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Introduction

» For Q a Lipschitz domain of R¢, d = 2, 3, consider the scalar spectral pb
—Au = du inQ
u = 0 on 0N).

Can we have eigenvalues A\ > 0 with eigenfunctions v € H*(£2) ?

Yes, an unbounded sequence when 2 is bounded.

No, when (Q is the exterior of a bounded
domain due to the Rellich lemma.

Possibly, when 2 is a waveguide
unbounded in one direction.

Corresponding eigenfunctions are called trapped modes. -
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Problem with Dirichlet BCs 1/2

> Assume Q coincides with the strip R x (0;1) outside of a bounded region

£

—Au = Mu in(
u = 0 on 0f).

» Denote by Ap the Dirichlet Laplacian (positive selfadjoint operator of
L2(Q)). Its essential spectrum is Gess(Ap) = [72;+00) .
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Problem with Dirichlet BCs 1/2

» Assume  coincides with the strip R x (0; 1) outside of a bounded region

, £

—Au = Mu in(
u = 0 on 0f).

» Denote by Ap the Dirichlet Laplacian (positive selfadjoint operator of
L2(Q)). Its essential spectrum is Gess(Ap) = [72;+00) .

» Depending on 2, Ap may have discrete spectrum or

PICTURE IN THE COMPLEX PLANE:

— Uess(AD)
® oa(Ap) % ® -
op(AD) O 72
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Problem with Dirichlet BCs 2/2

» From the min-max principle, existence of trapped modes associated with
discrete spectrum is guaranteed if there is u € H§(Q2) \ {0} such that

/|Vu|2da:
Q7<7T2.
/u2dw
Q
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» Possible extension by zero in H§(£2) provides a monotonicity principle of
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Problem with Dirichlet BCs 2/2

» From the min-max principle, existence of trapped modes associated with
discrete spectrum is guaranteed if there is u € H§(Q2) \ {0} such that

/ |Vul|? de
S

/u2 dx
Q

» Possible extension by zero in H§(£2) provides a monotonicity principle of
the spectrum wrt the geometry:

QCQ = info(Ap(Q)) <info(Ap(h)).

» Examples of trapped modes:

Bulgakov, Dauge, Davis, Duclos, Evans, Exner, Krejcirik, Kuznetsov, Levitin, Linton, Nazarov, Raymond, Sadreel,/ 31
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Problem with Neumann BCs 1/2

» Assume ) coincides with the strip R x (0;1) outside of a bounded region
) —Au = Au inQ
Opu = 0 on If).

» Denote by Ay the Neumann Laplacian (positive selfadjoint operator of
L2(€)). Its essential spectrum is gess(An) = [0; +00) .

» Ay cannot have discrete spectrum but may have
= If trapped modes exist, eigenvalues are embedded in oess(AN).

PICTURE IN THE COMPLEX PLANE:

_— G'ess(AN)
op(AnN) 5

5 /31



Problem with Neumann BCs 2/2

» One cannot use directly the min-max principle to prove that o, (An) # 0.
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Problem with Neumann BCs 2/2

» One cannot use directly the min-max principle to prove that o, (An) # 0.

» If Q has some symmetries, existence of trapped modes can be proved in
certain cases. Example of trapped mode:

La vie, c’est comme une dent...

» Other examples of trapped modes:

Chesnel, Evans, Koch, Kuznetsov, Levitin, Linton, McIver, Nazarov, Pagneux, Parnovski, Ursell, Vassiliev,...

» Note that symmetry is not necessary to get trapped modes.
6 /31



Today

Do they exist trapped modes in electromagnetic waveguides ?

9)
L]

e The connected waveguide 2 C R? is the union of a bounded resonator and
one or several semi-infinite branches, with bounded cross-sections.

e The boundary 0f2 is Lipschitz and we impose perfect conductor boundary
conditions.

e We work with homogeneous materials (¢ = p = 1).
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Today

Do they exist trapped modes in electromagnetic waveguides ?

9)
L]

» While the literature is rich for scalar problems (acoustic, water waves,
quantum mechanic, Maxwell independant of one variable)

Bonnet-Ben Dhia, Chesnel, Craster, Davies, Dauge, Duclos, Evans, Exner, Goldstone,
Hein, Jaffe, Jones, Koch, Krejcirik, Kuznetsov, Levitin, Linton, Mercier, McIver,

Nazarov, Pagneux, Parnovski, Raymond, Seba, Ursell, Vassiliev, Witsch,...

surprisingly, apart from the recent work Briet et al. 25 almost no liter-

ature in electromagnetism.
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Today

Do they exist trapped modes in electromagnetic waveguides ?

