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Introduction
▶ For Ω a Lipschitz domain of Rd, d = 2, 3, consider the scalar spectral pb

−∆u = λu in Ω
u = 0 on ∂Ω.

Can we have eigenvalues λ > 0 with eigenfunctions u ∈ H1(Ω)

Yes, an unbounded sequence when Ω is bounded.
Ω

No, when Ω is the exterior of a bounded
domain due to the Rellich lemma.

Possibly, when Ω is a waveguide
unbounded in one direction.

Ω

Ω

Corresponding eigenfunctions are called trapped modes.
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Problem with Dirichlet BCs 1/2
▶ Assume Ω coincides with the strip R× (0; 1) outside of a bounded region

1
−∆u = λu in Ω

u = 0 on ∂Ω.

▶ Denote by ∆D the Dirichlet Laplacian (positive selfadjoint operator of
L2(Ω)). Its essential spectrum is σess(∆D) = [π2; +∞) .

▶ Depending on Ω, ∆D may have discrete spectrum or punctual spectrum.

Picture in the complex plane:

O π2

σess(∆D)

σd(∆D)

σp(∆D)
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Problem with Dirichlet BCs 2/2
▶ From the min-max principle, existence of trapped modes associated with
discrete spectrum is guaranteed if there is u ∈ H1

0(Ω) \ {0} such that∫
Ω

|∇u|2 dx∫
Ω
u2 dx

< π2.

▶ Possible extension by zero in H1
0(Ω) provides a monotonicity principle of

the spectrum wrt the geometry:
Ω1 ⊂ Ω2 ⇒ inf σ(∆D(Ω2)) ≤ inf σ(∆D(Ω1)).

▶ Examples of trapped modes:

Bulgakov, Dauge, Davis, Duclos, Evans, Exner, Krejcirik, Kuznetsov, Levitin, Linton, Nazarov, Raymond, Sadreev,

Seba,...
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Problem with Neumann BCs 1/2
▶ Assume Ω coincides with the strip R× (0; 1) outside of a bounded region

1
−∆u = λu in Ω
∂nu = 0 on ∂Ω.

▶ Denote by ∆N the Neumann Laplacian (positive selfadjoint operator of
L2(Ω)).

Its essential spectrum is σess(∆N ) = [0; +∞) .

▶ ∆N cannot have discrete spectrum but may have punctual spectrum.
⇒ If trapped modes exist, eigenvalues are embedded in σess(∆N ).

Picture in the complex plane:

O

σess(∆N )
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Problem with Neumann BCs 2/2
▶ One cannot use directly the min-max principle to prove that σp(∆N ) ̸= ∅.

▶ If Ω has some symmetries, existence of trapped modes can be proved in
certain cases. Example of trapped mode:

N

N

N

D

La vie, c’est comme une dent...

▶ Other examples of trapped modes:

Chesnel, Evans, Koch, Kuznetsov, Levitin, Linton, McIver, Nazarov, Pagneux, Parnovski, Ursell, Vassiliev,...

▶ Note that symmetry is not necessary to get trapped modes.
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Today

Do they exist trapped modes in electromagnetic waveguides

• The connected waveguide Ω ⊂ R3 is the union of a bounded resonator and
one or several semi-infinite branches, with bounded cross-sections.
• The boundary ∂Ω is Lipschitz and we impose perfect conductor boundary
conditions.
• We work with homogeneous materials (ε = µ ≡ 1).

▶ While the literature is rich for scalar problems (acoustic, water waves,
quantum mechanic, Maxwell independant of one variable)
Bonnet-Ben Dhia, Chesnel, Craster, Davies, Dauge, Duclos, Evans, Exner, Goldstone,
Hein, Jaffe, Jones, Koch, Krejcirik, Kuznetsov, Levitin, Linton, Mercier, McIver,
Nazarov, Pagneux, Parnovski, Raymond, Seba, Ursell, Vassiliev, Witsch,...

surprisingly, apart from the recent work Briet et al. 25 , almost no liter-
ature in electromagnetism.

