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General setting
I We are interested in methods based on the propagation of waves to
determine the shape, the physical properties of objects, in an exact or
qualitative manner, from given measurements.

I General principle of the methods:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.

• Many techniques: Xray, ultrasound imaging, seismic tomography, ...
• Many applications: biomedical imaging, non destructive testing of
materials, geophysics, ...
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Model problem
I Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients ρ) in R2.

ui := eikθinc·x (incident dir. θinc ∈ S1)

ρ = 1 D
ρ 6= 1

Find u such that
−∆u = k2ρ u in R2,

u = ui + us in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0.

(1)

Definition: ui = incident field (data)
u = total field (uniquely defined by (1))
us = scattered field (uniquely defined by (1)).
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Illustration of the scattering of a plane wave
I Below, the movies represent a numerical approximation of the solution
of the previous problem.

Incident field Total field Scattered field

t 7→ <e (e−iωtui(x)) t 7→ <e (e−iωtu(x)) t 7→ <e (e−iωtus(x))

I The pulsation ω is defined by ω = k/c where c = 1 is the celerity of the
waves in the homogeneous medium.

Can we recover information on the inclusion from far field measurements?
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Issue considered in this talk 1/2

We are interested in defects that cannot be detected and in invisibility.
1) Is there an incident wave which does not scatter at infinity?

2) Can it be that all incident waves do not scatter at infinity?

I These questions have been studied when one can produce incident plane
waves and measure the resulted scattered fields in all directions .

Question 1) leads to the analysis of the Interior Transmission Problem.
(Cakoni, Colton, Gintides, Haddar, Hu, Kirsch, Kress, Lakshtanov, Lechleiter,
Monk, Sylvester, Païvärinta, Rynne, Sleeman, Sun,...)

Question 2) is related to the design of cloaking devices.

I Extensions to consider the case of partial aperture (but still with a
continuum of data).
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Issue considered in this talk 2/2
I In practice, one has always a finite number of emitters and receivers.

1) Is there an incident wave which does not scatter at infinity?
2) Can it be that all incident waves do not scatter at infinity?

when one can produce incident plane waves and measure the resulting
scattered field only in a finite number of given directions.
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Outline of the talk

1 Introduction

2 Non-scattering wavenumbers

Is there an incident wave which does not scatter at infinity?

3 Invisible inclusions

Can it be that all incident waves do not scatter at infinity?

4 Conclusion
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Setting
I Let θ1, . . . ,θN be given directions of the unit circle S1.

−→
θ1

←−
θ2

−→
θ3

−→
θ1
←−
−θ1

−→
−θ2

←−−θ3

I We assume that emitters and receivers coincide:

• We send the plane wave eikθ1·x (direction θ1) and measure the resulted
scattered fields in the directions −θ1, . . . ,−θN .

• We repeat the experiment sending successively plane waves in the
directions θ2,. . . , θN .

N ×N multistatic backscattering measurements
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Far field pattern
I For a given incident direction θinc, the scattered field us(·,θinc) admits
the asymptotic expansion

us(x,θinc) = eikr
√
r

(
u∞s (θsca,θinc) + O(1/r)

)
as r = |x| → +∞, uniformly in θsca ∈ S1.

Definition: The map u∞s (·, ·) : S1×S1 → C is called the far field pattern.

I Remark: in other words, the scattered field of an incident plane wave
behaves in each direction like a cylindrical wave at infinity.

The far field pattern is the quantity one can measure at infinity (the
other terms are too small).

I In practice, the goal of imaging techniques is to find features of the
inclusion from the knowledge of u∞s (·, ·) on a finite subset of S1 × S1.
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Relative scattering matrix
I For θ1, . . . ,θN given directions of S1, we introduce the relative
scattering matrix S (k) ∈ CN×N defined via

Smn(k) = u∞s (−θm,θn)

I Note that S (k) = 0 when there is no obstacle (⇒ “relative”).

Definition. Values of k > 0 for which S (k) has a non trivial kernel are
called non-scattering wavenumbers.

I For k non-scat. wavenumber, there is some (α1, . . . , αN ) ∈ CN \ {0} s.t.

