sigma_1$,



vous avez montré que (\mathcal{P}) possède un noyau de dimension infinie.

Comment étudier (\mathscr{P}) lorsque σ change de signe ?

- ① Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- 3 Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

- 1 Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- 3 Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \left| \begin{array}{l} \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array} \right.$$

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{l} \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ tel que} : \\ a(u,\mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}_0^1(\Omega). \end{array}$$

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{l} \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ tel que} : \\ a(u, \mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}_0^1(\Omega). \end{array}$$

Objectif: Trouver T tel que
$$a$$
 soit T-coercive:
$$\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathsf{T} u) \geq C \|u\|_{\mathsf{H}_{0}^{1}(\Omega)}^{2}.$$
 Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (et donc (\mathscr{P}_{V})) bien posé.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{l} \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ tel que :} \\ a(u,\mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}_0^1(\Omega). \end{array}$$

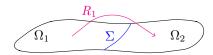
Objectif : Trouver T tel que
$$a$$
 soit T-coercive :
$$\int_{\Omega} \sigma \, \nabla u \cdot \nabla (\mathsf{T} u) \geq C \, \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$$
 Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (et donc (\mathscr{P}_{V})) bien posé.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{l} \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ tel que :} \\ a(u, \mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}_0^1(\Omega). \end{array}$$

Objectif : Trouver T tel que
$$a$$
 soit T-coercive :
$$\int_{\Omega} \sigma \, \nabla u \cdot \nabla (\mathsf{T} u) \geq C \, \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$$
 Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (et donc (\mathscr{P}_{V})) bien posé.

$$\textbf{1} \ \, \text{D\'efinissons} \ \, \mathtt{T}_1 u = \left| \begin{array}{cc} u & \text{dans} \ \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & \text{dans} \ \Omega_2 \end{array} \right. , \quad \text{avec}$$

 R_1 opérateur de transfert/prolongement



$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{l} \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ tel que :} \\ a(u, \mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}_0^1(\Omega). \end{array}$$

Objectif : Trouver T tel que a soit T-coercive : $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathsf{T} u) \geq C \|u\|_{\mathsf{H}_{0}^{1}(\Omega)}^{2}.$ Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (et donc (\mathscr{P}_{V})) bien posé.

 R_1 opérateur de transfert/prolongement continu de Ω_1 dans Ω_2

$$\begin{array}{c|c} R_1 \\ \hline \Omega_1 & \Sigma \\ \hline \end{array} \quad \begin{array}{c|c} R_1(u|_{\Omega_1}) = u & \sup \Sigma \\ R_1(u|_{\Omega_1}) = 0 & \sup \partial \Omega_2 \setminus \Sigma \end{array}$$

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{l} \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ tel que} : \\ a(u, \mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}_0^1(\Omega). \end{array}$$

Objectif : Trouver T tel que a soit T-coercive : $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathsf{T} u) \geq C \|u\|_{\mathsf{H}_{0}^{1}(\Omega)}^{2}.$ Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathsf{T}})$ (et donc (\mathscr{P}_{V})) bien posé.

1 Définissons
$$T_1 u = \begin{vmatrix} u & \operatorname{dans} \Omega_1 \\ -u + 2R_1(u|\Omega_1) & \operatorname{dans} \Omega_2 \end{vmatrix}$$
, avec

 R_1 opérateur de transfert/prolongement continu de Ω_1 dans Ω_2

$$\begin{array}{c|c} R_1 \\ \hline \Omega_1 & \Sigma \\ \hline \end{array} \qquad \begin{array}{c|c} R_1(u|_{\Omega_1}) = u & \sup \Sigma \\ R_1(u|_{\Omega_1}) = 0 & \sup \partial \Omega_2 \setminus \Sigma \\ \end{array}$$

2 $T_1 \circ T_1 = \text{Id ce qui assure que} \quad T_1 \text{ est un isomorphisme de } H^1_0(\Omega)$

3 On trouve $a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$.

3 On trouve $a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - \frac{2}{2} \int_{\Omega} \sigma_2 \nabla u \cdot \nabla (R_1(u|\Omega_1))$.

Inégalité de Young : $\forall \eta > 0$, on a $|2 x y| \le \eta x^2 + \eta^{-1} y^2$

$$\Rightarrow \left| \frac{2\int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla(R_1(u|_{\Omega_1}))}{||} \right| \leq \eta ||\sigma_2| \int_{\Omega_2} |\nabla u|^2 + \eta^{-1} ||R_1||^2 \, ||\sigma_2| \int_{\Omega_1} |\nabla u|^2$$

3 On trouve $a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - \frac{2}{2} \int_{\Omega} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$.