The effect of bending and twisting is studied in

B P. Briet, M. Cassier, T. Ourmieres-Bonafos and M. Zaccaron. Geometric
spectral properties of electromagnetic waveguides. arXiv:2508.13591, 2025.

surprisingly, apart from the recent work |Briet et al. 25| almost no liter-
ature in electromagnetism.
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Outline of the talk

o The Maxwell’s operator

9 Trapped modes: complete separation of variables

e Trapped modes: separation of variables in the resonator

e Trapped modes: absence of separation of variables
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The Maxwell’s operator

» We consider the formulation for the electric field

curlcurl £
div E
E xv

A\E
0
0

in
in
on ).
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The Maxwell’s operator

» We consider the formulation for the electric field

curlcurlE = ME in ()
divE = 0 in
Exv = 0 on ).

» Without the constraint div E = 0 in €, the problem would have a kernel
of infinite dimension containing {Vep, ¢ € H§(Q)}.
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The Maxwell’s operator

» We consider the formulation for the electric field

curlcurlE = ME in ()
divE = 0 in
Exv = 0 on ).

» Set L*(Q) := (L*(©2))? and work in

H(div;0) = {E € L?*(Q) |div E = 0 in Q}
which is a Hilbert space for the inner product (-, -)r2(q)-
» Define the unbounded operator A such that

D(A) = {EeXy(Q)|curlcurl E € L?(Q)}
AE = curlcurlFE

where X (Q) := {E € H(div;0) |curl E € L*(Q) and E x v = 0 on 9Q}.

PROPOSITION. A is a positive selfadjoint operator and

(AE,E')12q) = / curl E - curl E' de, VE,E' € D(A).
Q
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Essential spectrum 1/3

» Essential spectrum for A in Q is due to propagating modes, i.e.
solutions of the form E(x) = &(z,y)e'*, with 8 € R, to

curlcurlE = ME inll
divE = 0 in IT
Exv = 0 on OII.
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Essential spectrum 1/3

= =

» Essential spectrum for A in Q is due to propagating modes, i.e.
solutions of the form E(z) = &(z,y)e’?*, with 8 € R, to

curlcurlE = ME inll
divE = 0 in IT
Exv = 0 on OII.

Propagating Transverse Electric modes (TE, E, = 0)

ETE(z) = ( CurlzDsgN(%y) )ezl:i\/)\)\N27

An is the first positive eigenvalue of Ay (S)

exist for A > Ay . Here . . . .
N is a corresponding eigenfunction.
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Essential spectrum 2/3

Propagating Transverse Magnetic modes (TM, H, = 0)
Vop(z,y) ;
E™(g) = ( o ’ eTPrz  with Bp = VA — Ap,
+ (@) FiBp' Apep(x,y)

Ap is the first eigenvalue of Ap(S)

exist for A > A\p . Here . . . .
@p is a corresponding eigenfunction.
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Essential spectrum 2/3

Propagating Transverse Magnetic modes (TM, H, = 0)

\% , .

Bel(@) = ( ﬂFz‘ﬂ‘g[;(cZDy()x y) >6MDZ’ with Ao = VA= A,
D 5

Ap is the first eigenvalue of Ap(S)

exist for A > Ap . Here . . . .
@p is a corresponding eigenfunction.

Propagating Transverse Electro-Magnetic modes (TEM, E, = H, = 0)

ET™M(2) = ( Velz,y) )eiiﬁz

0
Ap = 0 inS
exist for all A > 0 iff S is not simply connected. Here| ¢ = 1 onT
¢ = 0 ondS\T.
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Essential spectrum 3/3

» But Filonov 05 ensures that Ay < Ap (see also Friedlander 91).
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Essential spectrum 3/3

» But Filonov 05 ensures that Ay < Ap (see also Friedlander 91).

ExAMPLE: For S = (0;1)?, the eigenvalues of Ay (S), Ap(S9) are

0,72, 7% 212, ..., 272 572, ...

» Actually, one has the stronger result A3(S) < AL (S) when S C R? is
simply connected (Rohleder 25).

