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Abstract. In this paper, we investigate a two-dimensional interior transmission

eigenvalue problem for an inclusion made of a composite material. We consider

configurations where the difference between the parameters of the composite material

and the ones of the background change sign on the boundary of the inclusion. In a first

step, under some assumptions on the parameters, we extend the variational approach

of the T-coercivity to prove that the transmission eigenvalues form at most a discrete

set. In the process, we also provide localization results. Then, we study what happens

when these assumptions are not satisfied. The main idea is that, due to very strong

singularities that can occur at the boundary, the problem may lose Fredholmness in

the natural H1 framework. Using Kondratiev theory, we propose a new functional

framework where the Fredholm property is restored.
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1. Introduction

The interior transmission eigenvalue problem (ITEP) has now a long history. In

electromagnetism, both the scalar [13, 31, 14, 6, 15] and Maxwell [18, 8, 7, 9] problems

have been widely studied. But lot of questions remain. In this paper, we investigate an

ITEP in a situation which, up to our knowledge, has not been studied before. Denoting

by µ the magnetic permeability of the inclusion D and by µ0 the one of the reference

medium, we consider a two-dimensional scalar problem where the sign of µ−µ0 changes

on ∂D. This 2D configuration corresponds to electromagnetic scattering in transverse

electric polarization. Notice that µ can be a matrix, if the inclusion is filled with an

anisotropic material (µ = µ0 A
−1 in the sequel). The difficulty lies in the fact that

solutions of the ITEP can exhibit a very singular behaviour at the points of ∂D where

µ− µ0 changes its sign.

To carry our study, we will rely on the analogy between the ITEP and the

sign-changing transmission problem (SCTP) which models the interface between a

metamaterial (with electromagnetic constants ε and µ taking negative real values) and

a classical material (with positive ε and µ).

We have already pointed out this analogy in previous papers [3, 10]. In particular,

we have shown that the T-coercivity technique (that we used extensively for studying

the SCTP [4, 1]) allows to establish Fredholm property for the variational formulation

of the ITEP, in the classical framework (the fields belong to H1(D)), as soon as the

sign of µ − µ0 is constant in a neighbourhood of ∂D. Then the discreteness of interior

transmission eigenvalues can be deduced under additional hypotheses on the dielectric

permittivity ε. When µ, µ0 are smooth, these additional hypotheses have been relaxed

in [21]. However, in this work, the authors also need to impose that µ−µ0 has a constant

sign in a neighbourhood of ∂D.

In the opposite case where µ − µ0 has not a constant sign in a neighbourhood of

∂D, one expects, still by analogy with the SCTP, that the H1(D) functional framework

may become inappropriate. For the SCTP, this happens when the interface between the

negative material and the positive one has corners. Then there exist so-called black-

hole waves which propagate towards the corners, with associated fields which do not

belong to H1(D). The corresponding theory is detailed in [2] for a model problem: an

appropriate functional framework is derived and justified, using Mellin transform and

Kondratiev weighted Sobolev spaces.

Our objective in the present paper is twofold.

(i) First we aim at relaxing the condition on µ− µ0 (or equivalently on A− Id in the

anisotropic case) imposed in [3] to apply the T-coercivity technique. Doing so, we

will derive new conditions on µ, allowing a change of sign of µ − µ0 on ∂D, such

that the ITEP is of Fredholm type in the H1(D) framework.

(ii) On the other hand, we want to point out that this Fredholm property of the ITEP

in the H1(D) framework can fail. Adapting the ideas of [2], we will propose in

this case new extended functional frameworks to restore Fredholmness. For each
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extension, the associated spectrum contains two parts: the set of transmission

eigenvalues (with eigenvectors in H1(D)) and a set of spurious eigenvalues (with

a strongly oscillating behaviour in L2(D) \ H1(D)). This spurious spectrum

depends on the choice of the new functional framework. We will see how to

select the good extensions so that no spurious spectrum appears on the real

and purely imaginary axes. Let us emphasize that it is necessary to take into

account the strongly oscillating behaviour in the functional framework only to

recover Fredholmness. However non spurious eigenvalues correspond to regular

(non oscillating) eigenvectors and do not depend on the choice of the extension.

The paper is organized as follows. The interior transmission eigenvalue problem

is defined in Section 2, and the idea of the T-coercivity method is briefly recalled in a

simple configuration. In Section 3, we investigate the extension of this approach to cases

where the sign of A− Id changes on ∂D. Building appropriate operators T, we derive a

sufficient condition on A which ensures that the ITEP is of Fredholm type. To relax this

condition, we turn to a different approach. First, in Section 4, we study in details the

singularities of a model problem, around a point of ∂D where A− Id is sign-changing.

We focus particularly on the possible existence of “strongly oscillating singularities”,

which are local solutions of the interior transmission equation which behave like riη

with η ∈ R (where r denotes the distance to the singular point). Such solutions are not

in H1, and this is why the variational T-coercivity method fails in this case. This leads to

generalize the definition of the ITEP by changing the functional framework. In Section 5,

we introduce well-suited weighted Sobolev spaces, where a strongly oscillating behavior

is allowed and where the Fredholm property of the model problem is established. Finally,

Section 6 is devoted to the study of discreteness of the transmission eigenvalues. We

consider both configurations where the variational approach applies and configurations

with strongly oscillating singularities. We discuss the relevance of the problems set in

the new functional frameworks.

2. Setting of the problem

2.1. Basic definitions

Consider D ⊂ R2 a bounded simply connected domain with Lipschitz boundary ∂D.

The unit outward normal vector to ∂D will be denoted ν. We study a time-harmonic

electromagnetic scattering problem for an inclusion whose coefficients are given by A(x)

and n(x). To simplify the presentation, we assume that the background is homogeneous.

Here, A ∈ L∞(D,C2×2) is a matrix valued function such that A(x) is hermitian positive

definite for almost all x ∈ D. Moreover, n ∈ L∞(D) is a strictly positive real valued

function. We suppose that A−1 ∈ L∞(D,C2×2) and n−1 ∈ L∞(D).

If O is an open subset of R2, we denote indistinctly (·, ·)O the inner products of

L2(O) := L2(O,C) and L2(O) := L2(O,C2), and ‖ · ‖O the associated norms. We
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also denote H1(D) instead of H1(D,C). Moreover, we define

supO A := sup
x∈O

sup
ξ∈C2,|ξ|=1

(ξ · A(x)ξ) and infO A := inf
x∈O

inf
ξ∈C2,|ξ|=1

(ξ · A(x)ξ).

We will say that the open set V ⊂ R2 is a neighbourhood of ∂D if there holds

∂D ⊂ (V ∩D).

Definition 2.1 The elements k ∈ C such that there exists a pair (u,w) 6= (0, 0) solving

the problem

Find (u,w) ∈ H1(D)× H1(D) such that:

div (A∇u) + k2nu = 0 in D

∆w + k2w = 0 in D

u− w = 0 on ∂D

ν · A∇u− ν · ∇w = 0 on ∂D

(1)

are called transmission eigenvalues.

Here, w and u denote respectively the incident field which does not scatter and the total

field inside the inclusion. One classically proves that (u,w) satisfies (1) if and only if

(u,w) satisfies the problem

Find (u,w) ∈ X such that, for all (u′, w′) ∈ X,

ak((u,w), (u
′, w′)) := (A∇u,∇u′)D − (∇w,∇w′)D − k2 ((nu, u′)D − (w,w′)D) = 0,

(2)

with X = {(u,w) ∈ H1(D) × H1(D) |u − w ∈ H1
0(D)}. With the Riesz representation

theorem, we define the operator Ak : X → X such that, for all ((u,w), (u′, w′)) ∈ X×X,

(Ak(u,w), (u
′, w′))H1(D)×H1(D) = ak((u,w), (u

′, w′)). (3)

The spectral problem associated with (1) differs from classical ones because ak is not

coercive on X neither “coercive+compact”.

2.2. The T-coercivity method

We briefly recall the method of the T-coercivity in the simple case: supD A < 1 and

supD n < 1. The idea is to consider an equivalent formulation of (2) where ak is replaced

by aTk defined by

aTk ((u,w), (u
′, w′)) := ak((u,w), T(u

′, w′)), ∀((u,w), (u′, w′)) ∈ X× X, (4)

T being an ad hoc isomorphism of X. Indeed, (u,w) ∈ X satisfies ak((u,w), (u
′, w′)) = 0

for all (u′, w′) ∈ X if, and only if, it satisfies aTk ((u,w), (u
′, w′)) = 0 for all (u′, w′) ∈ X.

In the present case, let us take T such that T(u,w) := (u−2w,−w). One can check that

T2 = Id. Therefore, T is an isomorphism which is equal to its inverse. Using Young’s
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inequality, we can write, for k = iκ with κ ∈ R∗ := R \ {0}, for α, β > 0 and for all

(u,w) ∈ X,∣∣aTk ((u,w), (u,w))∣∣ = |(A∇u,∇u)D + (∇w,∇w)D − 2(A∇u,∇w)D

+κ2 ((nu, u)D + (w,w)D − 2(nu,w)D)|

≥ (A∇u,∇u)D + (∇w,∇w)D + κ2 ((nu, u)D + (w,w)D)

−2 |(A∇u,∇w)D| − 2κ2 |(nu,w)D|

≥ ((1− α)A∇u,∇u)D + ((1− α−1supD A)∇w,∇w)D

+κ2 (((1− β)nu, u)D + ((1− β−1supD n)w,w)D) .

(5)

Taking α and β such that supD A < α < 1 and supD n < β < 1, this estimate proves

that aTk is coercive over X. Using Lax-Milgram theorem and since T is an isomorphism

of X, one deduces that Ak is an isomorphism of X for k = iκ with κ ∈ R∗. Besides, for

a general k ∈ C and for κ ∈ R∗, the operator Ak −Aiκ is compact since the embedding

of X in L2(D)×L2(D) is compact. As a consequence of the analytic Fredholm theorem,

this proves that the set of transmission eigenvalues is at most discrete with infinity as

the only accumulation point when supD A < 1 and supD n < 1. More generally, in [3],

we prove the following results.

Theorem 2.2 1) Assume that there exists V , a neighbourhood of ∂D, such that

supD∩V A < 1 or 1 < infD∩V A. Then for all k ∈ C, the operator Ak : X → X defined

in (3) is of Fredholm type.

2) Assume that there exists V , a neighbourhood of ∂D, such that supD∩V A < 1 and

supD∩V n < 1, or infD∩V A > 1 and infD∩V n > 1. Then the set of transmission

eigenvalues is at most discrete with infinity as the only accumulation point. Moreover,

we can find two positive constants ρ and δ such that if k ∈ C verifies |k| > ρ and

|<e k| < δ |=mk|, then k is not a transmission eigenvalue.

Remark 2.3 With a stronger assumption on A, we can weaken the condition on n (see

[3, Theorem 3.4]).

The goal in this paper is to understand what happens when A− Id changes sign on ∂D.

To study such a configuration, we will first work on a simplified interior transmission

problem.
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Figure 1. Geometry of the domain Ω.

3. A model problem

3.1. Setting of the problem

Let us denote (r, θ) the polar coordinates centered at the origin O. We define (see Figure

1) the sets:

Ω1 := {(r cos θ, r sin θ) | 0 < r < 1, 0 < θ < ϑ};
Ω2 := {(r cos θ, r sin θ) | 0 < r < 1, ϑ < θ < π};
Ω := {(r cos θ, r sin θ) | 0 < r < 1, 0 < θ < π};
Γ := {(r cos θ, r sin θ) | r = 1, 0 < θ < π};
Π := {(r cos θ, r sin θ) | 0 < r < 1, θ = ϑ};
Σ := (−1; 1)× {0}.

In particular, the boundary of Ω verifies ∂Ω = Γ ∪ Σ. We introduce the function

A : Ω → R such that A = A1 in Ω1 and A = A2 in Ω2. Here 0 < A1 < 1 and A2 > 1

are two constants. Our objective in this section is to understand the properties of the

following simplified interior transmission problem:

Find (u,w) ∈ H1(Ω)× H1(Ω) such that:

div (A∇u) = f in Ω

∆w = g in Ω

u− w = 0 on Σ

ν · A∇u− ν · ∇w = 0 on Σ

u = 0 on Γ

w = 0 on Γ.

(6)

In (6), ν denotes the unit outward normal vector to ∂Ω. Moreover, f and g are two source

terms which belong to some functional spaces which will be specified later. Compared

to (1), in this interior transmission problem, the transmission conditions are written

only on the part Σ of the boundary. This will lead to simplification in the analysis and

this is why we say that it is a simplified interior transmission problem.

Let us define the linear space XΣ = {(u,w) ∈ H1
Γ(Ω) × H1

Γ(Ω) |u − w = 0 on Σ}
where H1

Γ(Ω) = {ϕ ∈ H1(Ω) |ϕ = 0 on Γ}. In the sequel, we will also use the space

H1
Γ(Ω2) = {ϕ|Ω2 |ϕ ∈ H1

Γ(Ω)}. To (6), we associate the sesquilinear form b on XΣ such



Strongly oscillating singularities for the ITEP 7

that b((u,w), (u′, w′)) := (A∇u,∇u′)Ω − (∇w,∇w′)Ω and we consider the variational

problem

Find (u,w) ∈ XΣ such that, for all (u′, w′) ∈ XΣ,

b((u,w), (u′, w′)) = F ((u′, w′)),
(7)

where F ∈ X∗
Σ, the topological dual space of XΣ made of the continuous antilinear forms

on XΣ. With the Riesz representation theorem, we define the operator B : XΣ → XΣ

such that, for all ((u,w), (u′, w′)) ∈ XΣ × XΣ,

(B(u,w), (u′, w′))H1(Ω)×H1(Ω) = b((u,w), (u′, w′)). (8)

Again, the study of B is not simple because b is not coercive on XΣ neither

“coercive+compact”.