Inégalité de Young : $\forall \eta > 0$, on a $|2 x y| < \eta x^2 + \eta^{-1} y^2$

$$\Rightarrow \left| \frac{2\int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla(R_1(u|_{\Omega_1}))}{||} \right| \leq \eta ||\sigma_2| \int_{\Omega_2} |\nabla u|^2 + \eta^{-1} ||R_1||^2 \, ||\sigma_2| \int_{\Omega_1} |\nabla u|^2$$

$$\Rightarrow |a(u, \mathsf{T}_1 u)| \ge |\sigma_2|(1 - \eta) \int_{\Omega_1} |\nabla u|^2 + (\sigma_1 - \eta^{-1} ||R_1||^2 |\sigma_2|) \int_{\Omega_1} |\nabla u|^2$$

3 On trouve $a(u, \mathsf{T}_1 u) = \int_{\mathsf{S}} |\sigma| |\nabla u|^2 - \frac{2}{2} \int_{\mathsf{S}} \sigma_2 \nabla u \cdot \nabla (R_1(u|\Omega_1))$.

Inégalité de Young : $\forall \eta > 0$, on a $|2 x y| < \eta x^2 + \eta^{-1} y^2$

$$\Rightarrow \left| \frac{2\int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla(R_1(u|_{\Omega_1}))}{||} \right| \leq \eta ||\sigma_2| \int_{\Omega_2} |\nabla u|^2 + \eta^{-1} ||R_1||^2 \, ||\sigma_2| \int_{\Omega_1} |\nabla u|^2$$

$$\Rightarrow |a(u, \mathsf{T}_1 u)| \ge |\sigma_2|(1-\eta) \int_{\Omega_2} |\nabla u|^2 + |(\sigma_1 - \eta^{-1} ||R_1||^2 |\sigma_2|) \int_{\Omega_1} |\nabla u|^2$$

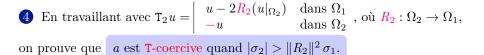
Moralité : a est T-coercive quand $|\sigma_1| > ||R_1||^2 ||\sigma_2||$

3 On trouve
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$$
.

Inégalité de Young \Rightarrow a est **T-coercive** quand $\sigma_1 > ||R_1||^2 |\sigma_2|$.

3 On trouve
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$$
.

Inégalité de Young \Rightarrow a est **T-coercive** quand $\sigma_1 > ||R_1||^2 |\sigma_2|$.



3 On trouve $a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$.

Inégalité de Young \Rightarrow a est **T-coercive** quand $\sigma_1 > ||R_1||^2 |\sigma_2|$.

 $\begin{array}{c|c} \textbf{4} \text{ En travaillant avec } \mathbf{T}_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \operatorname{dans} \, \Omega_1 \\ -u & \operatorname{dans} \, \Omega_2 \end{vmatrix}, \, \operatorname{où} \, R_2 : \Omega_2 \to \Omega_1, \\ \operatorname{on prouve que} \quad a \text{ est T-coercive quand } |\sigma_2| > \|R_2\|^2 \, \sigma_1. \\ \end{array}$

6 Conclusion :

THÉORÈME. Si le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-\|R_2\|^2; -1/\|R_1\|^2]$ alors l'opérateur div $(\sigma \nabla \cdot)$ est un isomorphisme de $H_0^1(\Omega)$ dans $H^{-1}(\Omega)$.

3 On trouve $a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$.

Inégalité de Young \Rightarrow a est **T-coercive** quand $\sigma_1 > ||R_1||^2 |\sigma_2|$.

5 Conclusion:

L'intervalle dépend des normes des opérateurs de transfert

THÉORÈME. Si le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-\|R_2\|^2; -1/\|R_1\|^2]$ alors l'opérateur div $(\sigma \nabla \cdot)$ est un isomorphisme de $H_0^1(\Omega)$ dans $H^{-1}(\Omega)$.

- ① Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

► Un cas simple : le domaine symétrique

▶ Un cas simple : le domaine symétrique

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{On v\'erifie } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ bien pos\'e} &\Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

Un cas simple : le domaine symétrique

$$R_1 = R_2 = S_{\Sigma}$$

On vérifie $||R_1|| = ||R_2|| = 1$
 (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

► Interface avec un coin 2D

► Un cas simple : le domaine symétrique

$$R_1 = R_2 = S_{\Sigma}$$

On vérifie $||R_1|| = ||R_2|| = 1$
 (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

► Interface avec un coin 2D

Action de R_1 :

► Un cas simple : le domaine symétrique

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{On v\'erifie } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ bien pos\'e} &\Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

► Interface avec un coin 2D

Action de R_1 :

▶ Un cas simple : le domaine symétrique

$$R_1 = R_2 = S_{\Sigma}$$

On vérifie $||R_1|| = ||R_2|| = 1$
 (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

► Interface avec un coin 2D

Action de R_1 : symétrie

► Un cas simple : le domaine symétrique

$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{On v\'erifie } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ bien pos\'e} &\Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

► Interface avec un coin 2D

Action de R_1 : symétrie + dilatation en θ

► Un cas simple : le domaine symétrique

$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{On v\'erifie } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ bien pos\'e} &\Leftrightarrow \kappa_{\sigma} \neq -1 \end{split}$$

► Interface avec un coin 2D

Action de
$$R_1$$
 : symétrie + dilatation en θ
$$\|R_1\|^2 \qquad \qquad = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$$

► Un cas simple : le domaine symétrique

$$R_1 = R_2 = S_{\Sigma}$$

On vérifie $||R_1|| = ||R_2|| = 1$
 (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

► Interface avec un coin 2D

Action de R_1 : symétrie + dilatation en θ Action de R_2 : symétrie + contraction en θ $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$

► Un cas simple : le domaine symétrique

$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{On v\'erifie } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ bien pos\'e} &\Leftrightarrow \kappa_{\sigma} \neq -1 \end{split}$$

► Interface avec un coin 2D

Action de R_1 : symétrie + dilatation en θ Action de R_2 : symétrie + contraction en θ $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$ (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$

- ① Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

ightharpoonup Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

① S'il existe T un isomorphisme de X tel que $a(\cdot, T\cdot)$ soit coercive alors A est un isomorphisme.