1)

S

» We deduce the following statement:

THEOREM. Assume ) C R? is a connected union of a bounded domain and
several semi-infinite branches with the same section S.

1) If S is simply connected, then gess(A) = [An; +00).

Proof. See Filonov 19 and Bogli, Ferraresso, Marletta, Tretter 23. -



Essential spectrum 3/3

» But Filonov 05 ensures that Ay < Ap (see also Friedlander 91).

ExAMPLE: For S = (0;1)?, the eigenvalues of Ay (S), Ap(S9) are

0,72, 7% 212, ..., 272 572, ...

» Actually, one has the stronger result A3(S) < AL (S) when S C R? is

simply connected (Rohleder 25).

I« I

» We deduce the following statement:

several semi-infinite branches with the same section S.

1) If S is simply connected, then gess(A) = [An; +00).

2) If S is not simply connected, then oess(A) = [0; +00).

THEOREM. Assume ) C R? is a connected union of a bounded domain and

Proof. See Filonov 19 and Bogli, Ferraresso, Marletta, Tretter 23.
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Remark

» Assume that 99 is not connected and has one bounded component 9.

» Define 1 € H'(Q) such that
Ay = 0 inQ
¥ = 1 ondfy
b o= 0 ondR\ o

(existence ok due to the Poincaré inequality).
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Remark

» Assume that 99 is not connected and has one bounded component 9.

» Define 1 € H'(Q) such that
Ay = 0 inQ
¥ = 1 ondfy
b o= 0 ondR\ o

(existence ok due to the Poincaré inequality).

» Then V¢ eXpy(2) and curlcurlVy =0.

= ’ V1 is a trapped mode for A associated to the eigenvalue 0.

@ We wish to show existence of other trapped modes for A associated with

positive eigenvalues.
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Outline of the talk

9 Trapped modes: complete separation of variables
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Complete separation of variables 1/2

THEOREM. [Goldstone, Jaffe 92] If ¢ € H}(Q2p) is an eigenfunction of
the Dirichlet Laplacian in Qop associated to the eigenvalue Ao, then

w(y,2)
E(z,y,z) = 0
0

is an eigenfunction of A in  := (0; a) x Q2p associated to Ae for any a > 0.

Example: there are trapped modes in the above 3D L-shape domain.
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Complete separation of variables 1/2

THEOREM. If ¢ € H}(Q9p) is an eigenfunction of the Dirichlet Laplacian
in Qop associated to the eigenvalue A,, then for any a > 0, m € N,

)s@(y,Z)

7 in (?) Vol(y, 2)

a
is an eigenfunction of A in  := (0;a) x Qap associated to \e + m?72/a?.

mmnx

Ae cos(
E(z,y,z2) =

Proor.
1) Clearly divE =0 in .
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Complete separation of variables 1/2

THEOREM. If ¢ € H}(Q9p) is an eigenfunction of the Dirichlet Laplacian
in Qop associated to the eigenvalue A,, then for any a > 0, m € N,

Ao COS (m;m>go(y, z)

T in (?) Vo(y, 2)

a
is an eigenfunction of A in  := (0;a) x Qap associated to Ae + m?72/a?.

Proor.
1) Clearly div E =0 in Q. Y
2) Thus Yy T T

E There is an unbounded sequence of embedded eigenvalues.

Since inf gess(A) = min(n?, 72 /a?), Ae + m?7?/a® is embedded for all m > 1.

E(z,y,z) =

16/ 31



Complete separation of variables 2/2

THEOREM. If ¢ € HY(Q) is an eigenfunction of the Neumann Laplacian in
Qop associated to the eigenvalue Ao, then for any a > 0, m € N*,

E(z,y,2) = ( Sin(mﬂ/I)C?II'lZD(P(yaz) )

is an eigenfunction of A in Q = (0;a) x Qap associated to \e + m?27?/a.

11 x
yA

Since inf oess (A) = min(72, 72 /a?), Ao +m?n?/a? is embedded for all m > 1.
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Complete separation of variables 2/2

THEOREM. If ¢ € HY(Q) is an eigenfunction of the Neumann Laplacian in
Qop associated to the eigenvalue Ao, then for any a > 0, m € N*,

E(z,y,2) = ( Sin(mﬂ'/fE)C?.lI'IZD(P(yaz) )

is an eigenfunction of A in Q = (0;a) x Qap associated to \e + m?27?/a.