3.2. A variational approach

In this section, we study the operator B using the variational approach of the T-

coercivity. However, since we have neither A > 1 nor A < 1 on Σ, the computation

presented in §2.2 fails. We must work with a different isomorphism T : XΣ → XΣ. If ϕ

is a measurable function on Ω, we denote ϕ1 := ϕ|Ω1 , ϕ2 := ϕ|Ω2 . Set

T(u,w) = (u′, w′), with (u′, w′) =
(u1 − 2w1 + 2R2w2,−w1 + 2R2u2) on Ω1

(u2,−w2 + 2u2) on Ω2
. (9)

In this definition, R2 is the operator such that, on Ω1, (R2ϕ2)(r, θ) = ϕ2(r,
ϑ−π
ϑ

θ + π)

for ϕ2 ∈ H1
Γ(Ω2). First, notice that R2ϕ2 = ϕ2 on Π for all ϕ2 ∈ H1

Γ(Ω2). As a

consequence, one can check that u′ ∈ H1
Γ(Ω) and w′ ∈ H1

Γ(Ω). Then, one can verify that

u′ − w′ ∈ H1
0(Ω) so that the operator T defined in (9) is indeed valued in XΣ. Finally,

noticing that T2 is equal to the identity of XΣ, we deduce that T defines an isomorphism.

For all (u,w) ∈ XΣ, we find

b((u,w), T(u,w)) = (A∇u,∇u)Ω + (∇w,∇w)Ω
+2(A1∇u1,∇(−w1 +R2w2))Ω1 − 2(∇w1,∇(R2u2))Ω1 − 2(∇w2,∇u2)Ω2 .

Let us introduce α, β, γ, η four strictly positive parameters. Using Young’s inequality

and setting

‖R2‖ := sup
ϕ2∈H1

Γ(Ω2), ‖∇ϕ2‖Ω2
=1

‖∇(R2ϕ2)‖Ω1 ,

we can write:

|2(A1∇u1,∇(−w1 +R2w2))Ω1 |
≤ A1(α + β)(∇u1,∇u1)Ω1 + A1α

−1(∇w1,∇w1)Ω1 + A1β
−1‖R2‖2(∇w2,∇w2)Ω2 ,

|2(∇w1,∇(R2u2))Ω1 | ≤ γ(∇w1,∇w1)Ω1 + γ−1‖R2‖2(∇u2,∇u2)Ω2 ,

|2(∇w2,∇u2)Ω2 | ≤ η(∇w2,∇w2)Ω2 + η−1(∇u2,∇u2)Ω2 .
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We deduce

b((u,w), T(u,w))

≥ A1(1− α− β)(∇u1,∇u1)Ω1 + (A2 − γ−1‖R2‖2 − η−1)(∇u2,∇u2)Ω2

+(1− α−1A1 − γ)(∇w1,∇w1)Ω1 + (1− A1β
−1‖R2‖2 − η)(∇w2,∇w2)Ω2 .

(10)

In [1, 11], we obtain ‖R2‖2 = Υϑ where

Υϑ := max
(π − ϑ

ϑ
,

ϑ

π − ϑ

)
. (11)

Notice that there holds Υϑ ≥ 1 with Υϑ = 1 if and only if ϑ = π/2. From (10), we are

going to prove the following result.

Lemma 3.1 Assume that A1, A2 verify

A1 <
1

1 + Υϑ

and A2 >
1 + Υϑ

1− A1(1 + Υϑ)
, (12)

where Υϑ is defined in (11). Then the operator B : XΣ → XΣ defined in (8) is an

isomorphism.

Remark 3.2 Thus, when A1 < min(ϑ/π, (π−ϑ)/π), the operator B : XΣ → XΣ defined

in (8) is an isomorphism for A2 large enough.

Remark 3.3 Actually the proof we give allows to obtain the following result. Assume

that A ∈ L∞(Ω,C2×2) is a matrix valued function such that A(x) is hermitian positive

definite for almost all x ∈ Ω, with A−1 ∈ L∞(Ω,C2×2). Assume that

supΩ1
A <

1

1 + Υϑ

and infΩ2 A >
1 + Υϑ

1− (supΩ1
A)(1 + Υϑ)

, (13)

then the operator B : XΣ → XΣ defined in (8) is an isomorphism. Here, we see an

advantage of this variational tool of the T-coercivity compared to the Fourier/Mellin

approach of §5. It allows to work with quite general parameters.

Proof From (10), to complete the proof, the goal is to find four strictly positive

parameters α, β, γ, η such that we have both

1− α− β > 0 ; A2 − γ−1Υϑ − η−1 > 0 ;

1− α−1A1 − γ > 0 ; 1− A1β
−1Υϑ − η > 0 .

Let us choose α and β such that α−1 = s(1 + Υϑ) and β−1 = s(1 + Υϑ)/Υϑ for

some s ∈ (1; 1/(A1(1 + Υϑ))). We find 1 − α − β = 1 − 1/s > 0. Next, take

γ = η = t(1− sA1(1 + Υϑ)) for some t < 1. We obtain

1− α−1A1 − γ = 1− A1β
−1Υϑ − η = (1− t)(1− sA1(1 + Υϑ)) > 0

and A2 − γ−1Υϑ − η−1 = A2 −
1 + Υϑ

t(1− sA1(1 + Υϑ))
. (14)

If A2 satisfies the second relation of (12), taking s > 1 and t < 1 close enough

to one, we obtain that (14) is strictly positive. By virtue of (10), we deduce that
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((u,w), (u′, w′)) 7→ b((u,w), T(u′, w′)) is coercive on XΣ. Since T defines an isomor-

phism, Lax-Milgram theorem allows us to conclude that the operator B : XΣ → XΣ

defined in (8) is an isomorphism when A1 and A2 satisfy the condition (12).

Now, the question we propose to investigate is the following. Are the conditions of

Lemma 3.1 necessary? In other words, what happens for the operator B when A does

not meet the assumptions (12)? For a precise answer, we refer the reader to Remark

6.2.

4. Study of the singularities

The analysis we will develop in the next section relies on a precise study of the behaviour

of functions satisfying problem (7) in a neighbourhood of O by means of Fourier/Mellin

transform. In order to facilitate the presentation of the technique, we will work not

directly on the simplified interior transmission problem (6) but on an equivalent problem.

This equivalent problem is obtained from (6) by unfolding the domain Ω. In this section,

we first explain this unfolding procedure. Then, we compute the singularities in the

unfolded domain.

4.1. The unfolding procedure

..
Σ

.

Γ

.

Π

.ϑ .

Ω1

0<A1<1
.

Ω2

A2>1
.

O
.

O
.
⇔

.

∂ω

. ϑ.

ω1

0<σ1<1
.

ω2

σ2>1
.

ω3

σ3=−1

.
O

.
O

Figure 2. Initial domain Ω and unfolded domain ω.

Let us reintroduce (r, θ) the polar coordinates centered at the origin O. We define

(see Figure 2, on right) the sets:

ω1 := {(r cos θ, r sin θ) | 0 < r < 1, 0 < θ < ϑ};
ω2 := {(r cos θ, r sin θ) | 0 < r < 1, ϑ < θ < π};
ω3 := {(r cos θ, r sin θ) | 0 < r < 1, π < θ < 2π};
ω := {(r cos θ, r sin θ) | 0 < r < 1, 0 ≤ θ < 2π}.
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Let σ denote the function such that σ(θ) = σ1 for θ ∈ (0;ϑ), σ(θ) = σ2 for θ ∈ (ϑ;π)

and σ(θ) = σ3 = −1 for θ ∈ (π; 2π). Here 0 < σ1 < 1 and σ2 > 1 are two constants. In

the sequel, to simplify, we will make no distinction between σ and the function defined

on ω, equal to σj on ωj, j = 1 . . . 3. Now, we consider the problem:

Find v ∈ H1
0(ω) such that:

div (σ∇v) = h in ω,
(15)

where H1
0(ω) := {ϕ ∈ H1(ω) |ϕ = 0 on ∂ω}. Problem (15) can be seen as a transmis-

sion problem between a positive composite material filling the region ω1 ∪ ω2 and a

negative material in ω3. Let us assume that the source terms in (6) and (15) are such

that f ∈ L2(Ω), g ∈ L2(Ω) and h ∈ L2(ω). Moreover, let us assume that h satisfies

h(x, y) = f(x, y) a.e. in ω1 ∪ ω2 and h(x, y) = g(x,−y) a.e. in ω3.

? Consider (u,w) a solution, if it exists, of the simplified interior transmission prob-

lem (6). Then define the function v such that v = u on ω1 ∪ ω2 and v(x, y) = w(x,−y)

a.e. on ω3. Is it easy to check that v verifies the transmission problem with a sign-

changing coefficient (15) for σ1 = A1 and σ2 = A2.

? Conversely, if v satisfies the transmission problem with a sign-changing coefficient

(15), define the functions u and w such that u = v on Ω, w(x, y) = v(x,−y) a.e. on Ω.

Then, one can check that the pair (u,w) is a solution of the simplified interior trans-

mission problem (6) for A1 = σ1 and A2 = σ2.

Although the equivalence between the simplified interior transmission problem (6) and

the transmission problem with a sign-changing coefficient (15) is very simple, we decided

to introduce the scalar problem (15) to avoid to work with the system of partial differ-

ential equations (6). We associate to problem (15) the sesquilinear form m on H1
0(Ω)

such that m(v, v′) := (σ∇v,∇v′)ω and we consider the variational problem

Find v ∈ H1
0(ω) such that, for all v′ ∈ H1

0(ω),

m(v, v′) = H(v′),
(16)

where H ∈ H−1(ω) := H1
0(ω)

∗. With the Riesz representation theorem, we define the

operator M : H1
0(ω) → H1

0(ω) such that, for all (v, v′) ∈ H1
0(ω)× H1

0(ω),

(M v, v′)H1(ω) = m(v, v′). (17)

The main difficulty in the investigation of the properties of M comes from the triple

point O: at this point, the solutions of problem (16) can be very singular.

4.2. Description of the singularities

When one is interested in studying the regularity of the solutions of problem (16), one is

led to compute the singularities, i.e. one is led to look for the functions s(r, θ) = κ(r)φ(θ)

with separate variables (in polar coordinates) which satisfy

div(σ∇s) = r−2
(
σφ(r∂r)

2κ+ κ(∂θσ∂θ)φ
)
= 0.
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The above equation has been obtained noticing that σ depends only on θ. Using the

separation of variables, we deduce that κ and φ must satisfy

(r∂r)
2κ = λ2 κ on (0;+∞) and (∂θσ∂θ)φ = −λ2 σφ on T := R/(2πZ),

for some constant λ ∈ C. The problem verified by κ, for which we do not impose

boundary conditions, can be easily solved. For λ = 0, we find κ(r) = A ln r+B whereas

for λ 6= 0, we obtain κ(r) = Arλ + B r−λ, A, B being two constants. The problem

satisfied by φ contains boundary conditions (here, periodic boundary conditions) and

no source term. This implies that, for most λ ∈ C, zero is the only solution. Therefore,

if we want to compute non trivial singularities, we need to solve the spectral problem:

Find (λ, φ) ∈ C× H1(T) \ {0}, such that :

∂

∂θ

(
σ
∂

∂θ
φ
)

= −λ2 σφ on T.
(18)

The study of this problem leads us to consider the symbol L such that for all λ ∈ C,

L (λ) : H1(T) −→ H1(T)∗

φ 7−→ ∂θ(σ∂θφ) + λ2 σφ.
(19)

We say that λ ∈ C is an eigenvalue of the symbol L when there exists a non trivial

φ ∈ H1(T) such that L (λ)φ = 0. The dimension of kerL (λ) is called the geometric

multiplicity of the eigenvalue λ. We denote Λ the set of the eigenvalues of L . This

set is also called the set of singular exponents associated to O. As for the interior

transmission eigenvalue problem, the study of (18) is not standard because the sign-

changing parameter σ appears both in the principal and in the compact part of the

equation. However, now it is only a 1D problem. Proceeding as in [12, Lemma 4.9], we

can prove the

Proposition 4.1 Assume that σ1 6= 1 and σ2 6= 1. Then, the set Λ is discrete.

Moreover, there exist two positive constants ρ and δ such that if λ ∈ C verifies |λ| > ρ

and |<e λ| < δ |=mλ|, then λ is not a singular exponent.

As we will see later, we can decompose the solutions of the source term problem (16)

as the sum of a finite number of singularities and a regular term. The computations of

the beginning of this paragraph show that for λ 6= 0, each singularity is proportional to

(r, θ) 7→ rλφ(θ), (20)

where (λ, φ) corresponds to an eigenpair of problem (18). Therefore, the regularity of

the solutions of problem (16) only depends on the set Λ. That is why our work now

will consist in describing precisely Λ. In particular, we will be interested by the set

Λ ∩ Ri \ {0}, the reason being that, for λ ∈ Ri \ {0}, the singularity (20) presents

a curious oscillating behaviour (see Figure 3). When such singularities exist, we will

prove in Proposition 6.16 (actually this was already noticed by Kondratiev in [19]) that

Fredholm property in H1 is lost for problem (16). At this point, we should emphasize

that these oscillating singularities do not appear for classical elliptic operators. Their

existence here is a consequence of the change of sign of the parameter σ.
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.. r.
0

Figure 3. Behaviour of the real part of the radial component of the singularity rλφ(θ),

for λ ∈ Ri \ {0}, in a neighbourhood of O. To understand these oscillations, observe

that <e riη = cos(η ln r) for η ∈ R∗.