N∑
n=1

αneikθn ·x

does not scatter at infinity in the directions −θ1, . . . ,−θN .
I Unlike in the continuous setting, the scattered field does not vanish
identically at infinity.
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Discreteness of non-scattering wavenumbers
I First, we want to prove that non-scat. wavenumbers form a discrete set.

Idea of the approach:

1 We show that k 7→ S (k) can be meromorphically extended to C \ {0}.

2 For k ∈ Ri \ {0}, using integration by parts, we prove the energy identity

c α>S (k)α =
∫
R2
|∇us|2 + |k|2ρ |us|2 + |k|2

∫
D

(1− ρ)|ui|2.

where ui =
N∑

n=1
αneikθn ·x , α = (α1, . . . , αN )> and c 6= 0 is a constant.

3 For k ∈ Ri \ {0}, ρ < 1, we deduce that S (k) is invertible.

4 Using the principle of isolated zeros, we obtain the following result:

Proposition. Suppose that ρ < 1. Then the set of non-scattering
wavenumbers is discrete and countable.

Two remarks:
I Unlike in the continuous setting, this problem does not reduce to a
problem set on the (compact) support of the inclusion.
I Unlike in the continuous setting, the cases A = 1 and A 6= 1 (for
div (A∇u) + k2ρu = 0) do not require different functional frameworks.
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Invisible inclusions: setting
I In the previous section, for a given obstacle, we have studied the k such
that kerS (k) 6= {0} (S (k) is the relative scattering matrix).

I Now, we assume that k and the support of the inclusion D are given.
We explain how to construct non trivial inclusions such that S (k) = 0.

I To simplify the presentation, assume that there is only one incident
direction θinc. Let θ1, . . . ,θN be given scattering directions.

Formulation of the problem:
Find a real valued function ρ 6≡ 1, with ρ − 1 supported in D, such
that the solution of the problem

Find u = us + eikθinc·x such that
−∆u = k2ρ u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

Origin of the method:

• The idea we will use has been introduced in Nazarov 11 to construct waveg-
uides for which there are embedded eigenvalues in the continuous spectrum.

• It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible
perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
14 for an application to a water-wave problem).
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Sketch of the method

I Define σ = ρ− 1 and gather the measurements in the vector

F(σ) = (F1(σ), . . . ,F2N (σ))> ∈ R2N .

(N complex measurements ⇒ 2N real measurements)

I We look for small perturbations of the reference medium: σ = εµ where
ε > 0 is a small parameter and where µ has be to determined.
Assume that there are µ0, µ1, . . . , µ2N ∈ L∞(D) such that dF(0)(µ0) = 0,
[dF(0)(µ1), . . . , dF(0)(µ2N )] = Id2N . Assumption on the differential of F at 0

I Take µ = µ0 +
2N∑

n=1
τnµn where the τn are real parameters to set:

F(εµ) = 0 ⇔

0 = ε
2N∑

n=1
τndF(0)(µn) + ε2F̃ε(µ)

where ~τ = (τ1, . . . , τ2N )>

and Gε(~τ) = −εF̃ε(µ).

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set σsol := εµsol. We have F(σsol) = 0 (existence of an invisible inclusion).
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Application: step 1
I For our problem, we have (σ = ρ− 1)

F(σ) = (<e u∞s (θ1), . . . ,<e u∞s (θN ),=m u∞s (θ1), . . . ,=m u∞s (θN )).

To compute dF(0)(µ), we take ρε = 1 + εµ with µ supported in D.

I We denote uε, uεs the functions satisfying

Find uε = uεs + eikθinc·x such that
−∆uε = k2ρε uε in R2,

uεs outgoing.

• As r → +∞, we have uεs (x) = eikr
√
r

(
uε∞s (θsca) + O(1/r)

)

with uε∞s (θsca) =

• We can prove that uεs = O(ε).

I With this choice, we obtain the expansion (Born approx.), for small ε

uε∞s (θsca) = 0 + ε c k2 + O(ε2).

I It is easy to find functions µ0 ∈ ker dF(0) (i.e., s.t. uε∞s (θn) = O(ε2)

for n = 1, . . . ,N ).

But we want uε∞s (θn) = 0 ...
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Application: step 2
I In the expression ρε = 1 + εµ, we redecompose µ as

µ = µ0 +
N∑

m=1
τ1,m µ1,m +

N∑
m=1

τ2,m µ2,m

where τ1,m, τ2,m are real parameters that we will tune

µ0 6≡ 0, µ1,m, µ2,m are given real valued functions supp. on D s.t.