11 x
yA

Since inf oess (A) = min(72, 72 /a?), Ao +m?n?/a? is embedded for all m > 1.

» This is similar to the results obtained in bounded domains in Costabel,
Dauge 19.

17 / 31



Outline of the talk

e Trapped modes: separation of variables in the resonator

With complete separation of variables, we were able to construct exactly
eigenpairs for A. How to proceed without this assumption?
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The min-max principle

» Assume that S is simply connected. Then we saw that

Uess(A) = [/\N; —|—OO)

where Ay is the first positive eigenvalue of the Neumann Laplacian in S.
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m
»

The min-max principle

» Assume that S is simply connected. Then we saw that
Oess(A) = [A\n; +00)

where Ay is the first positive eigenvalue of the Neumann Laplacian in S.

According to the min-max principle, if there is E), # 0 in
Xn(Q) ={E € L*(Q)|curl E € L*(Q), div E=0in Q, E x v =0 on 90}

z h that
St tha / |curl E,|? dz
Q

[ 1B, de
Q

then A has an eigenvalue below ggs(A).

< )\]\U
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Building test fields

» Assume that Q=RUII

R is a bounded resonator

where | _ S x [0;400).
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Building test fields

» Assume that Q=RUII II
here R is a bounded resonator 1
A IT =5 x [0; +00).

» To construct test fields, a natural idea is to take

ER inR
0 in IT

where Ex is an eigenfunction of the resonator problem

E'_

p =

curlcurlEr = MErRr inR
Epxv = 0 on OR.
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Building test fields

» Assume that Q=RUII II
here R is a bounded resonator 1
A IT =5 x [0; +00).

» To construct test fields, a natural idea is to take

where Ex is an eigenfunction of the resonator problem
curlcurlEr = MpEr inR
Epxv = 0 on OR.

» Then we would obtain

/|curlEp|2da: /|curlER\2dw
Q _JR

1B, de JRRE
Q R

and if A\x < Ay, this would prove that A has an eigenvalue below oess(A)

= )\Ra
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Building test fields

» Assume that Q=RUII II
here R is a bounded resonator 1
A IT =5 x [0; +00).

» To construct test fields, a natural idea is to take

5=0%
where Ex is an eigenfunction of the resonator problem
curlcurlEr = MgEr inR
Erxv = 0 on OR.

» We have curl E, € L*(Q) but to get divE, =0 in Q, we must have

E, - v=0 ondRNII,

which does not hold in general...

20 / 31



Resonators with separation of variables 1/2
AL/V

» Assume that R = Sg x (—L;0).

» Using TE modes in R, we can create the eigenfunction

Ex(z) = < curlopon (2, 9) )sin(ﬂ'z/L)

0
2
curlcurl Er = ()\N(SR) + ﬁ) Er inR
such that Erxv = 0 on OR
Er v = 0 on OR N OII.
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Resonators with separation of variables 1/2

L=
» Assume that R = Sg x (—L;0). @ /

» Using TE modes in R, we can create the eigenfunction

Br(e) = (2O Vi)

0
2
curlcurl Er = ()\N(SR) + ﬁ) Er inR
such that Erxv = 0 on OR
Er v = 0 on OR N OII.

» From the previous analysis, we obtain the following statement:

THEOREM. For R = Sk x (—L;0), there are trapped modes as soon as

7T2
)\N(SR) aF J7) < )\N(S).
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Resonators with separation of variables 1/2

» This can be used to show the absence of monotonicity of the spectrum
of A wrt to the geometry:

O Q
.L/v V
T

Since An(Sr) = 72/d® < 72, one has

— -2 _
ca(A) # @ for L large enough. | An(8) =" and lga(4) =0

@ Though Q; C Qj, we have inf 0(A(Q;)) < inf o (A(Q2)).

T (=}

THEOREM. For R = Sk x (—L;0), there are trapped modes as soon as

7T2
)\N(SR) aF J7) < )\N(S).
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Resonators with separation of variables 2/2

L
» Assume now that R =S, x (—L;0)

where S, is not simply connected.
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Resonators with separation of variables 2/2

L

» Assume now that R =S, x (—L;0)
where S, is not simply connected.