4.3. Explicit computation of the singularities in the case ϑ = π/2

In order to be able to compute explicitly the set Λ, we will restrict our study to the case

of an angle

ϑ = π/2.

In the sequel, we denote I1 := (0;ϑ), I2 := (ϑ; π), I3 := (π; 2π) and φj := φ|Ij , j = 1 . . . 3.

? The set Λ always contains the value 0. Indeed, there holds L (0)φ = ∂θ(σ∂θφ) = 0

when φ = cst.

? Cases where 0 is an eigenvalue of geometric multiplicity equal to 2. Let

us look for a φ ∈ H1(T) such that L (0)φ = ∂θ(σ∂θφ) = 0 with φ1 = A1θ, φ2 = A2θ+B2

and φ3 = A3θ + B3. First, writing the continuity of the flux, we obtain φ1 = A1θ,

φ2 = A1(σ1/σ2) θ+B2 and φ3 = A1(σ1/σ3) θ+B3. The continuity of φ provides φ1 = A1θ,

φ2 = A1(σ1/σ2) (θ − ϑ) + A1ϑ, φ3 = A1(σ1/σ3) (θ − π) + A1(σ1/σ2) (π − ϑ) + A1ϑ and

0 = A1(σ1/σ3) π + A1(σ1/σ2) (π − ϑ) + A1ϑ. So, we have L (0)φ = 0 and φ 6= 0 when

ϑ

σ1

+
π − ϑ

σ2

+
π

σ3

= 0.

For our configuration where σ3 = −1 and ϑ = π/2, this relation writes

σ1 + σ2 = 2σ1σ2 ⇔ σ2(2σ1 − 1) = σ1. (21)

In order equation (21) to be solvable in (0;∞) × (0;∞), the coefficients σ1, σ2 must

satisfy σ1 > 1/2, σ2 > 1/2. Moreover, if σ1 > 1/2 is given, then there exists a unique

σ2 =
σ1

2σ1 − 1
, (22)

such that we can find a non constant function φ satisfying L (0)φ = 0. From (22), we

observe in particular that if 1/2 < σ1 < 1 then σ2 > 1, and if σ1 > 1, then 1/2 < σ2 < 1.

Therefore, 0 is an eigenvalue of geometric multiplicity equal to 2 only in cases where
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the sign of σ − 1 changes. This is coherent with Theorem 2.2 which states that the

operator Ak : X → X associated with the interior transmission problem is Fredholm

if supD∩V A < 1 or if 1 < infD∩V A, where V is a neighbourhood of ∂D. Indeed,

configurations where 0 is an eigenvalue of geometric multiplicity equal to 2 correspond

to limit configurations where Fredholm property is lost in H1. For σ1 = σ2 = 1, we will

see that Λ is equal to the entire complex plane (Remark 4.2).

.. σ1.

σ2

.
1/2

.
1/2

.

1

.
1

Figure 4. Curve (σ1, σ2) when σ1, σ2 satisfy the relation (22).

? Computation of the non trivial singular exponents. If φ satisfies L (λ)φ =

∂θ(σ∂θφ) + λ2 σφ = 0 for λ 6= 0, then, for j = 1 . . . 3, we have φ(θ) = Aj exp(iλθ) +

Bj exp(−iλθ) on Ij. Writing the matching conditions, we find that λ ∈ C∗ satisfies

λ ∈ Λ if and only if the following matrix is not invertible

M(λ) :=



eiλϑ e−iλϑ −eiλϑ −e−iλϑ 0 0

σ2e
iλϑ −σ2e

−iλϑ −σ1e
iλϑ σ1e

−iλϑ 0 0

0 0 eiλπ e−iλπ −eiλπ −e−iλπ

0 0 σ1e
iλπ −σ1e

−iλπ eiλπ −e−iλπ

1 1 0 0 −e2iλπ −e−2iλπ

σ2 −σ2 0 0 e2iλπ −e−2iλπ


.

For an angle ϑ equal to π/2, the determinant of this matrix can be explicitly computed.

We obtain

detM(λ) = 2(σ2 − 1)(σ1 − 1)(σ1 + σ2) cos(2λπ)

+4(σ1 − σ2)
2 cos(λπ)

−2σ2 − 2σ1 − 2σ2
1 − 2σ2

2 + 12σ2σ1 − 2σ2σ
2
1 − 2σ2

2σ1.

Remark 4.2 For σ1 = σ2 = 1, we notice that detM(λ) = 0 for all λ ∈ C. Therefore,

in this case, we deduce that Λ = C.
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Remark 4.3 We see that if λ ∈ Λ, then −λ ∈ Λ and λ ∈ Λ. The first point comes

from the fact that problem (18) is quadratic with respect to λ. The second statement can

be obtained observing that detM(λ) = detM(λ). Moreover, if λ ∈ Λ, then (λ+ 2) ∈ Λ.

As a consequence, it is sufficient to study Λ ∩ {λ ∈ C | 0 ≤ <e λ ≤ 1, 0 ≤ =mλ}.

Rewriting the equation detM(λ) = 0 under the form a(cos(λπ))2 + b cos(λπ) + c = 0,

one obtains that λ should satisfy

cos(λπ) ∈
{
1,

(σ1 + σ2)(1 + σ1σ2)− 4σ1σ2

(1− σ1)(σ2 − 1)(σ1 + σ2)

}
.

The previous computations lead to the conclusion that the set of eigenvalues of L is

given by the expression

Λ = (2Z) ∪ {iη + 2Z} ∪ {−iη + 2Z} ∪ {iη + 2Z} ∪ {−iη + 2Z}, (23)

where η ∈ {z ∈ C | − π ≤ =mz ≤ 0} denotes the number such that

η := − i

π
arccos

(
(σ1 + σ2)(1 + σ1σ2)− 4σ1σ2

(1− σ1)(σ2 − 1)(σ1 + σ2)

)
. (24)

To know when there exist purely imaginary singular exponents, it just remains to know

when there holds
(σ1 + σ2)(1 + σ1σ2)− 4σ1σ2

(1− σ1)(σ2 − 1)(σ1 + σ2)
> 1. (25)

Indeed, arccos(z) ∈ Ri\{0} if and only if z belongs to (1;+∞). For (σ1, σ2) ∈ R∗
+×R∗

+,

one can check that property (25) is true if and only if (σ1, σ2) belongs to the set

R := R1 ∪ R2 ∪ R3 ∪ R4, (26)

where R1 = {(σ1, σ2) ∈ R∗
+ × R∗

+ | σ1 > 1 and σ2 < 2− σ1}

R2 = {(σ1, σ2) ∈ R∗
+ × R∗

+ | σ1 > 1 and
σ1

2σ1 − 1
< σ2 < 1}

R3 = {(σ1, σ2) ∈ R∗
+ × R∗

+ | σ2 > 1 and σ1 < 2− σ2}

R4 = {(σ1, σ2) ∈ R∗
+ × R∗

+ | σ2 > 1 and
σ2

2σ2 − 1
< σ1 < 1}.

? Conclusion. • For (σ1, σ2) ∈ R∗
+ × R∗

+ \ R, we can prove that Λ ∩ Ri = {0}.
• For (σ1, σ2) ∈ R, we can prove that η defined in (24) is real strictly positive. Therefore,

in this case, there holds Λ ∩ Ri = {0,±iη}. The associated singularities take the form

r±iηφ(θ) with φ(θ) = Aj exp(−η θ) +Bj exp(η θ) on Ij, (27)

the vector (A1, B1, A2, B2, A3, B3)
t being an eigenvector of the matrix M(iη). We choose

an eigenvector so that ‖φ‖T = 1 (we remind that T := R/(2πZ)). Observe that

the angular behaviour is the same for the two singularities. In the sequel, the value

of the integral
∫ 2π

0
σ(θ)φ(θ)2 dθ will play an important role. More precisely, to avoid

technicalities in the analysis we develop, we will need this quantity to be different from

zero. We will assume that this property is true. Figure 9 leads us to think that this is

not a restricting assumption.

We have computed the singularities for problem (16). Let us present now the framework

which will allow us to use them.
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..
1/2

.
1/2

.

1

.
1

. σ1.

σ2

. R1.

R2

.

R3

.

R4

Figure 5. Representation of the set R = R1∪R2∪R3∪R4 in orange. For (σ1, σ2) ∈ R,

strongly oscillating singularities appear.

..
2

.
4

.
6

.
+iη

.
−iη

.
−2

.
−4

.
−6

. <e λ.

=mλ

Figure 6. Set Λ for (σ1, σ2) = (1/4, 2) ∈ R∗
+ × R∗

+ \ R.

..
2

.
4

.
6

.

+iη

.

−iη

.
−2

.
−4

.
−6

. <e λ.

=mλ

Figure 7. Set Λ for (σ1, σ2) = (4, 2) ∈ R∗
+ × R∗

+ \ R.

.. 2. 4. 6.

+iη

.

−iη

.−2 .−4 .−6 . <e λ.

=mλ

Figure 8. Set Λ for (σ1, σ2) = (3/4, 2) ∈ R. Notice the two non trivial singular

exponents on Ri.
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Figure 9. The surface in color represents the value of
∫ 2π

0
σ(θ)φ(θ)2 dθ with respect

to (σ1, σ2), for (σ1, σ2) ∈ R ∩
(
(0; 5) × (0; 5)

)
. Here, θ 7→ φ(θ) is the angular part of

the singularity (r, θ) 7→ riηφ(θ) (see (27)). The plane in z = 0 allows us to see that

this integral (at least its approximation) vanishes only on ∂R but not in R.

5. Fredholm property for the model problem in the unfolded geometry

Problems of singularities usually raise in the study of partial differential equations in

non smooth domains as well as in the study of partial differential equations with non

smooth coefficients. To handle such problems, Kondratiev developed in the pioneering

paper [19] an efficient theory. For more recent references, the reader might consult the

monographs [20, 26, 23]. This theory is based on the use of the Mellin transform, which

is nothing else than the Fourier transform with respect to ln r, where r denotes the

distance to the singular point. The Mellin transform appears very useful in this field

because it defines isomorphisms between some ad hoc spaces and some weighted Sobolev

spaces, the latter being particularly well-suited to measure precisely the behaviour of

the functions at O.
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5.1. Analysis in weighted Sobolev spaces

We consider the variational problem

Find v such that:

(σ∇v,∇v′)ω = H(v′), ∀v′ ∈ C ∞
0 (ω).

(28)

We search for the solution of (28) in the Kondratiev space V1
β(ω). This space is defined

as the closure of C ∞
0 (ω) for the norm

‖ϕ ; V1
β(ω)‖ =

(
‖rβ∇ϕ‖2ω + ‖rβ−1ϕ‖2ω

)1/2
,

where r is the distance to the origin O and β ∈ R is the weight. Notice that the trace of

the elements of V1
β(ω) vanishes on ∂ω. Since the linear space C ∞

0 (ω) is dense in V1
β(ω)

for all β ∈ R, the equality (28) is valid for all test functions v′ in V1
−β(ω). Therefore, the

source term H in (28) can be chosen in V1
−β(ω)

∗, the topological dual space of V1
−β(ω)

made of the continuous antilinear forms on V1
−β(ω). As a consequence, we can associate

with problem (28) the operator

Mβ : V1
β(ω) → V1

−β(ω)
∗ (29)

such that 〈Mβv, v
′〉ω = (σ∇v,∇v′)ω for all v ∈ V1

β(ω), v
′ ∈ V1

−β(ω).

Remark 5.1 With this definition, one observes that the adjoint of Mβ is M−β, i.e.

M ∗
β = M−β for all β ∈ R.

In order to study the properties of Mβ, we introduce a transmission problem set on the

plane R2, where we can apply the Mellin transform without concern for boundary. More

precisely, let us define the set R̊2 := R2 \ {O} and, for β ∈ R, the operator

Nβ : V1
β(R̊2) → V1

−β(R̊2)∗. (30)

such that 〈Nβv, v
′〉R̊2 = (σ̂∇v,∇v′)R̊2 for all v ∈ V1

β(R̊2), v′ ∈ V1
−β(R̊2). In this

definition, σ̂ : R̊2 → R denotes the extension of σ to R̊2 such that

σ̂ = σ1 in {(r cos θ, r sin θ) | 0 < r < +∞, 0 ≤ θ < ϑ}
σ̂ = σ2 in {(r cos θ, r sin θ) | 0 < r < +∞, ϑ ≤ θ < π}
σ̂ = σ3 = −1 in {(r cos θ, r sin θ) | 0 < r < +∞, π ≤ θ < 2π}.