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

 \blacktriangleright Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

- ① S'il existe T un isomorphisme de X tel que $a(\cdot, T\cdot)$ soit coercive alors A est un isomorphisme.
- 2 Réciproquement, si A est un isomorphisme alors $a(\cdot,A\cdot)$ est coercive :

$$\forall u \in X, \quad |a(u, Au)| =$$

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \ | \ \text{Trouver} \ u \in \mathbf{X} \ \text{tel que} : \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

 \blacktriangleright Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

- ① S'il existe T un isomorphisme de X tel que $a(\cdot, T\cdot)$ soit coercive alors A est un isomorphisme.
- **2** Réciproquement, si A est un isomorphisme alors $a(\cdot, A\cdot)$ est coercive :

$$\forall u \in X, \quad |a(u, Au)| = ||Au||_X^2$$

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \ | \ \text{Trouver} \ u \in \mathbf{X} \ \text{tel que} : \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

- ① S'il existe T un isomorphisme de X tel que $a(\cdot, T\cdot)$ soit coercive alors A est un isomorphisme.
- 2 Réciproquement, si A est un isomorphisme alors $a(\cdot, A\cdot)$ est coercive :

$$\forall u \in X, \quad |a(u, Au)| = ||Au||_X^2 \ge ||A^{-1}||^2 ||u||_X^2.$$

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

PROPOSITION. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathbf{T}$ un isomorphisme de X tel que $a(\cdot, \mathbf{T} \cdot)$ soit coercive.

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \ \middle| \ \text{Trouver} \ u \in \mathbf{X} \ \text{tel que} : \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

PROPOSITION. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathbf{T}$ un isomorphisme de X tel que $a(\cdot, \mathbf{T} \cdot)$ soit coercive.

▶ Supposons a symétrique $(a(u, v) = a(v, u), \forall u, v \in X)$ et $a(\cdot, T \cdot)$ coercive pour $T : X \to X$ linéaire continu. Alors :

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

PROPOSITION. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathsf{T} \text{ un isomorphisme de X tel que } a(\cdot, \mathsf{T} \cdot) \text{ soit coercive.}$

- Supposons a symétrique $(a(u, v) = a(v, u), \forall u, v \in X)$ et $a(\cdot, T \cdot)$ coercive pour $T : X \to X$ linéaire continu. Alors :
- $\star \quad Au = 0 \quad \Rightarrow \quad 0 = a(u, \mathbf{T}u) \geq C \, \|u\|_{\mathbf{X}}^2 \quad \Rightarrow \quad u = 0 \quad \Rightarrow \quad A \text{ injectif.}$

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \ \middle| \ \text{Trouver} \ u \in \mathbf{X} \ \text{tel que} : \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

PROPOSITION. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathsf{T} \text{ un isomorphisme de X tel que } a(\cdot, \mathsf{T} \cdot) \text{ soit coercive.}$

- Supposons a symétrique $(a(u,v)=a(v,u), \forall u,v \in X)$ et $a(\cdot,T\cdot)$ coercive pour $T:X\to X$ linéaire continu. Alors :
- $\star \quad Au = 0 \quad \Rightarrow \quad 0 = a(u, \mathsf{T} u) \geq C \, \|u\|_{\mathsf{X}}^2 \quad \Rightarrow \quad u = 0 \quad \Rightarrow \quad A \text{ injectif.}$
- * Soit u l'unique fonction vérifiant $a(Tu, v) = \ell(v), \forall v \in X$.

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

PROPOSITION. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathbf{T} \text{ un isomorphisme de } \mathbf{X} \text{ tel que } a(\cdot, \mathbf{T} \cdot) \text{ soit coercive.}$

- Supposons a symétrique $(a(u, v) = a(v, u), \forall u, v \in X)$ et $a(\cdot, T \cdot)$ coercive pour $T : X \to X$ linéaire continu. Alors :
- $\star \quad Au = 0 \quad \Rightarrow \quad 0 = a(u, \mathsf{T} u) \geq C \, \|u\|_{\mathsf{X}}^2 \quad \Rightarrow \quad u = 0 \quad \Rightarrow \quad A \text{ injectif.}$
- * Soit u l'unique fonction vérifiant $a(\mathsf{T} u,v)=\ell(v), \quad \forall v\in \mathsf{X}.$ On note que $\mathsf{T} u$ vérifie $(\mathscr{P}_V) \Rightarrow A$ surjectif.