The effect of bending and twisting is studied in
P. Briet, M. Cassier, T. Ourmières-Bonafos and M. Zaccaron. Geometric
spectral properties of electromagnetic waveguides. arXiv:2508.13591, 2025.
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Outline of the talk

1 The Maxwell’s operator

2 Trapped modes: complete separation of variables

3 Trapped modes: separation of variables in the resonator

4 Trapped modes: absence of separation of variables
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The Maxwell’s operator
▶ We consider the formulation for the electric field

curl curl E = λE in Ω
div E = 0 in Ω
E × ν = 0 on ∂Ω.

▶ Set L2(Ω) := (L2(Ω))3 and work in
H(div ; 0) := {E ∈ L2(Ω) | div E = 0 in Ω}

which is a Hilbert space for the inner product (·, ·)L2(Ω).

▶ Define the unbounded operator A such that

D(A) = {E ∈ XN (Ω) | curl curl E ∈ L2(Ω)}
AE = curl curl E

where XN (Ω) := {E ∈ H(div ; 0) | curl E ∈ L2(Ω) and E × ν = 0 on ∂Ω}.

Proposition. A is a positive selfadjoint operator and

(AE,E′)L2(Ω) =
∫

Ω
curl E · curl E′ dx, ∀E,E′ ∈ D(A).
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Essential spectrum 1/3

▶ Essential spectrum for A in Ω is due to propagating modes, i.e.
solutions of the form E(x) = E (x, y)eiβz, with β ∈ R, to

curl curl E = λE in Π
div E = 0 in Π
E × ν = 0 on ∂Π.

1 Propagating Transverse Electric modes (TE, Ez = 0)

ETE
± (x) =

(
curl 2DφN (x, y)

0

)
e±i

√
λ−λN z,

exist for λ > λN . Here λN is the first positive eigenvalue of ∆N (S)
φN is a corresponding eigenfunction.

11 / 31



Essential spectrum 1/3

▶ Essential spectrum for A in Ω is due to propagating modes, i.e.
solutions of the form E(x) = E (x, y)eiβz, with β ∈ R, to

curl curl E = λE in Π
div E = 0 in Π
E × ν = 0 on ∂Π.

1 Propagating Transverse Electric modes (TE, Ez = 0)

ETE
± (x) =

(
curl 2DφN (x, y)

0

)
e±i

√
λ−λN z,

exist for λ > λN . Here λN is the first positive eigenvalue of ∆N (S)
φN is a corresponding eigenfunction.

11 / 31



Essential spectrum 2/3
2 Propagating Transverse Magnetic modes (TM, Hz = 0)

ETM
± (x) =

( ∇φD(x, y)
∓iβ−1

D λDφD(x, y)

)
e±iβDz, with βD :=

√
λ− λD,

exist for λ > λD . Here λD is the first eigenvalue of ∆D(S)
φD is a corresponding eigenfunction.

3 Propagating Transverse Electro-Magnetic modes (TEM, Ez = Hz = 0)

ETEM
± (x) =

(
∇φ(x, y)

0

)
e±i

√
λz,

exist for all λ > 0 iff S is not simply connected. Here
∆φ = 0 in S

φ = 1 on Γ
φ = 0 on ∂S \ Γ.
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Essential spectrum 3/3
▶ But Filonov 05 ensures that λN < λD (see also Friedlander 91).

Example: For S = (0; 1)2, the eigenvalues of ∆N (S), ∆D(S) are
0,π2, π2, 2π2, ..., 2π2, 5π2, ....

▶ Actually, one has the stronger result λ3
N (S) < λ1

D(S) when S ⊂ R2 is
simply connected (Rohleder 25).

▶ We deduce the following statement:
Theorem. Assume Ω ⊂ R3 is a connected union of a bounded domain and
several semi-infinite branches with the same section S.
1) If S is simply connected, then σess(A) = [λN ; +∞).

2) If S is not simply connected, then σess(A) = [0; +∞).

Proof. See Filonov 19 and Bogli, Ferraresso, Marletta, Tretter 23.
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Remark
▶ Assume that ∂Ω is not connected and has one bounded component ∂Ω1.

∂Ω1

▶ Define ψ ∈ H1(Ω) such that
∆ψ = 0 in Ω
ψ = 1 on ∂Ω1

ψ = 0 on ∂Ω \ ∂Ω1

(existence ok due to the Poincaré inequality).

▶ Then ∇ψ ∈ XN (Ω) and curl curl ∇ψ = 0.
⇒ ∇ψ is a trapped mode for A associated to the eigenvalue 0.