In the next theorem, we provide a necessary and sufficient condition so that Nβ is an

isomorphism. For the proof, again, we refer the reader to [19, 26, 20] for the general

theory concerning the study of elliptic operators in weighted Sobolev spaces, and to

[17, Theorem 3.7], [5], [12, Theorem 4.16], [2, Theorem 4.1] for the extension of this

theory to the transmission problem with a sign-changing coefficient. The general idea

is to proceed to a Fourier transform with respect to ln r. This leads to study a family of

1D Ordinary Differential Equations, for the angular coordinate θ, which depend on the

Fourier parameter. After a precise analysis of the properties of these ODEs, we perform

the inverse Fourier transform which provides solutions in the weighted Sobolev spaces

we introduced above. In this approach, the sign-changing problem is tackled during the

investigation of the properties of the 1D operators.
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Theorem 5.2 Assume that σ1 6= 1 and σ2 6= 1. Then, the operator Nβ : V1
β(R̊2) →

V1
−β(R̊2)∗ defined in (30) is an isomorphism if and only if no eigenvalue of the symbol

L (defined in (19)) belongs to the line

`β := {λ ∈ C | <e λ = β}. (31)

In other words, if σ1 6= 1, σ2 6= 1, Nβ is an isomorphism if and only if Λ ∩ `β = ∅.

Remark 5.3 When σ1 = 1 or/and σ2 = 1, ellipticity is lost (see [32, 30], [22] and

[16, 28]) on the interface where σ takes opposite values (we recall that σ3 = −1). In this

case, the functional framework must be modified to recover Fredholmness. This has been

achieved naturally when σ1 = 1 and σ2 = 1 working with a fourth order formulation for

the original interior transmission problem (see [31]). However, when σ1 = 1 and σ2 6= 1

or when σ1 6= 1 and σ2 = 1, the authors do not know any appropriate framework where

Fredholmness holds. This seems to be an open question and its treatment is beyond the

scope of the present article.

To characterize the properties of Mβ, we recall below the definition of a Fredholm

operator.

Definition 5.4 Let Y and W be two Banach spaces, and let L : Y → W be a continuous

linear map. The operator L is said to be of Fredholm type if and only if the following

two conditions are fulfilled

i) dim(kerL) < ∞ and rangeL is closed;

ii) dim(cokerL) < ∞ where cokerL := (W/rangeL).

Besides, the index of a Fredholm operator L is defined by ind(L) = dim(kerL) −
dim(cokerL).

Using a localization process, Theorem 5.2 to invert locally in a neighbourhood of O

and [1, Theorem 5.2] to invert locally away from O, we can build a right regularizer

(also called a right parametrix) for Mβ : V1
β(ω) → V1

−β(ω)
∗ when Λ ∩ `β 6= ∅. In other

words, when Λ∩ `β 6= ∅, we can construct an operator Rβ : V1
−β(ω)

∗ → V1
β(ω) such that

MβRβ = Idβ+Kβ, where Kβ : V1
−β(ω)

∗ → V1
−β(ω)

∗ is compact (here, Idβ is the identity

of V1
−β(ω)

∗). Since Λ ∩ `β 6= ∅ ⇔ Λ ∩ `−β 6= ∅, we can also build a right regularizer for

M−β when Λ∩`β 6= ∅. Remembering that M ∗
β = M−β, we deduce that if Λ∩`β = ∅, we

can construct left and right regularizers for Mβ (a left regularizer is nothing else than

a left inverse modulo a compact operator). This procedure proves the

Theorem 5.5 Assume that σ1 6= 1 and σ2 6= 1. Then, the operator Mβ : V1
β(ω) →

V1
−β(ω)

∗ defined in (29) is of Fredholm type if and only if Λ ∩ `β = ∅, where Λ denotes

the set of singular exponents introduced after (19).

If Λ ∩ `β 6= ∅, then the range of Mβ is not closed.

The second non trivial result we need from this theory is a result of decomposition.

Using a density process and residue formula, the following result can be proved in the

same manner as [20, Theorem 5.4.2].
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Theorem 5.6 Assume that σ1 6= 1 and σ2 6= 1. Consider β1 and β2 two real numbers

such that β1 < 0 < β2 and such that (Λ ∩ {β1 ≤ <e λ ≤ β2}) ⊂ Ri. Let vβ2 be an

element of V1
β2(ω) which satisfies Mβ2vβ2 ∈ V1

−β1(ω)∗ (the important point here is that

V1
−β1(ω)∗ is included into V1

−β2(ω)∗ since β1 < β2). Then, there hold the following

representations:

1) if (σ1, σ2) ∈ R∗
+ × R∗

+ \ R, i.e. if Λ ∩ {β1 ≤ <e λ ≤ β2} = {0},

vβ2 = vβ1 + ζ(c+0 + c−0 ln r) ; (32)

2) if (σ1, σ2) ∈ R, i.e. if Λ ∩ {β1 ≤ <e λ ≤ β2} = {0,±iη},

vβ2 = vβ1 + ζ(c+0 + c−0 ln r + c+η r
iηφ(θ) + c−η r

−iηφ(θ)) . (33)

Here, vβ1 is an element of V1
β1(ω), φ is defined in (27), c±0 , c

±
η are some constants and

ζ ∈ C ∞(R+) is a cut-off function such that ζ(r) = 1 for r ≤ 1/2, ζ(r) = 0 for r > 3/4.

5.2. Computation of the index

In this section, we precise the result of Theorem 5.5 computing the index of Mβ with

respect to β.

Theorem 5.7 Assume that σ1 6= 1 and σ2 6= 1. Then, there exists β0 > 0 such that

Λ ∩ `β = ∅ for all β ∈ (0; β0). When (σ1, σ2) ∈ R, we can take β0 = 2.

1) Assume that (σ1, σ2) ∈ R∗
+ × R∗

+ \ R. For all β ∈ (0; β0), the operator Mβ :

V1
β(ω) → V1

−β(ω)
∗ defined in (29) is of Fredholm type, onto, and of index 1, whereas

M−β : V1
−β(ω) → V1

β(ω)
∗ is of Fredholm type, injective and of index −1.

2) Assume that (σ1, σ2) ∈ R. For all β ∈ (0; 2), the operator Mβ : V1
β(ω) → V1

−β(ω)
∗

defined in (29) is of Fredholm type, onto and of index 2, whereas M−β : V1
−β(ω) →

V1
β(ω)

∗ is of Fredholm type, injective and of index −2.

Remark 5.8 Let Y and W be two Banach spaces, and let L : Y → W be a continuous

linear map. If L is of Fredholm type and injective, L is called a monomorphism. In this

case, there holds the estimate ‖y‖Y ≤ C ‖Ly‖W, for some C > 0, and for all y ∈ Y. If

L is of Fredholm type and onto, L is called an epimorphism.

Proof According to Proposition 4.1, we know that the set of the singular exponents

Λ is discrete. Moreover, there exist two positive constants ρ and δ such that if λ ∈ C
verifies |λ| > ρ and |<e λ| < δ |=mλ|, then λ does not belong to Λ. This allows to prove

that we can find β0 > 0 small enough such that Λ ∩ `β = ∅ for all β ∈ (0; β0). In virtue

of Theorem 5.5, we deduce that Mβ is of Fredholm type for all β ∈ (0; β0). Since λ ∈ Λ

if and only if −λ ∈ Λ, this also implies that M−β is of Fredholm type for all β ∈ (0;β0).

When (σ1, σ2) ∈ R, according to formula (23), we can take β0 = 2. Let us fix β ∈ (0;β0).

1) Assume that (σ1, σ2) ∈ R∗
+ × R∗

+ \ R. First, we want to prove that kerM−β = {0}.
Let v be an element of kerM−β. Define v̂ such that v̂(r, θ) = v(r, θ) on ω and
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v̂(r, θ) = −v(1/r, θ) on R2 \ ω. It is easy to check that v̂ belongs‡ to V1
−β(R̊2)

and satisfies div(σ̂∇v̂) = 0. This proves that v̂ is an element of kerN−β. Since

N−β : V1
−β(R̊2) → V1

β(R̊2)∗ is an isomorphism according to Theorem 5.2, we deduce

successively that v̂ = 0, v = 0 and kerM−β = {0}.

Next, we focus our attention on the set kerMβ. Let v belong to kerMβ. Accord-

ing to formula (32), v admits the representation v = c1 ln r+ ζc2 + ṽ for some constants

c1, c2 and some ṽ ∈ V1
−β(ω). Notice that (r, θ) 7→ ln r belongs to the kernel of Mβ.

So ζc2 + ṽ must be an element of kerMβ. By an energy argument, we prove now that

c2 = 0. Let us introduce χ ∈ C ∞(R−) a cut-off function such that χ(t) = 0 for t ≤ −2

and χ(t) = 1 for t ≥ −1. For all m ∈ N∗ := N \ {0}, we define χm (see the graph on

Figure 10) such that χm(r) = χ(ln r/m).

..

O

.

e−2m

.

e−m

.

1

.

r 7→ χm(r)

Figure 10. Graph of the function χm.

Since, u := ζc2 + ṽ ∈ kerMβ, there holds (σ∇u,∇(χm ln r))ω = 0. But there also holds

(σ∇(χmu),∇(ln r))ω = 0. Using these two relations, we can write

0 = (ln r∇u− u∇(ln r), σ∇χm)ω.

Since ṽ ∈ V1
−β(ω), we can prove that (ln r∇ṽ− ṽ∇(ln r), σ∇χm)ω → 0 when m → +∞.

We deduce that (ln r∇(c2)− c2∇(ln r), σ∇χm)ω → 0 when m → +∞ (notice that ∇χm

is not null only in a neighbourhood of O and that ζ = 1 in this region for m large

enough). But

(−c2∇(ln r), σ∇χm)ω = −c2(σ1ϑ+ σ2(π − ϑ)− π). (34)

This proves that c2 = 0 and that v = ṽ belongs to kerM−β. Since kerM−β = {0}, we
deduce that v = 0. Thus, there holds dim(kerMβ) = 1 with kerMβ = span(ln r).

Finally, we compute the indices. We can write

ind(Mβ) = dim(kerMβ)− dim(cokerMβ)

= dim(kerMβ)− dim(kerM ∗
β )

= dim(kerMβ)− dim(kerM−β) = 1

(35)

‡ Let us define the property Pβ : [v ∈ V1
−β(ω) ⇒ v̂ ∈ V1

−β(R̊2)]. It is important to underline that for

β > 0, Pβ is true but P−β is wrong. In other words, for β > 0, v ∈ V1
β(ω) does not imply v̂ ∈ V1

β(R̊2).

As a consequence, we can not prove using this approach that Mβ is injective for β > 0. And actually,

this is reassuring since Mβ is not injective for β > 0.
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To obtain (35), we have used the following property: if L is a Fredholm operator, then

L∗ is a Fredholm operator and cokerL is isomorphic to kerL∗ (see [24, Theorem 2.13]).

In the process, we also obtain

ind(M−β) = dim(kerM−β)− dim(cokerM−β)

= dim(cokerMβ)− dim(kerMβ) = −ind(Mβ) = −1.

2) Now, we assume that (σ1, σ2) ∈ R. The difference with the case (σ1, σ2) ∈ R∗
+×R∗

+\R
is the existence of the oscillating singularities (r, θ) 7→ ri±ηφ(θ). Proceeding as for point

1), we prove that kerM−β = {0} for β ∈ (0; 2). Now, let us study kerMβ. First, we

notice that the functions (r, θ) 7→ ln r and

s := (riη − r−iη)φ(θ) (36)

are two non collinear elements of kerMβ. We deduce that dim(kerMβ) ≥ 2. Let

us consider v ∈ kerMβ. According to formula (33), v admits the representation

v = c1 ln r+ ζ(c2 + c3r
iηφ(θ) + c4r

−iηφ(θ)) + ṽ for some constants c1, c2, c3, c4 and some

ṽ ∈ V1
−β(ω). Let us prove that the function u := v−c1 ln r−c3s, which belongs to kerMβ,

is equal to zero. We have u = ζ(c2+c5r
−iηφ(θ))+ũ with c5 = c3+c4 and ũ = ṽ+c3(ζ−1)s.

Observe that there hold (σ∇u,∇(χms))ω = 0 and (σ∇(χmu),∇s)ω = 0 where χm is the

cut-off function we introduced in the proof of point 1). This allows us to write

0 = (s∇u− u∇s, σ∇χm)ω.

Since ũ ∈ V1
−β(ω), we can prove that (s∇ũ − ũ∇s, σ∇χm)ω → 0 when m → +∞. We

deduce that (s∇(c2 + c5r
−iηφ(θ)) − (c2 + c5r

−iηφ(θ))∇s, σ∇χm)ω → 0 when m → +∞
(again, notice that ∇χm is not null only in a neighbourhood of O where ζ = 1). A

simple computation leads to

(s∇(c5r
−iηφ(θ))− (c2 + c5r

−iηφ(θ))∇s, σ∇χm)ω

= −c2iη

∫ e−n

e−2n

(riη + r−iη)
∂χm

∂r
dr

∫ 2π

0

σφ(θ) dθ − 2c5iη

∫ 2π

0

σφ(θ)2 dθ.
(37)

In the distributions sense, there holds ∂θσ∂θφ = λ2σφ on T = R/(2πZ). This implies∫ 2π

0
σφ(θ) dθ = 0. Since

∫ 2π

0
σφ(θ)2 dθ 6= 0 (see Figure 9 and the discussion at the end

of §4.3), we deduce from (37) that c5 = 0. Working as in point 1), we prove next that

c2 = 0. Finally, we obtain that u = ũ so that u belongs to kerM−β = {0}. Hence,

v = c1 ln r + c3s and we deduce that dim(kerMβ) = 2 with kerMβ = span(ln r, s).