▶ De façon générale, considérons X un espace de Hilbert, a une forme sesquilinéaire continue sur X × X et $\ell \in X'$. On s'intéresse au problème

$$(\mathscr{P}_V) \mid \text{Trouver } u \in \mathbf{X} \text{ tel que :} \\ a(u,v) = \ell(v), \quad \forall v \in \mathbf{X}.$$

lacktriangle Avec Riesz, introduisons l'opérateur $A: X \to X$ tel que

$$(Au, v)_{X} = a(u, v), \quad \forall u, v \in X.$$

PROPOSITION. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathbf{T}$ un isomorphisme de X tel que $a(\cdot, \mathbf{T} \cdot)$ soit coercive.

▶ Si de plus a est symétrique $(a(u, v) = a(v, u), \forall u, v \in X)$ alors :

Proposition. (\mathscr{P}_V) bien posé $(A \text{ isomorphisme}) \Leftrightarrow \text{il existe } \mathtt{T}: \mathtt{X} \to \mathtt{X}$ linéaire continu tel que $a(\cdot, \mathtt{T}\cdot)$ soit coercive.

- ① Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- 3 Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

- 1 Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- 3 Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

Géométrie générale

Idée : raisonner par localisation

Avec Riesz, introduisons l'opérateur $A: H_0^1(\Omega) \to H_0^1(\Omega)$ tel que

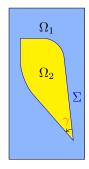
$$(Au, v)_{\mathrm{H}_0^1(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}_0^1(\Omega).$$

Géométrie générale

Idée : raisonner par localisation

Avec Riesz, introduisons l'opérateur $A: H_0^1(\Omega) \to H_0^1(\Omega)$ tel que

$$(Au,v)_{\mathcal{H}_0^1(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u,v \in \mathcal{H}_0^1(\Omega).$$



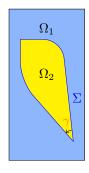
1 Partition de l'unité.

Géométrie générale

Idée : raisonner par localisation

Avec Riesz, introduisons l'opérateur $A: H_0^1(\Omega) \to H_0^1(\Omega)$ tel que

$$(Au,v)_{\mathcal{H}_0^1(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u,v \in \mathcal{H}_0^1(\Omega).$$



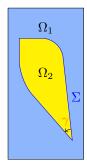
- 1 Partition de l'unité.
- 2 On construit un isomorphisme T en utilisant les opérateurs locaux.

Géométrie générale

Idée : raisonner par localisation

Avec Riesz, introduisons l'opérateur $A: H_0^1(\Omega) \to H_0^1(\Omega)$ tel que

$$(Au,v)_{\mathcal{H}_0^1(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u,v \in \mathcal{H}_0^1(\Omega).$$



- 1 Partition de l'unité.
- 2 On construit un isomorphisme T en utilisant les opérateurs locaux.
- 3 On prouve l'identité

$$A \circ \mathbf{T} = I + K$$

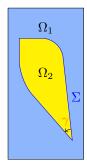
avec I isomorphisme, K compact, lorsque le contraste et la géométrie sont tels qu'on peut inverser localement.

Géométrie générale

Idée : raisonner par localisation

Avec Riesz, introduisons l'opérateur $A: H_0^1(\Omega) \to H_0^1(\Omega)$ tel que

$$(Au,v)_{\mathcal{H}_0^1(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u,v \in \mathcal{H}_0^1(\Omega).$$



- 1 Partition de l'unité.
- 2 On construit un isomorphisme T en utilisant les opérateurs locaux.
- 3 On prouve l'identité

$$A \circ \mathbf{T} = I + K$$

avec I isomorphisme, K compact, lorsque le contraste et la géométrie sont tels qu'on peut inverser localement.

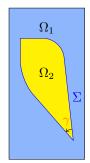
PROPOSITION. (\mathscr{P}) bien posé au sens de Fredholm pour une interface polygonale curviligne lorsque $\kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$ où γ est le plus petit angle.

Géométrie générale

Idée : raisonner par localisation

• Avec Riesz, introduisons l'opérateur $A: H_0^1(\Omega) \to H_0^1(\Omega)$ tel que

$$(Au,v)_{\mathrm{H}_0^1(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u,v \in \mathrm{H}_0^1(\Omega).$$



- 1 Partition de l'unité.
- 2 On construit un isomorphisme T en utilisant les opérateurs locaux.
- 3 On prouve l'identité

$$A \circ \mathbf{T} = I + K$$

avec I isomorphisme, K compact, lorsque le contraste et la géométrie sont tels qu'on peut inverser localement.

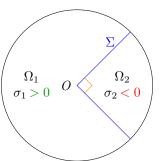
PROPOSITION. (\mathscr{P}) bien posé au sens de Fredholm pour une interface polygonale curviligne lorsque $\kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$ où γ est le plus petit angle.

 \Rightarrow Si Σ est régulière, ($\mathscr P$) bien posé au sens de Fredholm lorsque $\kappa_{\sigma} \neq -1_{\frac{1}{21}/36}$

- 1 Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- 3 Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

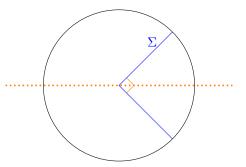
$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ Pour simplifier la présentation, travaillons sur un cas particulier.