☛ We wish to show existence of other trapped modes for A associated with
positive eigenvalues.
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Outline of the talk

1 The Maxwell’s operator

2 Trapped modes: complete separation of variables

3 Trapped modes: separation of variables in the resonator

4 Trapped modes: absence of separation of variables
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Complete separation of variables 1/2

Theorem. [Goldstone, Jaffe 92] If φ ∈ H1
0(Ω2D) is an eigenfunction of

the Dirichlet Laplacian in Ω2D associated to the eigenvalue λ•, then

E(x, y, z) =

 φ(y, z)
0
0


is an eigenfunction of A in Ω := (0; a)×Ω2D associated to λ• for any a > 0.

Proof.
1) Clearly div E = 0 in Ω.
2) Thus
curl curl E = −∆E = λ•E.

3) E × ν = 0 on ∂Ω because
E = 0 on ∂Ω1
E = (E · ν)ν on ∂Ω2.

1

z

y

a

x

y

z

Example: there are trapped modes in the above 3D L-shape domain.

Since inf σess(A) = min(π2, π2/a2), depend. on a, λ• ≈ 0.9293π2 may be embedded or not.

There is an unbounded sequence of embedded eigenvalues.
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Theorem. If φ ∈ H1
0(Ω2D) is an eigenfunction of the Dirichlet Laplacian

in Ω2D associated to the eigenvalue λ•, then for any a > 0, m ∈ N,

E(x, y, z) =
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Complete separation of variables 2/2

Theorem. If φ ∈ H1(Ω) is an eigenfunction of the Neumann Laplacian in
Ω2D associated to the eigenvalue λ•, then for any a > 0, m ∈ N∗,

E(x, y, z) =
(

0
sin(mπ/x)curl 2Dφ(y, z)

)
is an eigenfunction of A in Ω := (0; a) × Ω2D associated to λ• +m2π2/a2.

Since inf σess(A) = min(π2, π2/a2), λ• +m2π2/a2 is embedded for all m ≥ 1.

▶ This is similar to the results obtained in bounded domains in Costabel,
Dauge 19.
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Outline of the talk

1 The Maxwell’s operator

2 Trapped modes: complete separation of variables

3 Trapped modes: separation of variables in the resonator

With complete separation of variables, we were able to construct exactly
eigenpairs for A. How to proceed without this assumption?

4 Trapped modes: absence of separation of variables
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The min-max principle

▶ Assume that S is simply connected. Then we saw that
σess(A) = [λN ; +∞)

where λN is the first positive eigenvalue of the Neumann Laplacian in S.

According to the min-max principle, if there is Ep ̸≡ 0 in

XN (Ω) = {E ∈ L2(Ω) | curl E ∈ L2(Ω), div E = 0 in Ω, E × ν = 0 on ∂Ω}

such that ∫
Ω

|curl Ep|2 dx∫
Ω

|Ep|2 dx

< λN ,

then A has an eigenvalue below σess(A).
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Building test fields

▶ Assume that Ω = R ∪ Π

where R is a bounded resonator
Π = S × [0; +∞).

▶ To construct test fields, a natural idea is to take

Ep = ER in R
0 in Π

where ER is an eigenfunction of the resonator problem
curl curl ER = λRER in R

ER × ν = 0 on ∂R.

▶ Then we would obtain∫
Ω

|curl Ep|2 dx∫
Ω

|Ep|2 dx

=

∫
R

|curl ER|2 dx∫
R

|ER|2 dx

= λR,

and if λR < λN , this would prove that A has an eigenvalue below σess(A).
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▶ To construct test fields, a natural idea is to take

Ep = ER in R
0 in Π

where ER is an eigenfunction of the resonator problem
curl curl ER = λRER in R

ER × ν = 0 on ∂R.

▶ We have curl Ep ∈ L2(Ω) but to get div Ep = 0 in Ω, we must have

Ep · ν = 0 on ∂R ∩ ∂Π,

which does not hold in general...
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Resonators with separation of variables 1/2

▶ Assume that R = SR × (−L; 0).

▶ Using TE modes in R, we can create the eigenfunction

ER(x) =
(

curl 2DφN (x, y)
0

)
sin(πz/L)

such that
curl curl ER =

(
λN (SR) +

π2

L2

)
ER in R

ER × ν = 0 on ∂R
ER · ν = 0 on ∂R ∩ ∂Π.