Now, we compute the indices. We can write

ind(Mβ) = dim(kerMβ)− dim(cokerMβ)

= dim(kerMβ)− dim(kerM ∗
β )

= dim(kerMβ)− dim(kerM−β) = 2− 0 = 2.

(38)

Moreover, we have ind(M−β) = −ind(Mβ) = −2.
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5.3. Construction of isomorphisms

In this section, imposing a special behaviour for the solutions at point O, we build

isomorphisms. The technique is borrowed from [25], [26, Chapter 5]. If (σ1, σ2) ∈ R,

we define the functions

s+ = ζriηφ(θ) and s− = ζr−iηφ(θ), (39)

where η, φ, ζ are introduced in (24), (27), (33).

Theorem 5.9

1) Assume that (σ1, σ2) ∈ R∗
+ × R∗

+ \ R. For β ∈ (0; β0), define the unique operator

M rad
−β : span(ζ) ⊕ V1

−β(ω) → V1
β(ω)

∗ such that
〈
M rad

−β v, v
′〉

ω
= (σ∇v,∇v′)ω for all

v ∈ span(ζ)⊕ V1
−β(ω), v

′ ∈ C ∞
0 (ω). Then, M rad

−β is an isomorphism.

2) Assume that (σ1, σ2) ∈ R. For β ∈ (0; 2), define the unique operator M rad
−β :

span(ζ, s+) ⊕ V1
−β(ω) → V1

β(ω)
∗ such that

〈
M rad

−β v, v
′〉

ω
= (σ∇v,∇v′)ω for all v ∈

span(ζ, s+)⊕ V1
−β(ω), v

′ ∈ C ∞
0 (ω), where s+ is the function introduced in (39). Then,

M rad
−β is an isomorphism.

Proof 1) If v is an element of kerM rad
−β , then there holds v = c1ζ + ṽ for some constant

c1 and some ṽ ∈ V1
−β(ω). Proceeding as in the proof of Theorem 5.7, with the energy

argument, we prove that c1 = 0. We deduce that kerM rad
−β = kerM−β = {0}. Now, let

us consider H ∈ V1
β(ω)

∗. Since the operator Mβ : V1
β(ω) → V1

−β(ω)
∗ defined in (29)

is onto (see Theorem 5.7), we know that there exists v ∈ V1
β(ω) such that Mβu = H.

According to formula (32), v admits the representation v = c1 ln r + ζc2 + ṽ for some

constants c1, c2 and some ṽ ∈ V1
−β(ω). Since ln r belongs to kerMβ, the function

u = ζc2 + ṽ also satisfies Mβu = H. But u is an element of span(ζ, s)⊕V1
−β(ω). Thus,

M rad
−β is also onto.

2) Item 2) can be proven following the same lines. Let us just precise the definition of

M rad
−β in this case because this is not so direct. The linear form v′ 7→ (σ∇s±,∇v′)ω is

well-defined on V1
−β(ω). Although s± ∈ V1

β(ω) \ V1
−β(ω), we will extend it to V1

β(ω),

and actually to V1
γ(ω) for all γ ∈ R. Using Green’s formula and remembering that

div(σ∇(r±iηφ)) = 0 in ω, we can write

(σ∇s+,∇v′)ω = (σr±iηφ∇ζ,∇v′)ω − (σ∇(r±iηφ), v′∇ζ)ω, ∀v′ ∈ C ∞
0 (ω).

Since ζ is equal to one in a neighbourhood of O, the support of ∇ζ does not meet O.

Therefore, there exists a constant C > 0 such that |(σ∇s+,∇v′)ω| ≤ C ‖v′ ; V1
β(ω)‖,

for all v′ ∈ C ∞
0 (ω). Since by definition, C ∞

0 (ω) is dense in V1
β(ω), we deduce that

the linear form v′ 7→ (σ∇s±,∇v′)ω can be uniquely continuously extended to V1
β(ω).

This justifies that the operator M rad
−β : span(ζ, s+)⊕V1

−β(ω) → V1
β(ω)

∗ is well-defined.

In Theorem 5.9, the choice of adding the singularity 1 but not the singularity ln r to the

functional framework in which we search for the solution is quite natural. Indeed, the

function 1 belongs to H1(ω) whereas the function ln r does not. However, the choice of

adding s+ instead of s− in the case 2) is more arbitrary. Assume that (σ1, σ2) ∈ R. For
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β ∈ (0; 2) and γ ∈ C, define the unique operator (work as in the item 2) of the proof of

Theorem 5.9)

M rad
−β (γ) : span(ζ, s

+ + γs−)⊕ V1
−β(ω) → V1

β(ω)
∗

such that, for all v ∈ span(ζ, s+ + γs−)⊕ V1
−β(ω), v′ ∈ C ∞

0 (ω),〈
M rad

−β (γ)v, v
′〉

ω
= (σ∇v,∇v′)ω.

Here, s+, s− are the functions introduced in (39). For the operator M rad
−β (γ), we have

the

Proposition 5.10 i) If γ ∈ C \ {−1}, then M rad
−β (γ) is an isomorphism.

ii) If γ = −1, then M rad
−β (γ) is a Fredholm operator of index zero. Moreover, we have

kerM rad
−β (γ) = span(s), where s is the function defined in (36).

Proof Obviously, there holds kerM rad
−β (γ) ⊂ kerMβ = span(s, ln r). Since, ln r /∈

span(ζ, s+ + γs−) ⊕ V1
−β(ω), we have kerM rad

−β (γ) ⊂ span(s). One can check that

s ∈ span(ζ, s+ + γs−)⊕V1
−β(ω) if and only if γ = −1. Therefore, if γ ∈ C \ {−1}, then

M rad
−β (γ) is injective, and if γ = −1, then kerM rad

−β (γ) = span(s).

Now, let us study the question of the ontoness of M rad
−β (γ). Let us consider H ∈ V1

β(ω)
∗.

Since the operator Mβ : V1
β(ω) → V1

−β(ω)
∗ defined in (29) is onto in virtue of The-

orem 5.7, we know that there exists v ∈ V1
β(ω) such that Mβv = H. According to

formula (33), v admits the representation v = c1 ln r + ζ(c2 + c3s
+ + c4s

−) + ṽ for some

constants c1, c2, c3, c4 and some ṽ ∈ V1
−β(ω). Since ln r and s belong to kerMβ, for

all α ∈ C, the function u = v − c1 ln r − αs also satisfies Mβu = H. In order H to

be in the range of M rad
−β (γ), we must find α such that u = v − c1 ln r − αs belongs to

span(ζ, s+ + γs−) ⊕ V1
−β(ω). This is achievable for all H ∈ V1

β(ω)
∗ if and only if the

matrix (
1 1

1 −γ

)
is invertible. This condition is equivalent to γ 6= −1. This proves that M rad

−β (γ) is onto

as soon as γ 6= −1. This procedure allows also to demonstrate that when γ = −1, there

holds dim(cokerM rad
−β (γ)) = 1.

With these results, we have managed to construct functional frameworks, which take

into account the oscillating singularities, where well-posedness for the problem in the

unfolded geometry ω holds.

6. Back to the original geometry

Now, we go back to the original interior transmission problem of Section 2. To simplify

the notations and to avoid multiple sub-cases, we will focus our attention on quite

specific configurations. First, we will assume that the domain D is partitioned into two



Strongly oscillating singularities for the ITEP 24

subdomains D1, D2 such that D1 ∩D2 = ∅ and D = D1 ∪D2. The interface ∂D1 ∩ ∂D2

meets ∂D at exactly two points O, O′. At these points, ∂D1 ∩ ∂D2 and the boundary

∂D are locally straight lines. Therefore, at O (resp. O′), the domain D1 coincides with

a sector. We denote ϑ (resp. ϑ′) the aperture of this sector (see Figure 11). Define

A1 := A|D1 , A2 := A|D2 , where A is introduced in §2.1, and assume that

supD1∩V1
A < 1 and infD2∩V2 A > 1. (40)

Here, for i = 1, 2, Vi denotes a neighbourhood of ∂Di ∩ ∂D. At O′, we assume that

the coefficient A is such that the condition (13) is satisfied locally, i.e. we assume that

there exists d′ > 0 such that

supD1∩B(O′,d′)A < 1/(1 + Υϑ′)

and infD2∩B(O′,d′)A >
1 + Υϑ′

1− (supD1∩B(O′,d′)A)(1 + Υϑ′)
,

(41)

where Υϑ′ = max((π− ϑ′)/ϑ′, ϑ′/(π− ϑ′)). In this notation, B(O′, d′) refers to the open

disk of radius d′.

..
ϑ

.

ϑ′

.

D1

.

D2

.
O
.

O′

.
O

Figure 11. Geometry of the domain D.

Let us introduce a set of assumptions, which will describe different configurations, to

precise the values allowed for A and n. In particular, Assumption 1 is constructed so

that we can work in a H1 framework whereas under Assumption 3, two oscillating sin-

gularities exist at point O.

Assumption 1 The function A is such that condition (13) is satisfied locally at O.

In other words, we assume that there exists d > 0 such that

supD1∩B(O,d)A <
1

1 + Υϑ

and infD2∩B(O,d) A >
1 + Υϑ

1− (supD1∩B(O,d)A)(1 + Υϑ)
, (42)

where Υϑ = max((π − ϑ)/ϑ, ϑ/(π − ϑ)).

Assumption 2 The coefficient n satisfies supD1∩V1
n < 1 and infD2∩V2 n > 1, where



Strongly oscillating singularities for the ITEP 25

Vi, i = 1, 2, is the neighbourhood of ∂Di∩∂D introduced in (40). Moreover, there holds

supD1∩B(O,d) n <
1

1 + Υϑ

, infD2∩B(O,d) n >
1 + Υϑ

1− (supD1∩B(O,d) n)(1 + Υϑ)
,

supD1∩B(O′,d′) n <
1

1 + Υϑ′
, infD2∩B(O′,d′) n >

1 + Υϑ′

1− (supD1∩B(O′,d′) n)(1 + Υϑ′)
,

(43)

where Υϑ, d and Υϑ′ , d′ are respectively defined in (42) and (41).

Assumption 3 There exists d > 0 such that A1 = A|D1 and A2 = A|D2 are respectively

constant in D1 ∩ B(O, d) and D2 ∩ B(O, d), with A1 = σ1 and A2 = σ2. Moreover,

∂D1 ∩ ∂D2 is perpendicular to ∂D in this region (ϑ = π/2) and (σ1, σ2) belongs to R,

where R is defined in (26).

Remark 6.1 Notice that Assumption 1 and Assumption 3 are mutually exclusive: A

cannot satisfy both requirements (see Figure 12).

Remark 6.2 With Figure 12, we observe that if A1 < 1 and A2 > 1 are locally constant

in a neighbourhood of O and if ϑ = π/2, when (A1, A2) ∈ (0; 1) × (1;+∞) \ (F1 ∪ R)

(notice that this set is not empty), A does not verify Assumption 1 nor Assumption 3.

For such A, for which no oscillating singularities exist, we can use a H1 framework.

However, up to now, the authors have failed to handle these configurations with the

T-coercivity technique.

Remark 6.3 To lighten the notation, we do not consider here the case where in

Assumption 1, the roles of D1 and D2 are exchanged (region F1 of Figure 12). However,

the T-coercivity approach we propose allows to consider such configurations.

6.1. Discreteness of the transmission eigenvalues in the variational framework

Localization process is a classical tool in the theory of elliptic partial differential

equations (see [22, Chapter 2, §5], [20, §6.3] or [26, §4.1.2]). Although the operator

Ak associated with the Interior Transmission Problem is not strongly elliptic, we can

implement this technique using the T-coercivity approach which allows to restore some

ellipticity. Of course, this method can be used only in situations where no oscillating

singularities exist.

Theorem 6.4 Under Assumptions 1 and 2, the operator Ak : X → X defined in (3) is

an isomorphism for k ∈ Ri such that |k| is large enough.

Proof First, we introduce a partition of unity adapted to the features of the coefficients

A and n. Let ζi, i = 0 . . . 4 be five elements of C ∞(D, [0; 1]). We assume that ζ3 (resp. ζ4)

is equal to one in a neighbourhood of O (resp. O′) and that the support of ζ3 is included

in D ∩ B(O, d) (resp. D ∩ B(O′, d′)) where d (resp. d′) is introduced in (42) (resp. (41)).

The function ζ1 (resp. ζ2) is such that its support is included in D1 ∩ V1 \{O,O′} (resp.

D2 ∩ V2 \ {O,O′}), where V1 (resp. V2) denotes the neighbourhood of ∂D1 ∩ ∂D (resp.
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..
1/2

.
1/2

.

1

.
1

. A1

.

A2

. R1.

R2

.

R3

.

R4

. F1.

F2

Figure 12. Assume that A1 and A2 are locally constant in a neighbourhood of O and

that ϑ = π/2. In this case, there holds Υϑ = 1 and Assumption 1 boils down to take

(A1, A2) such that 0 < A1 < 1/2, A2 > 2/(1− 2A1) (region F2). On the other hand,

Assumption 2 is equivalent to choose (A1, A2) in the region R = R1 ∪ R2 ∪ R3 ∪ R4

defined in (26).

∂D2 ∩ ∂D) introduced in (40). The function ζ0 belongs to C ∞
0 (D). Finally, these five

functions are chosen so that there holds
4∑

i=0

ζi = 1 on D.