∫
D
µ0 cos(k(θinc − θn) · x) dx = 0,

∫
D
µ0 sin(k(θinc − θn) · x) dx = 0∫

D
µ1,m cos(k(θinc − θn) · x) dx = δmn ,

∫
D
µ1,m sin(k(θinc − θn) · x) dx = 0∫

D
µ2,m cos(k(θinc − θn) · x) dx = 0,

∫
D
µ2,m sin(k(θinc − θn) · x) dx = δmn .

Assume that there are µ0, µ1, . . . , µ2N ∈ L∞(D) such that dF(0)(µ0) = 0,
[dF(0)(µ1), . . . , dF(0)(µ2N )] = Id2N .
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We introduce 2N real parameters because we want to cancel N com-
plex coefficients.
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Application: step 3
I With this decomposition, we obtain

uε∞s (θn) = ε c k2 (τ1,n + iτ2,n) + ε2c k2 (F̃ε1,n(~τ) + iF̃ε2,n(~τ)),

where F̃ε1,n, F̃ε2,n are real-valued functions depending (non linearly) on ε,
~τ := (τ1,1, . . . , τ1,N , τ2,1, . . . , τ2,N )>.

Use the term at order ε whose dependence with respect to ρ is simple
to control and cancel the whole expansion.

I Now, we can impose uε∞s (θn) = 0 solving the fixed point problem:

Find ~τ ∈ R2N such that ~τ = Gε(~τ), (2)

with Gε(~τ) := −ε (F̃ε1,1(~τ), . . . , F̃ε1,N (~τ), F̃ε2,1(~τ), . . . , F̃ε2,N (~τ))>.

I We can prove that the map Gε : R2N → R2N verifies the estimate
|Gε(~τ)−Gε(~τ ′)| ≤ C ε |~τ − ~τ ′| . Therefore Gε is a contraction for ε small
enough and (2) has a unique solution ~τ sol.

Proposition: For ε small enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uεs + eikθinc·x such that
−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

18 / 30



Application: step 3
I With this decomposition, we obtain

uε∞s (θn) = ε c k2 (τ1,n + iτ2,n) + ε2c k2 (F̃ε1,n(~τ) + iF̃ε2,n(~τ)),

where F̃ε1,n, F̃ε2,n are real-valued functions depending (non linearly) on ε,
~τ := (τ1,1, . . . , τ1,N , τ2,1, . . . , τ2,N )>.

Use the term at order ε whose dependence with respect to ρ is simple
to control and cancel the whole expansion.

I Now, we can impose uε∞s (θn) = 0 solving the fixed point problem:

Find ~τ ∈ R2N such that ~τ = Gε(~τ), (2)

with Gε(~τ) := −ε (F̃ε1,1(~τ), . . . , F̃ε1,N (~τ), F̃ε2,1(~τ), . . . , F̃ε2,N (~τ))>.

I We can prove that the map Gε : R2N → R2N verifies the estimate
|Gε(~τ)−Gε(~τ ′)| ≤ C ε |~τ − ~τ ′| . Therefore Gε is a contraction for ε small
enough and (2) has a unique solution ~τ sol.

Proposition: For ε small enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uεs + eikθinc·x such that
−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

18 / 30



Application: step 3
I With this decomposition, we obtain

uε∞s (θn) = ε c k2 (τ1,n + iτ2,n) + ε2c k2 (F̃ε1,n(~τ) + iF̃ε2,n(~τ)),

where F̃ε1,n, F̃ε2,n are real-valued functions depending (non linearly) on ε,
~τ := (τ1,1, . . . , τ1,N , τ2,1, . . . , τ2,N )>.

Use the term at order ε whose dependence with respect to ρ is simple
to control and cancel the whole expansion.

I Now, we can impose uε∞s (θn) = 0 solving the fixed point problem:

Find ~τ ∈ R2N such that ~τ = Gε(~τ), (2)

with Gε(~τ) := −ε (F̃ε1,1(~τ), . . . , F̃ε1,N (~τ), F̃ε2,1(~τ), . . . , F̃ε2,N (~τ))>.