▶ From the previous analysis, we obtain the following statement:

Theorem. For R = SR × (−L; 0), there are trapped modes as soon as

λN (SR) + π2

L2 < λN (S).

▶ This can be used to show the absence of monotonicity of the spectrum
of A wrt to the geometry:

Since λN (SR) = π2/d2 < π2, one has
σd(A) ̸= ∅ for L large enough. λN (S) = π2 and σd(A) = ∅

Though Ω1 ⊂ Ω2, we have inf σ(A(Ω1)) < inf σ(A(Ω2)).
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Resonators with separation of variables 2/2

▶ Assume now that R = S◦ × (−L; 0)
where S◦ is not simply connected.

▶ Using the TEM modes in R, we can create the eigenfunction

ER(x) =
(

∇φ(x, y)
0

)
sin(πz/L)

such that
curl curl ER =

π2

L2 ER in R
ER × ν = 0 on ∂R
ER · ν = 0 on ∂R ∩ ∂Π.

▶ From the previous analysis, we obtain the following statement:

Theorem. For R = S◦ × (−L; 0), there are trapped modes as soon as
π2

L2 < λN (S).

Remark. Since we use extension by zero, it is sufficient to have separation
of variables only in a part of the resonator.

Possible separation of variables here.
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Outline of the talk

1 The Maxwell’s operator

2 Trapped modes: complete separation of variables

3 Trapped modes: separation of variables in the resonator

4 Trapped modes: absence of separation of variables
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Resonators large enough
▶ Assume that S ⊂ R2 is simply connected so that σess(A) = [λN (S); +∞).
Denote by ∆D(Ω) the Dirichlet Laplacian in Ω ⊂ R3.

For a resonator large enough, ∆D(Ω) has a non-empty discrete spectrum.

We wish to prove a similar result for A by adapting Rohleder 25:

Theorem. Let Ω ⊂ R3 be a bounded connected Lipschitz domain. The
Maxwell’s operator has at least two eigenvalues strictly less than λ1

D(Ω).

Let us compare the eigenvalues of ∆D(Ω) and A.

Theorem. Assume that Ω is such that ∆D(Ω) has an eigenvalue below
λN (S). Then A has an eigenvalue below λN (S).

Proof. Let λD(Ω) denote the smallest eigenvalue of ∆D(Ω) and Φ ∈ H1
0(Ω) be

an associated eigenfunction. Set

Ep :=

( Φ
0
0

)
− ∇ψ with ψ ∈ H1

0(Ω) such that ∆ψ = div

( Φ
0
0

)
.

We have Ep ∈ XN (Ω) \ {0} and∫
Ω
|curl Ep|2 dx∫

Ω
|Ep|2 dx

=

∫
Ω
|∇Φ|2 − (∆ψ)2 dx∫

Ω
Φ2 − |∇ψ|2 dx

≤ λD(Ω) < λN (S).

But there holds inf
ζ∈H1

0(∆;Ω)\{0}

∫
Ω
(∆ζ)2 dx∫

Ω
|∇ζ|2 dx

= inf
ζ∈H1

0(Ω)\{0}

∫
Ω
|∇ζ|2 dx∫
Ω
ζ2 dx

= λD(Ω).

Finally the min-max principle ensures that A has an eigenvalue below λN (S).□

There is an eigenvalue of the Maxwell operator below
an eigenvalue of the Dirichlet Laplacian in Ω.
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From discrete to embedded eigenvalues
▶ Maxwell’s equations offer an original way of playing with symmetries
and topology to exhibit embedded eigenvalues.

S
Ω

σess(A(Ω))= [0; +∞)

S+Ω+ σess(A(Ω+)) = [λN (S+); +∞)

Proposition. Discrete eigenvalues for A(Ω+) are embedded for A(Ω).

Proof. If E+ ∈ XN (Ω+) is an eigenfunction of A(Ω+), define E such that

E = E+ in Ω+, E(x, y, z) =
−E+

x (x, −y, z)
E+

y (x, −y, z)
−E+

z (x, −y, z)
in Ω \ Ω+.