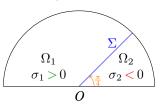
$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ Pour simplifier la présentation, travaillons sur un cas particulier.



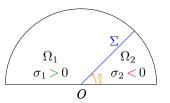
$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ Pour simplifier la présentation, travaillons sur un cas particulier.



$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ Pour simplifier la présentation, travaillons sur un cas particulier.

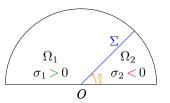


Avec la méthode variationnelle de la T-coercivité, on prouve la

PROPOSITION. Le problème (\mathscr{P}) est bien posé dès lors que le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1$ vérifie $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

$$(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ tel que :} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ Pour simplifier la présentation, travaillons sur un cas particulier.

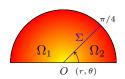


Avec la méthode variationnelle de la T-coercivité, on prouve la

PROPOSITION. Le problème (\mathcal{P}) est bien posé dès lors que le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1$ vérifie $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

Que se passe-t-il lorsque $\kappa_{\sigma} \in (-1; -1/3]$?

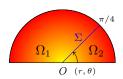
Secteur borné Ω



• Équation :

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = j$$

Secteur borné Ω



• Équation :

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = 0$$

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

On calcule les singularités $s(r,\theta) = r^{\lambda} \varphi(\theta)$. On observe deux cas :

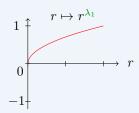
En dehors de l'intervalle critique

$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

$$-\lambda_{2} -\lambda_{1} \lambda_{1} \lambda_{2}$$

$$-2 -1 1 2$$

$$-1 H^{1}$$



On calcule les singularités $s(r,\theta) = r^{\lambda} \varphi(\theta)$. On observe deux cas :

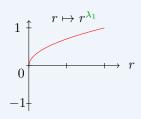
En dehors de l'intervalle critique

$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

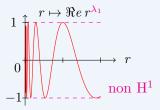
$$-\lambda_{2} -\lambda_{1} \quad \lambda_{1} \quad \lambda_{2}$$

$$-2 \quad -1 \qquad 1 \quad 2$$

$$\text{non } H^{1} \qquad H^{1}$$



Dans l'intervalle critique



On calcule les singularités $s(r,\theta) = r^{\lambda} \varphi(\theta)$. On observe deux cas :

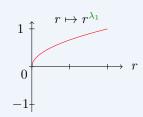
► En dehors de l'intervalle critique

$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

$$-\lambda_{2} -\lambda_{1} \lambda_{1} \lambda_{2}$$

$$-2 -1 1 2$$

$$-1 H^{1}$$



Dans l'intervalle critique



Comment tenir compte des singularités propagatives dans l'intervalle?

Pour un contraste κ_{σ} dans l'intervalle critique, il existe des singularités de la forme $s(r,\theta) = r^{i\pm\eta}\varphi(\theta)$ avec $\eta \in \mathbb{R} \setminus \{0\}$.

► En utilisant ces singularités, on met à défaut l'estimation a priori

$$||u||_{\mathrm{H}_{0}^{1}(\Omega)} \le C(||Au||_{\mathrm{H}_{0}^{1}(\Omega)} + ||u||_{L^{2}(\Omega)}) \quad \forall u \in \mathrm{H}_{0}^{1}(\Omega).$$

Pour un contraste κ_{σ} dans l'intervalle critique, il existe des singularités de la forme $s(r,\theta) = r^{i\pm\eta}\varphi(\theta)$ avec $\eta \in \mathbb{R} \setminus \{0\}$.

▶ En utilisant ces singularités, on met à défaut l'estimation a priori

$$||u||_{\mathrm{H}_{0}^{1}(\Omega)} \le C(||Au||_{\mathrm{H}_{0}^{1}(\Omega)} + ||u||_{L^{2}(\Omega)}) \quad \forall u \in \mathrm{H}_{0}^{1}(\Omega).$$

Ceci permet de prouver qu'on ne peut pas avoir A = I + K où I est un isomorphisme de $\mathrm{H}^1_0(\Omega)$ et K un opérateur compact de $\mathrm{H}^1_0(\Omega)$.

Pour un contraste κ_{σ} dans l'intervalle critique, il existe des singularités de la forme $s(r,\theta) = r^{i\pm\eta}\varphi(\theta)$ avec $\eta \in \mathbb{R} \setminus \{0\}$.

▶ En utilisant ces singularités, on met à défaut l'estimation a priori

$$||u||_{\mathrm{H}_{0}^{1}(\Omega)} \le C(||Au||_{\mathrm{H}_{0}^{1}(\Omega)} + ||u||_{L^{2}(\Omega)}) \quad \forall u \in \mathrm{H}_{0}^{1}(\Omega).$$

▶ Ceci permet de prouver qu'on ne peut pas avoir A = I + K où I est un isomorphisme de $H_0^1(\Omega)$ et K un opérateur compact de $H_0^1(\Omega)$.