» Using the TEM modes in R, we can create the eigenfunction

Br(e) = ( VY sintns/n)

0
2
curlcurlEr, = —Erp inR
12
such that Epxv = 0 on OR

Er-v = 0 on OR N III.
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Resonators with separation of variables 2/2

» Assume now that R =S, x (—L;0)
where S, is not simply connected.

» Using the TEM modes in R, we can create the eigenfunction

Er(z) = ( Vel(e,y) )sin(m/L)

0
2
curlcurl Ep = 72 Er inR
such that Erxv = 0 on IR
Er-v = 0 on OR N OII.

» From the previous analysis, we obtain the following statement:

THEOREM. For R = S, x (—L;0), there are trapped modes as soon as

7.‘.2

2 < An(9).
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Resonators with separation of variables 2/2

REMARK. Since we use extension by zero, it is sufficient to have separation
of variables only in a part of the resonator.

Possible sepa, iables here.
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Outline of the talk

e Trapped modes: absence of separation of variables
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Resonators large enough

> Assume that S C R? is simply connected so that gess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in Q C R3.

For a resonator large enough, Ap(Q) has a non-empty discrete spectrum.
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For a resonator large enough, Ap(Q) has a non-empty discrete spectrum.

We wish to prove a similar result for A by adapting Rohleder 25:

THEOREM. Let Q C R? be a bounded connected Lipschitz domain. The
Maxwell’s operator has at least two eigenvalues strictly less than AL (€2).
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Resonators large enough

> Assume that S C R? is simply connected so that gess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in Q C R3.

For a resonator large enough, Ap(Q) has a non-empty discrete spectrum.

We wish to prove a similar result for A by adapting Rohleder 25:

THEOREM. Let Q C R? be a bounded connected Lipschitz domain. The
Maxwell’s operator has at least two eigenvalues strictly less than AL (€2).

L

\9\: Let us compare the eigenvalues of Ap(€2) and A.

s
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An(S). Then A has an eigenvalue below Ay (S).

PROOF. Let Ap(f) denote the smallest eigenvalue of Ap(Q) and ® € H{(Q) be
an associated eigenfunction.
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Denote by Ap(Q) the Dirichlet Laplacian in 2 C R3.

THEOREM. Assume that 2 is such that Ap(£2) has an eigenvalue below
An(S). Then A has an eigenvalue below Ay (S).

PROOF. Let Ap(f) denote the smallest eigenvalue of Ap(Q) and ® € H{(Q) be
an associated eigenfunction. Set

® ®
E, = ( 0 ) — Vi with ¢ € Hy(2) such that Ay = div ( 0 ) .
0 0

We have E, € Xn(Q) \ {0}




Resonators large enough

» Assume that S C R? is simply connected so that oess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in 2 C R3.

THEOREM. Assume that 2 is such that Ap(£2) has an eigenvalue below
An(S). Then A has an eigenvalue below Ay (S).

PROOF. Let Ap(f) denote the smallest eigenvalue of Ap(Q) and ® € H{(Q) be
an associated eigenfunction. Set

® o
E, = ( 0 ) ~ V¢ with ¢ € Hy(Q) such that A = div ( 0 )
0 0
We have E, € Xn(22) \ {0} and
/|cur1Ep\2dz /|v<1>|2 — (AY)? da
Q _ JQ

/|Ep|2dm /@2 ~ VY de
JQ JQ




Resonators large enough

» Assume that S C R? is simply connected so that oess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in 2 C R3.

THEOREM. Assume that 2 is such that Ap(£2) has an eigenvalue below
An(S). Then A has an eigenvalue below Ay (S).

PROOF. Let Ap(f) denote the smallest eigenvalue of Ap(Q) and ® € H{(Q) be
an associated eigenfunction. Set

/(AC)ZdvC /|VC|2dw
But there holds inf L i 5}

! = in =———=Ap().
CeH} (A)\{0} / IV¢2de CEHS@\0} /C2 da
Q Q

/|cur1Ep\2dz /|v<1>|2 — (AY)? da
Q _JQ

/|Ep|2da: /@2 ~ VY de
Q JQ
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THEOREM. Assume that 2 is such that Ap(£2) has an eigenvalue below
An(S). Then A has an eigenvalue below Ay (S).

PROOF. Let Ap(f) denote the smallest eigenvalue of Ap(Q) and ® € H{(Q) be
an associated eigenfunction. Set
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Resonators large enough

» Assume that S C R? is simply connected so that oess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in 2 C R3.