I We can prove that the map Gε : R2N → R2N verifies the estimate
|Gε(~τ)−Gε(~τ ′)| ≤ C ε |~τ − ~τ ′| . Therefore Gε is a contraction for ε small
enough and (2) has a unique solution ~τ sol.

Proposition: For ε small enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uεs + eikθinc·x such that
−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

18 / 30



Application: step 3
I With this decomposition, we obtain

uε∞s (θn) = ε c k2 (τ1,n + iτ2,n) + ε2c k2 (F̃ε1,n(~τ) + iF̃ε2,n(~τ)),

where F̃ε1,n, F̃ε2,n are real-valued functions depending (non linearly) on ε,
~τ := (τ1,1, . . . , τ1,N , τ2,1, . . . , τ2,N )>.

Use the term at order ε whose dependence with respect to ρ is simple
to control and cancel the whole expansion.

I Now, we can impose uε∞s (θn) = 0 solving the fixed point problem:

Find ~τ ∈ R2N such that ~τ = Gε(~τ), (2)

with Gε(~τ) := −ε (F̃ε1,1(~τ), . . . , F̃ε1,N (~τ), F̃ε2,1(~τ), . . . , F̃ε2,N (~τ))>.

I We can prove that the map Gε : R2N → R2N verifies the estimate
|Gε(~τ)−Gε(~τ ′)| ≤ C ε |~τ − ~τ ′| . Therefore Gε is a contraction for ε small
enough and (2) has a unique solution ~τ sol.

Proposition: For ε small enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uεs + eikθinc·x such that
−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

18 / 30



Application: step 3
I With this decomposition, we obtain

uε∞s (θn) = ε c k2 (τ1,n + iτ2,n) + ε2c k2 (F̃ε1,n(~τ) + iF̃ε2,n(~τ)),

where F̃ε1,n, F̃ε2,n are real-valued functions depending (non linearly) on ε,
~τ := (τ1,1, . . . , τ1,N , τ2,1, . . . , τ2,N )>.

Use the term at order ε whose dependence with respect to ρ is simple
to control and cancel the whole expansion.

I Now, we can impose uε∞s (θn) = 0 solving the fixed point problem:

Find ~τ ∈ R2N such that ~τ = Gε(~τ), (2)

with Gε(~τ) := −ε (F̃ε1,1(~τ), . . . , F̃ε1,N (~τ), F̃ε2,1(~τ), . . . , F̃ε2,N (~τ))>.

I We can prove that the map Gε : R2N → R2N verifies the estimate
|Gε(~τ)−Gε(~τ ′)| ≤ C ε |~τ − ~τ ′| . Therefore Gε is a contraction for ε small
enough and (2) has a unique solution ~τ sol.

Proposition: For ε small enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uεs + eikθinc·x such that
−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

18 / 30



How to build the shape functions?
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D
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1 First, we build the µ1,m, µ2,m.

en(x) = cos(k(θinc − θn) · x) and eN+n(x) = sin(k(θinc − θn) · x).

On D, {en}2N
n=1 is linearly independent ⇒ the matrix B ∈ R2N×2N s.t.

Bmn =
∫
D
em(x)en(x) dx

is invertible. We denote D = B−1. Finally, we take

µ1,m =
2N∑

n=1
Dmn en and µ2,m =

2N∑
n=1

D(N+m)n en

2 For µ0, we want

∫
D
µ0 cos(k(θinc − θn) · x) dx = 0,
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D
µ0 sin(k(θinc − θn) · x) dx = 0.µ0 = µ#

0 −
N∑

m=1

(∫
D
µ1,m µ#

0 dx
)
µ1,m −

N∑
m=1

(∫
D
µ2,m µ#

0 dx
)
µ2,m

where µ#
0 /∈ span{µ1,1, . . . , µ1,N , µ2,1, . . . , µ2,N} .
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Remarks

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m

I There holds µ sol 6≡ 0 (we have indeed constructed a non trivial invisible
inclusion).

∫
D
µ0 cos(k(θinc − θn) · x) dx = 0,

∫
D
µ0 sin(k(θinc − θn) · x) dx = 0∫

D
µ1,m cos(k(θinc − θn) · x) dx = δmn ,

∫
D
µ1,m sin(k(θinc − θn) · x) dx = 0∫

D
µ2,m cos(k(θinc − θn) · x) dx = 0,

∫
D
µ2,m sin(k(θinc − θn) · x) dx = δmn .