PROPOSITION. Pour $\kappa_{\sigma} \in (-1; -1/3)$, le problème (\mathscr{P}) n'est pas bien posé au sens de Fredholm dans $\mathrm{H}^1_0(\Omega)$.

Pour un contraste κ_{σ} dans l'intervalle critique, il existe des singularités de la forme $s(r,\theta) = r^{i\pm\eta}\varphi(\theta)$ avec $\eta \in \mathbb{R} \setminus \{0\}$.

▶ En utilisant ces singularités, on met à défaut l'estimation a priori

$$||u||_{\mathcal{H}_{0}^{1}(\Omega)} \le C(||Au||_{\mathcal{H}_{0}^{1}(\Omega)} + ||u||_{L^{2}(\Omega)}) \qquad \forall u \in \mathcal{H}_{0}^{1}(\Omega).$$

▶ Ceci permet de prouver qu'on ne peut pas avoir A = I + K où I est un isomorphisme de $H_0^1(\Omega)$ et K un opérateur compact de $H_0^1(\Omega)$.

PROPOSITION. Pour $\kappa_{\sigma}\in (-1;-1/3)$, le problème (\mathscr{P}) n'est pas bien posé au sens de Fredholm dans $\mathrm{H}^1_0(\Omega)$.

Voyons comment modifier le cadre fonctionnel pour retrouver un problème bien posé ...

On calcule les singularités $s(r,\theta) = r^{\lambda} \varphi(\theta)$. On observe deux cas :

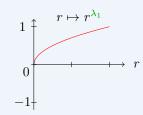
En dehors de l'intervalle critique

$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

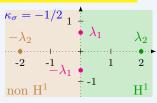
$$-\lambda_{2} -\lambda_{1} \quad \lambda_{1} \quad \lambda_{2}$$

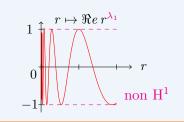
$$-2 \quad -1 \qquad 1 \quad 2$$

$$\text{non } H^{1} \qquad -1 \qquad H^{1}$$



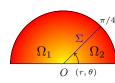
Dans l'intervalle critique

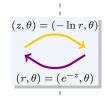




Comment tenir compte des singularités propagatives dans l'intervalle?

Secteur borné Ω



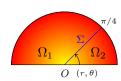


• Équation :

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u}$$

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

Secteur borné Ω



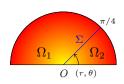
- Demi bande \mathcal{B}
- $(z,\theta) = (-\ln r, \theta)$ $(r,\theta) = (e^{-z}, \theta)$
- $\begin{array}{c} \uparrow \theta \\ \\ \mathcal{S}_1 \\ \\ \mathcal{B}_2 \\ \\ \downarrow z \end{array} \qquad \theta = \pi/4$

• Équation :

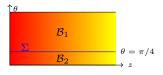
$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} =$$

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

Secteur borné Ω



• Demi bande B



• Équation :

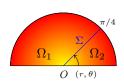
$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Équation :

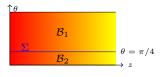
$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-(\sigma\partial_z^2 + \partial_\theta\sigma\partial_\theta)u} = e^{-2z} f$$

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

Secteur borné Ω



• Demi bande \mathcal{B}



• Équation :

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

• Équation :

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-(\sigma\partial_z^2 + \partial_\theta\sigma\partial_\theta)u} = e^{-2z} f$$

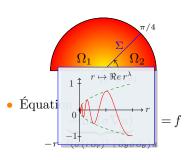
• Singularités dans le secteur

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

• Modes dans la bande

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$

Secteur borné Ω

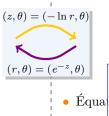


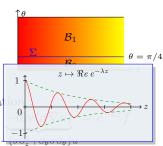
• Singularités dans le secteur

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

$$s \in \mathrm{H}^1(\Omega)$$

• Demi bande \mathcal{B}



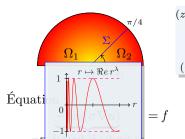


• Modes dans la bande

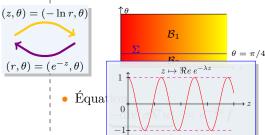
$$m(z,\theta)=e^{-\lambda z}\varphi(\theta)$$

m évanescent

Secteur borné Ω



Demi bande \mathcal{B}



 Modes dans la bande $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

Singularités dans le secteur

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

$$= r^{\lambda} (\cos b \ln r + i \sin b \ln r) \varphi(\theta)$$

$$(\Re \epsilon) = 0$$

 $s \in H^1(\Omega)$ $s \notin H^1(\Omega)$

 $(\Re e \lambda = a, \Im m \lambda = b)$ $\Re e \lambda > 0$ $\Re e \lambda! = 0$

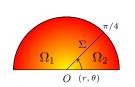
m évanescent m propagatif

 $= e^{-az} (\cos bz - i\sin bz)\varphi(\theta)$

 $(z,\theta) = (-\ln r, \theta)$

 $(r,\theta) = (e^{-z},\theta)$

Secteur borné Ω



Demi bande \mathcal{B}

Équation:

 $-(\sigma\partial_z^2 + \partial_\theta\sigma\partial_\theta)u$

 \mathcal{B}_1

 $-\operatorname{div}(\sigma \nabla u) = e^{-2z} f$

- Équation:
- $-\operatorname{div}(\sigma\nabla u)$

 $-r^{-2}(\sigma(r\partial_r)^2+\partial_\theta\sigma\partial_\theta)u$

Singularités dans le secteur $s(r,\theta) = r^{\lambda} \varphi(\theta)$

 $s \in H^1(\Omega)$

 $s \notin H^1(\Omega)$

 Modes dans la bande $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

$$= \sum_{\alpha} (\cos b \ln r + i \sin b \ln r) \varphi(\theta)$$

$$(\Re e \lambda = a, \Im m \lambda = b)$$

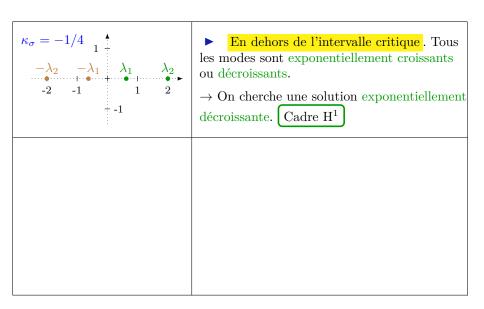
 $\Re e \lambda > 0$

 $\Re e \lambda \neq 0$

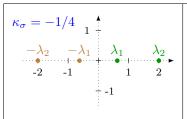
 $= e^{-az} (\cos bz - i\sin bz)\varphi(\theta)$ m évanescent

- m propagatif Ceci nous encourage à utiliser la décomposition modale dans la bande_{26 / 36}

Analyse modale pour le guide d'ondes



Analyse modale pour le guide d'ondes



- ► En dehors de l'intervalle critique . Tous les modes sont exponentiellement croissants ou décroissants.
- \rightarrow On cherche une solution exponentiellement décroissante. Cadre H^1

$$\kappa_{\sigma} = -1/2$$

$$-\lambda_{2}$$

$$-\lambda_{1}$$

$$-\lambda_{2}$$

$$-2$$

$$-1$$

$$-\lambda_{1}$$

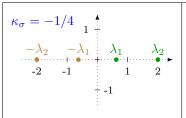
$$-1$$

$$1$$

$$2$$

Dans l'intervalle critique. Il y a exactement deux modes propagatifs.

Analyse modale pour le guide d'ondes



- ► En dehors de l'intervalle critique . Tous les modes sont exponentiellement croissants ou décroissants.
- \rightarrow On cherche une solution exponentiellement décroissante. Cadre H^1

$$\kappa_{\sigma} = -1/2 \qquad \qquad \lambda_{1}$$

$$-\lambda_{2} \qquad \qquad \lambda_{1}$$

$$-2 \qquad -1 \qquad \qquad 1 \qquad 2$$

$$-1 \qquad \qquad 1 \qquad 2$$

- ▶ Dans l'intervalle critique. Il y a exactement deux modes propagatifs.
- ightarrow La décomposition sur les modes sortants conduit à chercher une solution de la forme

$$u = \underbrace{c \varphi_1 e^{\lambda_1 z}}_{\text{propagatif}} + \underbrace{u_e}_{\text{partie évanescente}}$$

Cadre non H^1

Il existe un cadre fonctionnel, différent de $H_0^1(\Omega)$, prenant en compte une singularité, dans lequel il y a existence et unicité de la solution.

Comment approcher numériquement la solution dans ce nouveau cadre

Approximation naïve

Essayons une méthode éléments finis classique (élément de Lagrange P1). Nous calculons la solution du problème

Trouver
$$u_h \in V_h$$
 t.q.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in V_h,$$

où V_h approche $H_0^1(\Omega)$ lorsque $h \to 0$ (h est le pas de maillage).

Approximation naïve

Essayons une méthode éléments finis classique (élément de Lagrange P1). Nous calculons la solution du problème

Trouver
$$u_h \in V_h$$
 t.q.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in V_h,$$

où V_h approche $H_0^1(\Omega)$ lorsque $h \to 0$ (h est le pas de maillage).

Nous affichons u_h lorsque $h \to 0$.

Approximation naïve

Essayons une méthode éléments finis classique (élément de Lagrange P1). Nous calculons la solution du problème

où V_h approch Ω lorsque $h \to 0$ (h est le pas de maillage).

Nous affichors u_h lorsque $h \to 0$.

$$(\dots)$$

Contraste
$$\kappa_{\sigma} = -0.999 \in (-1; -1/3)$$
.

Remarque

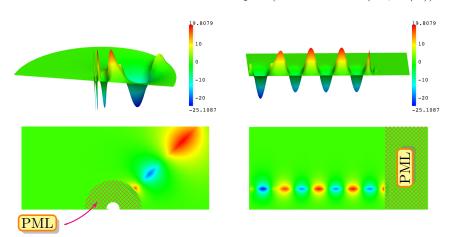
ightharpoonup En dehors de l'intervalle critique, pour la méthode d'approximation classique, la suite (u_h) converge.

$$(\dots)$$

Contraste $\kappa_{\sigma} = -1.001 \notin (-1; -1/3)$.