THEOREM. Assume that 2 is such that Ap(£2) has an eigenvalue below
An(S). Then A has an eigenvalue below Ay (S).

PROOF. Let Ap(f) denote the smallest eigenvalue of Ap(Q) and ® € H{(Q) be
an associated eigenfunction. Set

/(AC)ZdvC /|VC|2dm
But there holds inf L —— i 5}

! = in “———=Ap().
CeH} (A)\ {0} / IV¢2de CEHS@\(0} /C2 da
Q Q

/|cur1Ep\2dz /|v<1>|2 — (AY)? da
Q _JQ

/|Ep|2da: /@2 ~ VY de
Q JQ

< Ap(Q2) < An(S).

Finally the min-max principle ensures that /A has an eigenvalue below Ax(S).0
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Resonators large enough

> Assume that S C R? is simply connected so that gess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in Q C R3.

THEOREM. Assume that 2 is such that Ap(£2) has an eigenvalue below
An(S). Then A has an eigenvalue below Ay (S).

There is an eigenvalue of the below
E an eigenvalue of the Dirichlet Laplacian in (2.
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Resonators large enough

> Assume that S C R? is simply connected so that gess(A) = [An(S); +00).
Denote by Ap(Q) the Dirichlet Laplacian in Q C R3.

THEOREM. Assume that  is such that Ap () has an eigenvalue below
AN (S). Then A has an eigenvalue below Ay (S).

There is an eigenvalue of the Maxwell operator below
E an eigenvalue of the Dirichlet Laplacian in (2.

APPLICATION. Assume that S = (0;1)2. Then trapped modes exist for
A as soon as  contains a cube of side v/3.

S

/3
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From discrete to embedded eigenvalues

» Maxwell’s equations offer an original way of playing with symmetries
and topology to exhibit embedded eigenvalues.

Tess(A(€2))= [0; +00)

m Gens (A(24)) = P (S4)i 400)

PROPOSITION. Discrete eigenvalues for A(€2;) are embedded for A(Q).
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From discrete to embedded eigenvalues

» Maxwell’s equations offer an original way of playing with symmetries
and topology to exhibit embedded eigenvalues.

Tess(A(€2))= [0; +00)

m Gens (A(24)) = P (S4)i 400)

PROPOSITION. Discrete eigenvalues for A(€2;) are embedded for A(Q).

Z

Proor. If Et € X (Q4) is an eigenfunction of A(Q4), define E such that

_E;—(m» Y, Z)
E=E" inQy4, E(z,y,z) = E;’(m,fy,z) in Q\ Q4.
—Ej($, Y, Z)

Then E € Xn(Q) is an eigenfunction of A(Q).
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The 6 legs animal 1/2

Does this €2 support trapped modes ?

» The section S of the branches of Q2 is a square of size 1 so that

Tess(A) = [12; 400).
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Does this €2 support trapped modes ?

Xsp

» The section S of the branches of Q2 is a square of size 1 so that

Tess(A) = [12; 400).

» The above results ensures that A in X3p admits a trapped mode with

oy, 2)
Ao A 0.66057> and E(z,y,z) = 0 ,
0

26 / 31



The 6 legs animal 1/2

Does this €2 support trapped modes ?

T+

» The section S of the branches of Q2 is a square of size 1 so that

Tess(A) = [12; 400).

» The above results ensures that A in X3p admits a trapped mode with
oy, 2)
Ao & 0.66057 and  E(z,y,2) = 0 :
0

where (A, ) is a trapped mode of the Dirichlet Laplacian in Xsop.
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The 6 legs animal 2/2

THEOREM. The 6 legs geometry supports trapped modes.

PROOF.
Ep in X3D

| 4 t B =
Se 0 elsewhere.
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THEOREM. The 6 legs geometry supports trapped modes.

PROOF.
Ep in X3D

| 4 t B =
Se 0 elsewhere.

» Then define E := E — V¢
where 1 € H}(Q) s.t. divE =0 in Q.
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The 6 legs animal 2/2

THEOREM. The 6 legs geometry supports trapped modes.

PROOF.
Ep in X3D

| 4 t B =
Se 0 elsewhere.

» Then define E := E — V¢
where 1 € H}(Q) s.t. divE =0 in Q.