Let us define the operator T : X → X such that for all (u,w) ∈ X,

T(u,w) = ζ0(u,−w) + ζ1(u− 2w,−w) + ζ2(u,−w + 2u) + ζ3(ua, wa) + ζ4(ub, wb)

with

(ua, wa) =
(u1 − 2w1 + 2R2w2,−w1 + 2R2u2) on D1 ∩ B(O, d)

(u2,−w2 + 2u2) on D2 ∩ B(O, d)

(ub, wb) =
(u1 − 2w1 + 2R′

2w2,−w1 + 2R′
2u2) on D1 ∩ B(O′, d)

(u2,−w2 + 2u2) on D2 ∩ B(O′, d)

.

In this definition, the operator R2 is the one introduced in (9) whereas R′
2 is such that

(R′
2ϕ2)(r

′, θ′) = ϕ2(r
′, ϑ

′−π
ϑ′ θ′ + π), for ϕ2 ∈ H1(D ∩ B(O′, d′)), (r′, θ′) being the polar

coordinates associated with O′.

Let us prove that the form aTiκ defined in (4) is coercive for some κ ∈ R large enough.
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For all (u,w) ∈ X, one has

aTiκ((u,w), (u,w))

= (A∇u,∇u)D + (∇w,∇w)D + κ2(nu, u)D + κ2(w,w)D

− 2(A∇u,∇(ζ1w))D − 2κ2(nu, ζ1w)D

− 2(∇w,∇(ζ2u))D − 2κ2(w, ζ2u)D

− 2(A1∇u1,∇(ζ3(w1 −R2w2)))D1 − 2(∇w1,∇(ζ3R2u2))D1 − 2(∇w2,∇(ζ3u2))D2

− 2κ2(n1u1, ζ3(w1 −R2w2))D1 − 2κ2(w1, ζ3R2u2)D1 − 2κ2(w2, ζ3u2)D2

− 2(A1∇u1,∇(ζ4(w1 −R′
2w2)))D1 − 2(∇w1,∇(ζ4R

′
2u2))D1 − 2(∇w2,∇(ζ4u2))D2

− 2κ2(n1u1, ζ4(w1 −R′
2w2))D1 − 2κ2(w1, ζ4R

′
2u2)D1 − 2κ2(w2, ζ4u2)D2 .

(44)

Let us present how to deal with the first “non coercive term” in (44). We first write

2(A∇u,∇(ζ1w))D = 2(ζ1A∇u,∇w)D + 2(A∇u,w∇ζ1)D.

Using Young’s inequality, we obtain for all α > 0,

|2(ζ1A∇u,∇w)D| ≤ α(ζ1A∇u,∇u)D + α−1(ζ1A∇w,∇w)D.

We deduce

−|2(A∇u,∇(ζ1w))D| ≥ −α(ζ1A∇u,∇u)D − α−1(ζ1A∇w,∇w)D − c ‖u‖H1(D)‖w‖D,

where c > 0 is a constant. Similarly, we have

−|2(nu, ζ1w)D| ≥ −α(ζ1nu, u)D − α−1(ζ1nw,w)D.

Since A satisfies property (40) and since n is such that supD1∩V1
n < 1, one can choose

α > 0 such that

1− α > 0; Id− α−1A > 0 and 1− α−1n > 0 in D1 ∩ V1.

This yields

(ζ1A∇u,∇u)D + (ζ1∇w,∇w)D + κ2(ζ1nu, u)D + κ2(ζ1w,w)D

−2(A∇u,∇(ζ1w))D − 2κ2(nu, ζ1w)D

≥ C
(
(ζ1A∇u,∇u)D + (ζ1∇w,∇w)D + κ2(ζ1nu, u)D + κ2(ζ1w,w)D

)
−c ‖u‖H1(D)‖w‖D.

The same idea allows to study the term −2(∇w,∇(ζ2u))D − 2κ2(w, ζ2u)D in (44). To

consider the remaining terms, we proceed like in the proof of Lemma 3.1. Collecting all

these intermediate estimates, we finally find

aTiκ((u,w), (u,w)) ≥ C
(
(A∇u,∇u)D + (∇w,∇w)D + κ2(nu, u)D + κ2(w,w)D

)
−c (‖u‖H1(D)‖w‖D + ‖u‖D‖w‖H1(D)).

(45)

Writing

‖u‖H1(D)‖w‖D + ‖u‖D‖w‖H1(D) ≤ η (‖u‖2H1(D) + ‖w‖2H1(D)) + η−1(‖u‖2D + ‖w‖2D), (46)
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for all η > 0, plugging (46) in (45) and taking η small enough, we obtain

aTiκ((u,w), (u,w)) ≥ C
(
(A∇u,∇u)D + (∇w,∇w)D + κ2(nu, u)D + κ2(w,w)D

)
−c (‖u‖2D + ‖w‖2D).

This proves that if κ is large enough, then aTiκ is coercive. In particular, this implies

that T∗Aiκ is an isomorphism of X. Since Aiκ is selfadjoint, we deduce that the operator

Ak is an isomorphism for k ∈ Ri such that |k| is large enough.

..
ρ

.

<e k = δ=mk

.

<e k = −δ=mk

. <e k.

=mk

Figure 13. Under Assumptions 1 and 2, all the transmission eigenvalues are located

in an infinite bow tie of the complex plane.

As a corollary of this theorem, since in the definition of Ak, the spectral parameter k

and the coefficient n appear only in the compact part, we have the

Proposition 6.5 Under Assumption 1, for all k ∈ C, the operator Ak : X → X defined

in (3) is a Fredholm operator of index zero.

Let us conclude by stating and proving the main result of this section.

Theorem 6.6 Under Assumptions 1 and 2, the set of transmission eigenvalues is at

most discrete with infinity as the only accumulation point. Moreover, there exist two

positive constants ρ and δ such that if k ∈ C verifies |k| > ρ and |<e k| < δ |=mk|, then
k is not a transmission eigenvalue (see Figure 13).

Proof The first result is a direct consequence of Propositions 6.5, 6.4 and analytic

Fredholm theorem. Let us study the question of the localization of the transmission

eigenvalues. According to Proposition 6.4, we know that there exists τ0 > 0 such that if

k0 ∈ Ri satisfies |k0| ≥ τ0, then Ak0 is an isomorphism. Let us denote Rk0 the inverse of

Ak0 . Now, take k = k0e
iθ with θ ∈ [−π/2; π/2]. It is easy to check that ‖Ak − Ak0‖ ≤

C|1 − e2iθ|. Therefore, Rk0Ak = Rk0(Ak0 + (Ak − Ak0)) = Id + Rk0(Ak − Ak0) is

invertible for θ small enough. This yields the second result of the theorem.
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6.2. Fredholmness in the frameworks with strongly oscillating singularities

In this section, we suppose that Assumption 3 holds true. In this case, according to

the results we obtained in §4.3, we know that there exist two strongly oscillating sin-

gularities at O. Our goal is to understand what is the consequence of the existence of

these singularities for the initial transmission eigenvalue problem. Before proceeding,

we need to convert to the original geometry the notations introduced in §5.1 to study

the transmission problem set in the unfolded domain.

In accordance to §5.1, for β ∈ R, we introduce the space

Xβ =
{
(u,w) ∈ V1

β(D)× V1
β(D) |u− w = 0 on ∂D \ {O}

}
.

In this definition, V1
β(D) denotes the closure of C ∞(D \ {O}) for the norm

‖ϕ ; V1
β(D)‖ =

(
‖rβ∇ϕ‖2D + ‖rβ−1ϕ‖2D

)1/2
,

where r is the distance to the point O and β ∈ R is the weight. We denote X∗
β the

topological dual space of Xβ, made of the continuous antilinear forms on Xβ. For all

k ∈ C, we introduce the operator

Ak, β : Xβ → X∗
−β. (47)

such that, for all (u,w) ∈ Xβ, (u
′, w′) ∈ X−β,

〈Ak, β(u,w), (u
′, w′)〉D = (A∇u,∇u′)D − (∇w,∇w′)D − k2 ((nu, u′)D − (w,w′)D) .

The two oscillating singularities in the unfolded geometry ω were denoted (r, θ) 7→
riηφ(θ) and (r, θ) 7→ r−iηφ(θ). We define the functions Φt, Φi ∈ H1((0; π)) such that

Φt(θ) = φ(θ), Φi(θ) = φ(2π − θ) for all θ ∈ (0; π). Here, we use the subscripts t and

i because Φt, Φi correspond respectively to the angular component of the singularities

for the total and incident fields (see the sentence right after (1) for the definition of the

total and incident fields). We introduce

sa := (sa t, sa i) where (sa t(r, θ), sa i(r, θ)) := (1, 1),

sb := (sb t, sb i) where (sb t(r, θ), sb i(r, θ)) := ( ln r, ln r),

sc := (sc t, sc i) where (sc t(r, θ), sc i(r, θ)) := (ζ(r)riηΦt(θ), ζ(r)r
iηΦi(θ)),

sd := (sd t, sd i) where (sd t(r, θ), sd i(r, θ)) := (ζ(r)r−iηΦt(θ), ζ(r)r
−iηΦi(θ)).

(48)

Above, ζ ∈ C ∞(R, [0; 1]) is a cut-off function which is equal to 1 in a neighbourhood of

O and whose support is included in [0; d), the parameter d being introduced in Assump-

tion 3. Thanks to this cut-off function, the matching conditions sc t = sc i and sd t = sd i
are satisfied on ∂D. Notice that the matching conditions sa t = sa i and sb t = sb i on ∂D

are satisfied without need to use ζ.

As in the proof of Theorem 5.5, using a localization process, Theorem 5.5 to invert

locally in a neighbourhood of O, Theorem 6.4 to invert locally on ∂D \ {O}, we can

build left and right regularizers, i.e. left and right inverses modulo a compact operator,

for A0, β : Xβ → X∗
−β. This allows to proves the
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Theorem 6.7 The operator A0, β : Xβ → X∗
−β defined in (47) is of Fredholm type if

and only if Λ ∩ `β = ∅, where Λ, `β are respectively introduced in (23), (31).

If Λ ∩ `β 6= ∅, then the range of A0, β : Xβ → X∗
−β is not closed.

Remark 6.8 Of course, the same results hold true for Ak, β for all k ∈ C, since

Ak, β − A0, β is a compact operator.

Now, we detail the proof of an important result, specific to this configuration where the

sign of A− Id changes on ∂D.

Proposition 6.9 Under Assumption 3, for all k ∈ C, the original operator Ak : X → X

defined in (3) in the H1 framework, is not of Fredholm type. Its kernel is of finite

dimension but its range is not closed.

Proof For all k ∈ C, Ak −A0 is a compact operator. Therefore, it is sufficient to prove

that A0 is not a Fredholm operator. First, we notice that there holds H1(D) ⊂ V1
β(D) for

β ≥ 1. This yields kerA0 ⊂ kerA0, β for β ≥ 1. According to Proposition 4.1, we know

that there exists β̃ ≥ 1 for which Λ∩`β̃ = ∅. Consequently, in virtue of Theorem 6.7, A0, β̃

is a Fredholm operator. This allows us to write dim(kerA0) ≤ dim(kerA0, β̃) < +∞.

To prove that the range of A0 is not closed, we start by recalling a lemma due to

J. Peetre [29] (see also Lemma 5.1 in [22, Chapter 2] or Lemma 3.4.1 in [20]).

Lemma 6.10 Let Y , W , Z be three reflexive Banach spaces, such that Y is compactly

embedded into Z. Let L : Y → W be a continuous linear map. Then the assertions

below are equivalent:

i) dim(kerL) < +∞ and rangeL is closed in W ;

ii) there exists C > 0 such that ‖y‖Y ≤ C (‖Ly‖W + ‖y‖Z), ∀y ∈ Y .

Assume that, for our problem, there exists C > 0 such that there holds

‖(u,w)‖H1(D)×H1(D) ≤ C (‖A0(u,w)‖H1(D)×H1(D) + ‖(u,w)‖D), ∀(u,w) ∈ X. (49)

For all m ∈ N∗, define the pair (um, wm) such that

(um(x), wm(x)) = (ζ(r)riη+1/mΦt(θ), ζ(r)r
iη+1/mΦi(θ)),

where ζ is the cut-off function introduced after (48). By construction, (um, wm) belongs

to X for all m ∈ N∗. It is clear that there exists a constant C > 0 such that

‖(um, wm)‖D ≤ C, ∀m ∈ N∗. (50)

Moreover, we can write, for a fixed small ε > 0 and some C > 0,

‖(um, wm)‖2H1(D)×H1(D) ≥ ‖∇um‖2B(O,ε) ≥ C

∫ ε

0

r2/m−1 dr = C
m

2
ε2/m ∼

m→+∞
C

m

2
. (51)

Our goal is to contradict estimate (49). Therefore, it remains to prove that the sequence

(‖A0(um, wm)‖H1(D)×H1(D))m∈N∗ remains bounded. Since the space

X∞ :=
{
(u,w) ∈ X | (u,w) ∈ C ∞(D \ {O})× C ∞(D \ {O})

}
(52)
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is dense in X, we can write

‖A0(um, wm)‖H1(D)×H1(D) = sup
(u′, w′) ∈ X∞,

‖(u′, w′)‖H1(D)×H1(D) = 1

|(A∇um,∇u′)D − (∇wm,∇w′)D|.