Then E ∈ XN (Ω) is an eigenfunction of A(Ω). □

25 / 31



From discrete to embedded eigenvalues
▶ Maxwell’s equations offer an original way of playing with symmetries
and topology to exhibit embedded eigenvalues.

S
Ω

σess(A(Ω))= [0; +∞)

S+Ω+ σess(A(Ω+)) = [λN (S+); +∞)

Proposition. Discrete eigenvalues for A(Ω+) are embedded for A(Ω).

Proof. If E+ ∈ XN (Ω+) is an eigenfunction of A(Ω+), define E such that

E = E+ in Ω+, E(x, y, z) =
−E+

x (x, −y, z)
E+

y (x, −y, z)
−E+

z (x, −y, z)
in Ω \ Ω+.

Then E ∈ XN (Ω) is an eigenfunction of A(Ω). □
25 / 31



The 6 legs animal 1/2

Does this Ω support trapped modes

Ω

X3D X2D

▶ The section S of the branches of Ω is a square of size 1 so that

σess(A) = [π2; +∞).

▶ The above results ensures that A in X3D admits a trapped mode with

λ• ≈ 0.6605π2 and E(x, y, z) =

 φ(y, z)
0
0

 ,

where (λ•, φ) is a trapped mode of the Dirichlet Laplacian in X2D.
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The 6 legs animal 2/2

Theorem. The 6 legs geometry supports trapped modes.

Proof.

▶ Set Ẽ :=
Ep in X3D

0 elsewhere.

▶ Then define E := Ẽ − ∇ψ

where ψ ∈ H1
0(Ω) s.t. div E = 0 in Ω.

▶ With sharp estimates, one establishes∫
Ω

|curl E|2 dx < π2
∫

Ω
|E|2 dx.

Finally, we conclude with the min-max principle. □

Ω
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The 3 legs animal

Theorem. The 3 legs geometry supports trapped modes.

▶ The proof uses the trapped mode of the Dirichlet Laplacian in the 2D
L-shaped domain.
▶ Estimates are surprisingly more difficult than for the 6 legs geometry....
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Outline of the talk

1 The Maxwell’s operator

2 Trapped modes: complete separation of variables

3 Trapped modes: separation of variables in the resonator

4 Trapped modes: absence of separation of variables
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Conclusion

What we did

♠ We presented examples of waveguides where the Maxwell’s operator
has eigenvalues.

Complete separation of variables Separation of variables in R No separation of variables

Exact eigenv. of the scalar pb. Min-max principle + ad hoc test field

♠ Eigenvalues can be embedded or not in the essential spectrum.

Future work

1) Below an eigenvalue of ∆D, there is an eigenvalue of A. Is there
anything to do with an (embedded) eigenvalue of ∆N ?

2) Can one show absence of eigenvalues in certain Ω?
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Conclusion

Future work

3) In geometries with exterior bumps, ∆D has discrete spectrum.

Can one prove an equivalent for A with the Piola transform?
Can one exploit the results we have concerning variable ε, µ?

Theorem. If S is simply connected, Ω = S × R, ε, µ ≥ 1 with ε > 1
or µ > 1 in a non-empty set, then σd(Aε,µ) ̸= ∅.

→ post-doc of Michele Zaccaron.

4) Can one exploit embedded eigenvalues via the Fano resonance mecha-
nism to achieve invisibility (zero reflection, perfect transmission,...)?
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The Fano resonance phenomenon

▶ Generically, slight perturbations of a geometry supporting embedded
eigenvalues give rise to complex resonances with small imaginary parts.

▶ Close to the complex resonances, one observes versatile scattering
phenomena (the Fano resonance), which can be used to reach zero reflection.

boo 31 / 31



The Fano resonance phenomenon

Sym. geom. | Slightly non sym. geom.

▶ ω 7→ ℜe u(ω) with ω =
√
λ.

▶ Complex spectrum computed with PMLs (we zoom at the real axis).
• Trapped mode • Complex resonance

boo 31 / 31



The Fano resonance phenomenon

Sym. geom. | Slightly non sym. geom.

▶ ω 7→ ℜe u(ω) with ω =
√
λ.

▶ Complex spectrum computed with PMLs (we zoom at the real axis).
• Trapped mode • Complex resonance

boo 31 / 31



Thank you for your attention!
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