» With sharp estimates, one establishes

/|curlE|2d:c<7r2/ |E|? dx.
Q Q

Finally, we conclude with the min-max principle. O
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The 3 legs animal

THEOREM. The 3 legs geometry supports trapped modes.

» The proof uses the trapped mode of the Dirichlet Laplacian in the 2D
L-shaped domain.

» Estimates are surprisingly more difficult than for the 6 legs geometry....
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Outline of the talk
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What we did

& We presented examples of waveguides where the Maxwell’s operator

has eigenvalues.
e
= A m

Complete separation of variables Separation of variables in R No separation of variables

Exact eigenv. of the scalar pb. Min-max principle + ad hoc test field

& Eigenvalues can be embedded or not in the essential spectrum.
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Conclusion

What we did

& We presented examples of waveguides where the Maxwell’s operator

has eigenvalues.
0 e

\

Complete separation of variables Separation of variables in R No separation of variables

Exact eigenv. of the scalar pb. Min-max principle + ad hoc test field

& Eigenvalues can be embedded or not in the essential spectrum.

Future work

1) Below an eigenvalue of Ap, there is an eigenvalue of A. Is there

anything to do with an (embedded) eigenvalue of Ay?
2) Can one show absence of eigenvalues in certain Q7 ’
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Conclusion

Future work

3) In geometries with exterior bumps, Ap has discrete spectrum.

Can one prove an equivalent for A with the Piola transform?
Can one exploit the results we have concerning variable €, u?

THEOREM. If S is simply connected, 2 =S X R, e, 4 > 1 with e > 1
or > 1 in a non-empty set, then oq(/1 ) # 0.

— post-doc of Michele Zaccaron.




Conclusion

Future work

3) In geometries with exterior bumps, Ap has discrete spectrum.

Can one prove an equivalent for A with the Piola transform?
Can one exploit the results we have concerning variable €, u?

THEOREM. If S is simply connected, 2 =S X R, e, 4 > 1 with e > 1

or > 1 in a non-empty set, then oq(/1 ) # 0.

— post-doc of Michele Zaccaron.

4) Can one exploit embedded eigenvalues via the Fano resonance mecha-
nism to achieve invisibility (zero reflection, perfect transmission,...)?
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The Fano resonance phenomenon

» Generically, slight perturbations of a geometry supporting embedded
eigenvalues give rise to complex resonances with small imaginary parts.

» Close to the complex resonances, one observes versatile scattering
phenomena (the Fano resonance ), which can be used to reach zero reflection.
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The Fano resonance phenomenon

Sym. geom. | Slightly non sym. geom.

> W Reu(w) with w = VA

IR I remec s =

» Complex spectrum computed with PMLs (we zoom at the real axis).

e Trapped mode e Complex resonance
o [V Iy 1 0 X = 4 iy
-1 “eq o . -1 e ° .
L] ° . L] ° .
-2 Ce, .‘o ° -2 Se, .'o °
® oy ®e oy
-3 ®o, %, 3 ®e, (3
®e ®e ®e ®e
" % e 4 ®e Y
0 1 2 3 4 5 6 0 1 2 3 4 5 6
il 4 | e 4 |
001 ¢ ¢ 001 R U
002 . 0.02 .
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Thank you for your attention!

A.-S. Bonnet-Ben Dhia, L. Chesnel and S. Fliss. Trapped modes in
electromagnetic waveguides. In preparation.

P. Briet, M. Cassier, T. Ourmiéres-Bonafos and M. Zaccaron. Geometric
spectral properties of electromagnetic waveguides. arXiv:2508.13591, 2025.
M. Costabel and M. Dauge. Maxwell eigenmodes in product domains.
Maxwell’s Equations: Analysis and Numerics, 24, 171, 2019

J. Goldstone and R.L. Jaffe. Bound states in twisting tubes. Phys. Rev. B.,
45(24):14100, 1992

Faber-Krahn inequality for the vector Laplacian. ESAIM - Control Optim.
Calc. Var., 31:21, 2025.

J. Rohleder. Curl curl versus Dirichlet Laplacian eigenvalues. Bull. Lond.
Math., 57(9), 2738-2747, 2025.

J. Rohleder. Inequalities between Neumann and Dirichlet Laplacian
eigenvalues on planar domains. Math. Ann., 392(4), 5553-5571, 2025.
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