Let us define ûm, ŵm such that (ûm(x), ŵm(x)) = (riη+1/mΦt(θ), r
iη+1/mΦi(θ)). With

this definition, there holds (um, wm) = (ζûm, ζŵm). For all (u
′, w′) ∈ X∞, we can write

|(A∇um,∇u′)D − (∇wm,∇w′)D − ((A∇ûm,∇(ζu′))D − (∇ŵm,∇(ζw′))D)|
= |(Aûm∇ζ,∇u′)D − (ŵm∇ζ,∇w′)D − ((A∇ûm, u

′∇ζ)D − (∇ŵm, w
′∇ζ)D)|

≤ C ‖(u′, w′)‖H1(D)×H1(D),

(53)

where the constant C is independent of m ∈ N∗. The last line of (53) has been

obtained noticing that ∇ζ vanishes in a neighbourhood of O. Therefore, to prove that

(‖A0(um, wm)‖H1(D)×H1(D))m∈N∗ remains bounded, it is sufficient to establish that there

exists C > 0 such that

|(A∇ûm,∇(ζu′))D − (∇ŵm,∇(ζw′))D| ≤ C ‖(u′, w′)‖H1(D)×H1(D), ∀(u′, w′) ∈ X∞. (54)

Integrating twice by parts (remember that the elements of X∞ vanish at O), we find

|(A∇ûm,∇(ζu′))D − (∇ŵm,∇(ζw′))D|
= |(div(A∇ûm), ζu

′)D − (∆ŵm, ζw
′)D|

= (1/m)|(A(2iη + 1/m)r−2+iη+1/mΦt(θ), ζu
′)D

−((2iη + 1/m)r−2+iη+1/mΦi(θ), ζw
′)D|

= (1/m)|(A(2iη + 1/m)r−1+iη+1/mΦt(θ)/(iη + 1/m), ∂r(ζu
′))D

−((2iη + 1/m)r−1+iη+1/mΦi(θ)/(iη + 1/m), ∂r(ζw
′))D|

≤ C ‖r−1+iη+1/m‖D(‖u′‖H1(D) + ‖w′‖H1(D))/m.

(55)

Since ‖r−1+iη+1/m‖D ≤ C
√
m (see (51)), we deduce (54) from (55). Thus, the sequence

(‖A0(um, wm)‖H1(D)×H1(D))m∈N∗ is bounded. Thanks to (50), (51), this proves that esti-

mate (49) does not hold. Lemma 6.10 allows us to conclude that the range of A0 is not

closed since dim(kerA0) < +∞ according to the first part of the proof.

The result of Proposition 6.9 is interesting because it tells us that, under Assumption

3, we can not hope to apply the analytic Fredholm theorem in a H1 setting in order to

prove discreteness of transmission eigenvalues. We need to change the functional frame-

work to recover Fredholmness. To do this, we take into account the two singularities

(plus the constant) prescribing the behaviour of the functions at O, as we did in the

unfolded geometry ω (see §5.3). Let us present this procedure.

According to formula (23) and Assumption 3, we know that Λ∩ `β = ∅ for all β ∈ (0; 2).

For β ∈ (0; 2) and γ ∈ C, define the space

Xrad
−β (γ) := span(sa, sc + γsd)⊕ X−β (56)

where the singularities sa, sc and sd are set in (48). Let us introduce

A rad
k,−β(γ) : X

rad
−β (γ) → Xβ

∗
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the unique operator such that, for all (u,w) ∈ Xrad
−β (γ), (u

′, w′) ∈ X∞,〈
A rad

k,−β(γ)(u,w), (u
′, w′)

〉
D
= (A∇u,∇u′)D−(∇w,∇w′)D−k2 ((nu, u′)D − (w,w′)D) .(57)

Again, for details concerning the definition of this operator, we refer the reader to item

2) of the proof of Theorem 5.9. Using again a localization process, Proposition 5.10 to

invert locally in a neighbourhood of O, Theorem 6.4 to invert locally on ∂D \ {O} and

working as in the proof of [2, theorem 4.4], we obtain the

Proposition 6.11 Under Assumption 3, the operator A rad
k,−β(γ) : Xrad

−β (γ) → Xβ
∗

defined in (57) is Fredholm.

Now, we want to prove that A rad
k,−β(γ) : Xrad

−β (γ) → Xβ
∗ is of index zero for all k ∈ C

and all γ ∈ C. Since A rad
k,−β(γ) − A rad

0,−β(γ) is compact, it is sufficient to prove this

result for A rad
0,−β(γ). In paragraph §5 where we worked in the canonical geometry ω, this

process was relatively easy to carry on since the elements of kerMβ and cokerM−β (see

Proposition 5.10) were explicitely known. In the original geometry, we will need to use

some simple algebra to obtain the same results. The approach is borrowed from [26,

Chapter 5] (see an example of application in [27]).

First, we define the space

W := span(sa, sb, sc, sd)⊕ X−β,

where the singularities sa, sb, sc and sd are set in (48). Now, we introduce a practical

tool, namely the sesquilinear form q over W ×W such that

q(v,v′) = 〈A0, βv,v
′〉D − 〈A0, βv′,v〉D, ∀(v,v′) ∈ W ×W. (58)

Let us present the main properties of this form. For all (v,v′) ∈ W ×W, we have

q(v,v′) = −q(v′,v).

In other words, q is a skew-symmetric sesquilinear form. Such a map is called a

symplectic form. In case where v ∈ X−β or v′ ∈ X−β, there holds

q(v,v′) = 0.

Indeed, for example if v ∈ X−β, we can write, remembering that the adjoint of A0, β is

A0,−β,

q(v,v′) = 〈A0, βv,v
′〉D − 〈A0, βv′,v〉D = 〈A0,−βv,v

′〉D − 〈A0, βv′,v〉D
= 〈A0,−βv,v

′〉D − 〈A0,−βv,v
′〉D = 0.

Therefore, introducing the quotient space W := W/X−β, we can actually see q as a

symplectic form defined over W × W . By definition of W, the classes of equivalence

of sa, sb, sc, sd constitute a basis of W (it is easy to see that these functions are linearly

independent). Let us construct a new basis for W made of functions which satisfy some

biorthogonality relations for the symplectic form q. In the sequel, this property will be

very useful. Let us define the normalisation parameters

α0 := 1/(π(σ1 + σ2 − 2)),

αη := (2η)−1
(∫ π/2

0

σ1Φ
2
i (θ) dθ +

∫ π/2

0

σ2Φ
2
i (θ) dθ −

∫ π

0

Φ2
t (θ) dθ

)−1

,
(59)
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and the pairs of functions

s+0 := (s+0 t, s
+
0 i) where (s+0 t, s

+
0 i) :=

√
|α0|(sa t + isb t, sa i + isb i),

s−0 := (s−0 t, s
−
0 i) where (s−0 t, s

−
0 i) :=

√
|α0|(sa t − isb t, sa i − isb i),

s+η := (s+η t, s
+
η i) where (s+η t, s

+
η i) :=

√
|αη|(sc t, sc i),

s−η := (s−η t, s
−
η i) where (s−η t, s

−
η i) :=

√
|αη|(sd t, sd i).

Under Assumption 3 (see also Figure 9 and the discussion at the end of §4.3), the

denominators in (59) do not vanish.

Proposition 6.12 For j = 0, η and l = 0, η, we have

q(s±j , s
±
l ) = ±i δj,l sgn(αj) and q(s±j , s

∓
l ) = 0,

where δj,l = 1 if j = l and δj,l = 0 if j 6= l.

Proof The skew-symmetry of q provides q(s±0 , s
∓
0 ) = 0 and q(s±η , s

∓
η ) = 0: for example,

we can write

q(s+0 , s
−
0 ) = −q(s−0 , s

+
0 ) = −q(s+0 , s

−
0 ) = 0.

Let us compute q(s+0 , s
+
0 ). We reintroduced the cut-off function χm of Figure 10. One

has 〈
A0, βs

+
0 , s

+
0

〉
D
/|α0|

= lim
m→+∞

(A∇(sa t + isb t),∇(χm(sa t + isb t)))D − (∇(sa i + isb i),∇(χm(sa i + isb i)))D

and 〈
A0, βs

+
0 , s

+
0

〉
D
/|α0|

= lim
m→+∞

(A∇(sa t − isb t),∇(χm(sa t − isb t)))D − (∇(sa i + isb i),∇(χm(sa i + isb i)))D.

We deduce

q(s+0 , s
+
0 ) = lim

m→+∞
−2i|α0|(A∇sa t,∇(χmsb t))D + 2i|α0|(A∇sb t,∇(χmsa t))D

+2i|α0|(∇sa i,∇(χmsb i))D − 2i|α0|(∇sb i,∇(χmsa i))D

= lim
m→+∞

2i|α0|(A∇sb t, sa t∇χm)D − 2i|α0|(∇sb i, sa i∇χm)D = i sgnα0.

(60)

The last line of (60) is the same as (34). In the computation of q(s±0 , s
±
η ), q(s

∓
0 , s

∓
η ),

when one integrates with respect to the θ coordinate in a neighbourhood of O, there

appears the term∫ π/2

0

σ1Φi(θ) dθ +

∫ π/2

0

σ2Φi(θ) dθ −
∫ π

0

Φt(θ) dθ.

According to the discussion after (37), we know that this quantity is equal to zero. This

yields q(s±0 , s
±
η ) = q(s∓0 , s

∓
η ) = 0. Proceeding as for the computation of q(s+0 , s

+
0 ), we

finally find q(s±η , s
±
η ) = ±i sgn(αη).

Let us use the symplectic form q to describe the quotient space kerA0, β/X−β.
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Proposition 6.13 Under Assumption 3, we have dim(kerA0, β) − dim(kerA0,−β) = 2

for all β ∈ (0; 2). Let K be a vector space such that kerA0, β = K ⊕ kerA0,−β. There

exists a basis of K equal to (w0,wη), with

w0 := sa = (1, 1)

wη := (ζ(r)(riη + γpr
−iη)Φt(θ), ζ(r)(r

iη + γpr
−iη)Φi(θ)) + w̃, (61)

where γp ∈ C and w̃ ∈ X−β. Moreover, the coefficient γp in (61) satisfies |γp| = 1, i.e.

γp ∈ Sunity := {eiθ, θ ∈ [0; 2π)}.

Proof Let us assume that the normalisation parameters introduced in (59) verify α0 > 0

and αη > 0. When α0 < 0 and/or αη < 0, the analysis we present can be easily adapted.

i) Let us prove that dim(kerA0, β) − dim(kerA0,−β) ≥ 2. Proceed by contradiction

assuming that dim(kerA0, β) − dim(kerA0,−β) ≤ 1. Introduce F and G two finite di-

mensional vector spaces such that

X∗
β = rangeA0,−β ⊕ F; (62)

F = (F ∩ rangeA0, β)⊕G. (63)

According to Lemma 6.14, proved later, we have X∗
−β = rangeA0, β + X∗

β. Conse-

quently, we can write X∗
−β = rangeA0, β ⊕ G. Since A0,−β is the adjoint of A0, β, one

has dim(F) = dim(cokerA0,−β) = dim(kerA0, β) and dim(G) = dim(cokerA0, β) =

dim(kerA0,−β). Thus, our hypothesis leads to dim(F) − dim(G) ≤ 1 which implies

dim(F ∩ rangeA0, β) ≤ 1 according to (63). Now, recall that A0, β(s
+
0 ) ∈ X∗

β and

A0, β(s
+
η ) ∈ X∗

β. According to the decomposition (62), there exist ṽ0, ṽη ∈ X−β and

f 0, f η ∈ F such that A0, β(s
+
0 ) = A0,−β ṽ0 + f 0 and A0, β(s

+
η ) = A0,−β ṽη + f η. But

clearly f 0 and f η belong to F ∩ rangeA0, β. Since, by assumption, the dimension of

this vector space is less than one, there exist two coefficients τ0, τη, with |τ0|+ |τη| 6= 0

such that τ0f 0 + τηf η = 0. The function v := τ0(s
+
0 − ṽ0) + τη(s

+
η − ṽη) belongs to

kerA0, β. As a consequence, there holds q(v,v) = 0. But using Proposition 6.12, one

finds q(v,v) = i |τ0|2 + i |τη|2. This is absurd since we have |τ0|+ |τη| 6= 0.

ii) Now, we establish that dim(kerA0, β) − dim(kerA0,−β) ≤ 2. Again, we proceed

by contradiction and we assume that dim(kerA0, β) − dim(kerA0,−β) ≥ 3. Let us in-

troduce v1, v2, v3 three functions of kerA0, β which are linearly independent modulo

X−β. According to formula (33), we know that every element v ∈ kerA0, β admits the

representation v = c+0 s
+
0 + c−0 s

−
0 + c+η s

+
η + c−η s

−
η + ṽ for some constants c+0 , c

−
0 , c

+
η , c

−
η

and some ṽ ∈ X−β. Using some simple algebra, we can find three coefficients τ1, τ2, τ3,

with |τ1| + |τ2| + |τ3| 6= 0, such that v := τ1v1 + τ2v2 + τ3v3 admits the decomposition

v = c+0 s
−
0 +c+η s

−
η +ṽ for some constants c+0 , c

+
η and some ṽ ∈ X−β. Since v ∈ kerA0, β, we

have q(v,v) = 0. Using Proposition 6.12, one finds q(v,v) = i |c+0 |2+i |c+η |2. Thus, there
holds c+0 = c+η = 0 and v is an element of kerA0,−β. In others words, τ1v1+ τ2v2+ τ3v3

is equal to zero modulo X−β. This is absurd since v1, v2, v3 are linearly independent

modulo X−β and since |τ1|+ |τ2|+ |τ3| 6= 0.
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iii) Let K be a vector space such that kerA0, β = K⊕kerA0,−β. Clearly, w0 = sa = (1, 1)

is a non trivial element of K. Let us introduce wη a second element of K such that

(w0,wη) constitutes a basis of K (we know that this vector space is of dimension 2). Ac-

cording to formula (33), wη admits the representation wη = ca sa+cb sb+cc sc+cd sd+w̃

for some constants ca, cb, cc, cd and some w̃ ∈ X−β. Since the first element of our basis

(w0,wη) = (sa,wη) is sa, we can impose ca = 0. Now, observe that w0 and wη belong

to kerA0, β. Thus, we have q(wη,w0) = 0. Noticing that, sa = |α0|−1/2(s+0 + s−0 )/2,

sb = i|α0|−1/2(s−0 − s+0 )/2, sc = |αη|−1/2s+η and sd = |αη|−1/2s−η , one computes

0 = q(wη,w0) = icb|α0|−1q(s−0 − s+0 , s
+
0 + s−0 )/4 = cb|α0|−1sgn(α0)/4.