I The method is interesting for several reasons:

- The inclusion can be built and does not involve singular materials (6=
cloaking techniques). Moreover, µsol is just a small perturbation of µ0:

µsol = µ0 + O(ε).

- A numerical algorithm directly follows from the method.

- It proves the existence of invisible inclusions. This may appear not so
surprising since measurements belong to a space of finite dimension and
ρ ∈ L∞(D).

The case θinc = θsca shows that nothing is obvious...
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The case θinc = θsca

I In the previous approach, we needed to assume θinc 6= θn, n = 1, . . . ,N .

What if θinc = θn?

uε∞
s (θn) = 0 + ε c k2

∫
D
µ eik(θinc−θn)·x dx + O(ε2).

θinc θsca = θinc

Emitter Receiver

I We know that the solution of

Find u = us + eikθinc·x such that
−∆u = k2ρ u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θsca) = c k2
∫
D

(ρ− 1) (ui + us) e−ikθsca·x dx.

I This allows to prove the formula (use Colton, Kress 98)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.
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I This allows to prove the formula (use Colton, Kress 98)

=m (c−1 u∞s (θinc)) = k
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|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.
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Data and algorithm

I We can solve the fixed point problem using an iterative procedure: we
set ~τ 0 = (0, . . . , 0)> then define

~τ n+1 = Gε(~τ n).

I At each step, we solve a scattering problem. We use a P2 finite element
method set on the ball B8. On ∂B8, a truncated Dirichlet-to-Neumann map
with 13 harmonics serves as a transparent boundary condition.

I For the numerical experiments, we take D = B1, M = 3 (3 directions of
observation) and

θinc = (cos(ψinc), sin(ψinc)), ψinc = 0◦

θ1 = (cos(ψ1), sin(ψ1)), ψ1 = 90◦

θ2 = (cos(ψ2), sin(ψ2)), ψ2 = 180◦

θ3 = (cos(ψ3), sin(ψ3)), ψ3 = 225◦
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Results: coefficient ρ at the end of the process
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Results: scattered field

Figure: |us| at the end of the fixed point procedure in logarithmic scale. As
desired, we see it is very small far from D in the directions corresponding to
the angles 90◦, 180◦ and 225◦. The domain is equal to B8.
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Results: far field pattern

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
Far field pattern at iteration 0
Far field pattern at the end of the fixed point procedure

Figure: The dotted lines show the directions where we want u∞s to vanish.
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Application to EIT
I In Chesnel, Hyvönen & Staboulis 14, we adapted the approach to build
invisible conductivities in Electrical Impedance Tomography.

Goal of EIT: find perturbations of the reference conductivity from
boundary measurements of current and potential.

M0

M1

MN

∆un = 0
ν · ∇un = δn − δ0

M0

M1

MN

div (σ∇vn) = 0
ν · σ∇vn = δn − δ0

Find σ 6≡ 1, with suppσ ⊂ D, s.t.

(vn − un)(Mm) = (vn − un)(M0)

for m,n = 1, . . . ,N .

I To implement the method, we need to prove that on the support of the
perturbation, the family {∇um · ∇un}1≤m≤n≤N is linearly independent .

• Ok in 2D: explicit expression in the disk + conformal map.
• Open problem in 3D.
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Numerical results

Examples of conductivities which provide the same measurements as the
reference conductivity σ = 1.
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1.2I The dots corresponds to the positions of the electrodes.
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Conclusion

Discreteness of non-scattering eigenvalues

For a given obstacle, is there an incident field that does not scatter?

♠ How to proceed to prove discreteness of non-scattering wavenumbers for
situations other than multistatic backscattering measurements?

♠ Can we relax assumptions on ρ?

♠ Can we prove existence of non-scattering wavenumbers in this setting?

♠ Do non-scattering wavenumbers (if they exist) converge to the trans-
mission eigenvalues of the continuous framework when the number of
directions tends to +∞?

Invisibility

For a given frequency, how to build an invisible obstacle?

♠ An important issue: can we reiterate the process to construct larger
defects in the reference medium? Work in progress...
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Thank you for your attention!!!
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