Comment approcher la solution?

- Nous utilisons une couche parfaitement adaptée (PML en anglais, pour $Perfectly\ Matched\ Layer$) pour borner le domaine \mathcal{B} .
 - + Éléments finis dans la bande tronquée ($\kappa_{\sigma} = -0.999 \in (-1; -1/3)$).



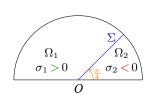
Un curieux phénomène de trou noir

- Pour l'équation de Helmholtz div $(\sigma \nabla u) + \omega^2 u = f$, de la même façon, il faut modifier le cadre fonctionnel pour avoir un problème bien posé.
- Lorsqu'on revient en régime temporel, la solution considérée présente un étrange comportement d'onde de trou noir.

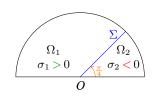
$$(\boldsymbol{x},t)\mapsto \Re e\left(u(\boldsymbol{x})e^{-i\omega t}\right) \text{ for } \kappa_{\sigma}=-1/1.3$$

Tout se passe comme si une onde était absorbée par le coin.

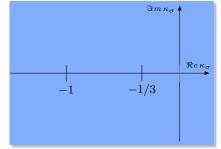
 $(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ t.q. :} \\ -\mathrm{div} \left(\sigma \nabla u \right) = f \quad \text{dans } \Omega.$



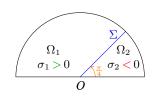
 $(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}^1_0(\Omega) \text{ t.q. :} \\ -\mathrm{div} \left(\sigma \nabla u \right) = f \quad \text{dans } \Omega.$



Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien-posé dans $H_0^1(\Omega)$ (Lax-Milgram)



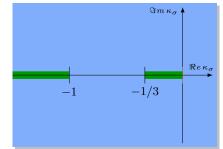
 $(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ t.q. :} \\ -\mathrm{div} \left(\sigma \nabla u \right) = f \quad \mathrm{dans } \Omega.$



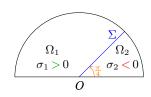
Résultats

Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien-posé dans $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram)

Pour $\kappa_{\sigma} \in \mathbb{R}_{-}^{*} \setminus [-1; -1/3], (\mathscr{P})$ bienposé dans $\mathrm{H}_{0}^{1}(\Omega)$ (T-coercivité)



 $(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ t.q. :} \\ -\mathrm{div} (\sigma \nabla u) = f \quad \text{dans } \Omega.$

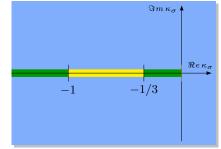


Résultats

Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien-posé dans $H_0^1(\Omega)$ (Lax-Milgram)

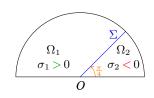
Pour $\kappa_{\sigma} \in \mathbb{R}_{-}^{*} \setminus [-1; -1/3], (\mathscr{P})$ bienposé dans $H_0^1(\Omega)$ (T-coercivité)

Pour $\kappa_{\sigma} \in (-1, -1/3), (\mathscr{P})$ pas bien posé au sens de Fredholm dans $H_0^1(\Omega)$ mais bien-posé dans nouveau cadre (PMLs)



$$Problème$$
 $(\mathscr{P}) \mid \text{Trouver } u \in \mathbb{R}$
 $-\text{div} (\sigma \nabla u) = 0$

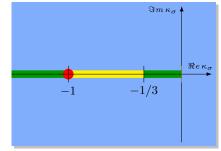
 $(\mathscr{P}) \mid \text{Trouver } u \in \mathrm{H}_0^1(\Omega) \text{ t.q. :} \\ -\mathrm{div} (\sigma \nabla u) = f \quad \text{dans } \Omega.$



Résultats

Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien-posé dans $H_0^1(\Omega)$ (Lax-Milgram)

- Pour $\kappa_{\sigma} \in \mathbb{R}_{-}^{*} \setminus [-1; -1/3], (\mathscr{P})$ bienposé dans $H_0^1(\Omega)$ (T-coercivité)
- Pour $\kappa_{\sigma} \in (-1, -1/3)$, (\mathscr{P}) pas bien posé au sens de Fredholm dans $H_0^1(\Omega)$ mais bien-posé dans nouveau cadre (PMLs)
 - $\kappa_{\sigma} = -1$, (\mathscr{P}) mal-posé dans $H_0^1(\Omega)$



- ① Séance 1 : contexte physique
- 2 Séance 2 : la méthode de la T-coercivité
 - Principe
 - Géométries élémentaires
 - T-coercivité et problèmes bien posés
- Séance 3 : géométrie générale, étude dans l'intervalle
 - Géométrie générale
 - Étude dans l'intervalle
- 4 Au programme la semaine prochaine

Au programme la semaine prochaine

Discrétisation par éléments finis du problème (\mathcal{P}) .