This yields cb = 0. On the other hand, we find

0 = q(wη,wη) = i |αη|−1sgn(αη)
(
|cc|2 − |cd|2

)
. (64)

We deduce there should hold both |cc| 6= 0 and |cd| 6= 0 (otherwise wη ∈ kerA0, β ∩K =

{0} and wη cannot be an element of the basis of K). Since wη is defined up to a mul-

tiplicative constant, we can take cc = 1. It follows from (64) that |cd| = 1. Summing

up, we can take wη admitting the representation wη = sc + γp sd + w̃. In this case, the

parameter γp must satisfy |γp| = 1.

The following lemma is a technical result needed in the proof of Proposition 6.13.

Lemma 6.14 There holds X∗
−β = rangeA0, β +X∗

β.

Proof Consider a source term f ∈ X∗
−β. Our goal is to build v ∈ Xβ such that

f −A0, β v ∈ X∗
β. To proceed, we will localize and unfold f to obtain a source term, de-

fined on the entire plane, with the same behaviour as f at O. Using the well-posedness

of the transmission problem in the plane, we will construct a preimage of this source

term. Folding and multiplying by a cut-off function this solution to return to the orig-

inal domain, this procedure will provide a preimage of f modulo a smooth perturbation.

Let us translate this into equations. Define the map g ∈ V1
−β(R̊2)∗ such that

〈g, ϕ〉R̊2 = 〈f , ζτ(ϕ)〉D×D, ∀ϕ ∈ V1
−β(R̊2). In this definition, ζ is the cut-off function in-

troduced in (48), R̊2 = R2\{O} and τ(ϕ) is such that τ(ϕ(x, y)) = (ϕp(x, y), ϕm(x,−y)),

where ϕp = ϕ|R×(0;+∞) and ϕm = ϕ|R×(−∞;0). According to Theorem 5.2, we know that

there exists a unique v ∈ V1
β(R̊2) such that Nβ v = g. Define v := ζτ(v). We have both

A0, β v ∈ rangeA0, β and f − A0, β v ∈ X∗
β.

Now, we are ready to prove well-posedness in the frameworks with oscillating

singularities.

Theorem 6.15 Under Assumption 3, the operator A rad
k,−β(γ) : Xrad

−β (γ) → Xβ
∗ defined

in (57) is Fredholm of index zero for all γ ∈ C.
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Proof Since the index is constant with respect to compact perturbations, let us prove

this result for A rad
0,−β(γ). First, we assume that γ 6= γp, where γp is defined by the

statement of Proposition 6.13 (in particular, we know that |γp| = 1). In this case, we

have w0 ∈ kerA rad
0,−β(γ) and wη /∈ kerA rad

0,−β(γ). Since kerA0,−β ⊂ kerA rad
0,−β(γ), this

yields

dim(kerA rad
0,−β(γ)) = dim(kerA0,−β) + 1. (65)

Now, let us establish that dim(cokerA rad
0,−β(γ)) = dim(cokerA0, β) + 1. We introduce F̃,

G̃ two finite dimensional vector spaces such that

X∗
β = rangeA rad

0,−β(γ)⊕ F̃; (66)

F̃ = (F̃ ∩ rangeA0, β)⊕ G̃. (67)

As in point i) of the proof of Proposition 6.13, one obtains X∗
−β = rangeA0, β(γ) ⊕ G̃,

dim(F̃) = dim(cokerA rad
0,−β(γ)) and dim(G̃) = dim(cokerA0, β). Let us prove that

dim(F̃) = dim(G̃) + 1. According to (67), this is equivalent to dim(F̃∩ rangeA0, β) = 1.

First, let us define g = A0, βsb = A0, β(ζ ln r, ζ ln r) ∈ X∗
β. Assume that g ∈

rangeA rad
0,−β(γ). In this case, there exists v ∈ Xrad

−β (γ) such that A rad
0,−βv = g. The

function v − sb belongs to kerA0, β. This is not possible by virtue of Proposition 6.13.

Indeed, we have computed explicitly the kernel of A0, β and no term involving sb appears.

Therefore, we conclude that g /∈ rangeA rad
0,−β(γ). Thus, F̃∩rangeA0, β is not equal to {0}.

This implies dim(F̃ ∩ rangeA0, β) ≥ 1. In view of the sequel, using (66), we decompose

g under the form g = A rad
0,−β(γ)vg + g], with vg ∈ Xrad

−β (γ) and g] ∈ F̃. Now, consider f

an element of F̃ ∩ rangeA0, β. There exists v ∈ Xβ such that f = A0, β v. Moreover, v

admits the representation v = ca sa+ cb sb+ cc sc+ cd sd+ ṽ for some constants ca, cb, cc,

cd and some ṽ ∈ X−β. Let us look for τ ∈ C such that v−ca sa−cb sb−τ (sc+γp sd+w̃)

belongs to Xrad
−β (γ) (we remind that sa and sc+γp sd+ w̃ are functions of kerA0, β). One

can easily check that we can solve this problem if and only if the matrix(
1 1

γp γ

)
is invertible. This condition is equivalent to γ 6= γp, which is precisely the case we are

dealing with. Now, observe that v− ca sa− cb sb− τ (sc+γp sd+ w̃)+ cb vg is an element

of Xrad
−β (γ) such that A rad

0,−β (v− ca sa− cb sb− τ (sc+ γp sd+ w̃)+ cb vg) = f − cb g
]. One

deduces that f − cb g
] ∈ F̃ ∩ rangeA rad

0,−β and, since F̃ ∩ rangeA rad
0,−β = {0}, we have

f − cb g
] = 0. Thus, there holds F̃ ∩ rangeA0, β = span(g]) and we have finished to

prove that

dim(cokerA rad
0,−β(γ)) = dim(cokerA0, β) + 1. (68)

From (65) and (68), we can write

ind(A rad
0,−β(γ)) = dim(kerA rad

0,−β(γ))− dim(cokerA rad
0,−β(γ))

= (dim(kerA0,−β) + 1)− (dim(cokerA0, β) + 1)

= dim(kerA0,−β)− dim(kerA0,−β) = 0.

The case where γ = γp can be handled analogously: we can prove that we have both

dim(kerA rad
0,−β(γ)) = dim(kerA0,−β)+2, dim(cokerA rad

0,−β(γ)) = dim(cokerA0, β)+2.
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6.3. Eigenvalues in the frameworks with strongly oscillating singularities: discussion

At this stage, we have found a family of formulations of the interior transmission prob-

lem, parametrized by γ ∈ C, which satisfy the Fredholm property. Can we prove

discreteness of the set of eigenvalues for these formulations? Then, a natural question

is: do these different formulations provide the same eigenvalues, and if not, has our

result any meaning in relation to the initial question? A part of the answer is given by

Proposition 6.16.

For all γ ∈ C, define

spc(γ) :=
{
k ∈ C | kerA rad

k,−β(γ) 6= {0}
}
.

Moreover, recall that we denote Sunity := {eiθ, θ ∈ [0; 2π)}.

Proposition 6.16 Suppose Assumption 3 holds true and γ ∈ C \ Sunity. Let k ∈ C be

such that k2 ∈ R. If (u,w) is a non trivial element of kerA rad
k,−β(γ), then (u,w) belongs

to H1(D)×H1(D). In this case, (u,w) is a classical transmission eigenvalue in the sense

of Definition 2.1. As a consequence, for γ ∈ C \Sunity, spc(γ)∩ (R∪Ri) is independent
of γ and is exactly the set of real or purely imaginary transmission eigenvalues, in the

classical sense of Definition 2.1.

Proof Let k ∈ C be such that k2 ∈ R. Let v = (u,w) be a non trivial element of

kerA rad
k,−β(γ). By definition of Xrad

−β (γ) (see (56)), we have v = ca sa + cs (sc + γsd) + ṽ

for some constants ca, cs and some ṽ ∈ X−β. Since k2 is real, there holds q(v,v) = 0

(here, q is the symplectic form defined in (58)). By a simple computation, working

like in point iii) of the proof of Proposition 6.13, and using Proposition 6.12, we find

q(v,v) = i|cs|2(1 − |γ|2). By assumption, we have |γ| 6= 1. This implies cs = 0 and

v ∈ H1(D)× H1(D).

According to the analytic Fredholm theorem, for all γ ∈ C, there holds the following

alternative: either spc(γ) is at most discrete with infinity as the only accumulation

point, or spc(γ) is equal to the entire complex plane. From the previous proposition,

we deduce the

Corollary 6.17 Suppose Assumption 3 holds true. If there exist γ0 ∈ C and k ∈ C such

that kerA rad
k,−β(γ0) = {0}, then, for all γ ∈ C \ Sunity, spc(γ) is at most discrete with

infinity as the only accumulation point. Moreover, in this case the set of transmission

eigenvalues, in the classical sense of Definition 2.1, is at most discrete with infinity as

the only accumulation point.

Proof Let γ0 ∈ C and k ∈ C be such that kerA rad
k,−β(γ0) = {0}. In this case, with the

analytic Fredholm theorem, we can prove that spc(γ0) is at most discrete with infinity

as the only accumulation point. Now, if γ belongs to C \ Sunity ,we know, thanks to

Proposition 6.16, that (spc(γ) ∩ R) ⊂ (spc(γ0) ∩ R). This proves that (spc(γ) ∩ R)
is discrete. Therefore, there exists k ∈ R such that A rad

k,−β(γ) is injective. From the
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analytic Fredholm theorem, we deduce that spc(γ) is at most discrete with infinity as

the only accumulation point. Using the theorem of decomposition 5.6, we can prove

that the classical H1 transmission eigenvalues, in the classical sense of Definition 2.1,

actually belong to span(sa) ⊕ X−β. Noticing that this space is included in Xrad
−β (γ) for

all γ ∈ C, we obtain the second part of the corollary.

Let us emphasize that finding k such that kerA rad
k,−β(γ0) = {0} cannot be done using

the variational approach of the proof of Theorem 6.1. For now, this remains an open

problem. What could be proven in the present case is that a given value of k cannot

belong to spc(γ) for all parameters A1 or A2 varying in a small interval. The idea is to

derive the eigenvalue equation with respect to Ai, i = 1 or 2. In other words, we are not

able to prove the discreteness of transmission eigenvalues for some given configuration.

But we can prove the existence of a small perturbation of the configuration such that

the discreteness holds.

Let us now go back to the question stated above: does the set of eigenvalues spc(γ) re-

ally depend on γ, and if it does, how can we explain and use our result? By Proposition

6.16, if γ0 /∈ Sunity, real values and purely imaginary values of spc(γ) are independent

of γ and correspond to transmission eigenvalues, in the classical sense of Definition 2.1.

But what can we say concerning complex values? We conjecture that part of them

depend on γ while the others do not. The latest are transmission eigenvalues, in the

classical sense of Definition 2.1, while the first ones are not, because they are associated

to strongly singular fields (u,w) which are not in H1(D) × H1(D). As a consequence,

we also conjecture that Herglotz waves are not dense in the functional spaces Xrad
−β (γ)

which contain strongly singular fields.

A numerical way to identify “true” complex transmission eigenvalues among all

values of spc(γ) could be to compute the values of spc(γ) for different γ. True

eigenvalues are those which are independent of γ. Finally, let us underline that such

numerical computations cannot be achieved with a standard approach (a finite element

discretization for instance) which will not be able to capture the possible strongly

oscillating behavior of the solutions. Again we can benefit from the previous work on

the SCTP (sign changing transmission problem) for which we have proved the efficiency

of using Perfeclty Matched Layers around the singular points in the case γ = 0 (see [10,

Chapter 5]). We are currently investigating how to extend this approach to deal with

the configurations γ 6= 0.
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[26] S.A. Nazarov and B. A. Plamenevskĭı. Elliptic problems in domains with piecewise smooth

boundaries, volume 13 of Expositions in Mathematics. De Gruyter, Berlin, Germany, 1994.

[27] S.A. Nazarov and J. Taskinen. Radiation conditions at the top of a rotational cusp in the theory

of water-waves. Math. Model. Numer. Anal., 45(5):947–979, 2011.

[28] P. Ola. Remarks on a transmission problem. J. Math. Anal. Appl., 196:639–658, 1995.

[29] J. Peetre. Another approach to elliptic boundary problems. Commun. Pure Appl. Math.,

14(4):711–731, 1961.
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