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Abstract
We investigate a time-harmonic wave problem
in a waveguide. We work at low frequency so
that only one mode can propagate. It is known
that the scattering matrix exhibits a rapid vari-
ation for real frequencies in a vicinity of a com-
plex resonance located close to the real axis.
This is the so-called Fano resonance phenomenon.
And when the geometry presents certain prop-
erties of symmetry, there are two different real
frequencies such that R = 0 or T = 0, where R,
T denote the reflection and transmission coeffi-
cients. In this work, we prove that without the
assumption of symmetry of the geometry, quite
surprisingly, there is always one real frequency
such that T = 0. In this case, all the energy
sent in the waveguide is reflected.
Keywords: waveguides, complex resonance, zero
transmission, scattering matrix

1 Setting of the problem

Ω Ωε

∂Ωε = (x, 1 + εH(x))

Figure 1: Original waveguide Ω (left) and per-
turbed geometry Ωε (right).

Let Ω ⊂ R2 be a connected waveguide which
coincides with the strip {(x, y) ∈ R× (0; 1)} for
|x| ≥ d where d > 0 is given (see Figure 1 left).
Propagation of acoustic waves in Ω with sound
hard walls leads to study the problem

∆u+ λu = 0 in Ω
∂νu = 0 on ∂Ω.

(1)

For λ ∈ (0;π2), only two waves w±(x, y) =
e±i
√
λx can propagate in Ω. The scattering of

the incident rightgoing wave w+ yields a solu-
tion of (1) admitting the expansion

u+ = w+ +Rw− + . . . , for x < −d
T w+ + . . . , for x > d.

(2)

Here R ∈ C is a reflection coefficient, T ∈ C
is a transmission coefficient and the dots stand
for terms which are exponentially decaying at
infinity. Similarly, there is a solution u− of (1)
associated with the incident leftgoing wave w−.
We denote R̃, T the corresponding scattering
coefficients (T is the same for u+ and u−). We
define the scattering matrix

s :=
(
R T

T R̃

)
∈ C2×2,

which is unitary (ss> = Id). We assume that
the geometry is such that the Neumann Lapla-
cian in Ω admits a simple eigenvalue λ0 ∈ (0;π2).
In the sequel, we perturb a bit the geometry,
so that this real eigenvalue becomes a complex
resonance, and we study the behaviour of the
scattering matrix for real frequencies in a neigh-
bourhood of λ0.

2 Perturbation of the frequency and of
the geometry

We perturb the geometry from some smooth
compactly supported profile function H with
amplitude ε ≥ 0 as in Figure 1 right. We de-
note Ωε the new waveguide and s(ε, λ), T (ε, λ),
R(ε, λ), R̃(ε, λ) the quantities introduced above
in the geometry Ωε at frequency λ. For short,
we set s0 = s(0, λ0), T 0 = T (0, λ0), R0 = R(0, λ0),
R̃0 = R̃(0, λ0). Decomposition in Fourier series
guarantees that the eigenfunctions associated
with λ0, the trapped modes, behave at infinity
as K±e−

√
π2−λ0|x| cos(πy) + . . . where K± ∈ C.

In [1], the following theorem is proved.

Theorem 1 Assume that (K+,K−) 6= (0, 0).
There is a quantity `(H) ∈ R, which depends
linearly on H, such that when ε→ 0,

s(ε, λ0 + ελ′) = s0 +O(ε) for λ′ 6= `(H),

and, for any µ ∈ R,

s(ε, λ0 +ε`(H)+ε2µ) = s0 +
τ>τ

iµ̃− |τ |2/2+O(ε).



In this expression τ = (a, b) ∈ C × C depends
only on Ω and µ̃ = Aµ+B for some unessential
real constants A, B with A 6= 0.

Theorem 1 shows that the mapping s(·, ·) is
not continuous at (0, λ0) (setting where trapped
modes exist). And for ε0 small fixed, the scat-
tering matrix λ 7→ s(ε0, λ) exhibits a quick change
in a neighbourhood of λ0 + ε0`(H): this is the
Fano resonance phenomenon. When (K+,K−) =
(0, 0) a faster Fano resonance phenomenon oc-
curs. In the sequel, to simplify we denote sε(µ),
T ε(µ), Rε(µ), R̃ε(µ) the values of s, T , R, R̃ in
Ωε at the frequency λ = λ0+ε`(H)+ε2µ. When
Ωε is symmetric with respect to an axis orthogo-
nal to the direction of propagation of waves, one
can deduce quite simply from Theorem 1 that
the complex curves µ 7→ T ε(µ) and µ 7→ Rε(µ)
pass through zero for ε small enough (see [1]).
In the next section, we explain how to show that
without assumption of symmetry, in Ωε, there
is still a real frequency closed to λ0 such that
the transmission coefficient is zero. However in
general µ 7→ Rε(µ) does not pass through zero.

3 Exact zero transmission
Theorem 2 Assume that T 0 6= 0. Then there
is ε0 > 0 such that for all ε ∈ (0; ε0], there is
µ ∈ R such that T ε(µ) = 0.

Proof. Theorem 1 provides the estimate

|T ε(µ)− T asy(µ)| ≤ C ε (3)

with T asy(µ) = T 0 +
ab

iµ̃− (|a|2 + |b|2)/2.

For any compact set I ⊂ R, the constant C > 0
in (3) can be chosen independent of µ ∈ I.
? First, we study the set {T asy(µ), µ ∈ R}.
Classical results concerning the Möbius trans-
form guarantee that {T asy(µ), µ ∈ R} coincides
with C asy \ {T 0} where C asy is a circle passing
through T 0. Let us show that C asy also passes
through zero. One finds that T asy(µ) = 0 for
some µ ∈ R if and only if there holds

|a|2 + |b|2

2 = <e
(
ab

T 0

)
. (4)

An intermediate calculus of [1] implies R0 a +
T 0 b = a and T 0 a+R̃0 b = b. From this and the
unitarity of s0 which imposes R̃0 = −R0T 0/T 0,
we can obtain (4). Denote µ? the value of µ

such that T asy(µ?) = 0 and for ε > 0, define the
interval Iε = (µ? −

√
ε;µ? +

√
ε). From (3), for

ε > 0 small, we know that the curve {T ε(µ), µ ∈
Iε} passes close to zero. Now, using the unitary
structure of sε(µ) as in [2], we show that this
curves passes exactly through zero for ε small.
? Assume by contradiction that for all ε > 0,
µ 7→ T ε(µ) does not pass through zero in Iε.
Since sε(µ) is unitary, there holds Rε(µ)T ε(µ)+
T ε(µ) R̃ε(µ) = 0 and so

−Rε(µ)/R̃ε(µ) = T ε(µ)/T ε(µ) ∀µ ∈ Iε.

But if µ 7→ T ε(µ) does not pass through zero on
Iε, one can verify that the point T ε(µ)/T ε(µ) =
e2iarg(T ε(µ)) must run rapidly on the unit cir-
cle for µ ∈ Iε as ε → 0. On the other hand,
Rε(µ)/R̃ε(µ) tends to a constant on Iε as ε→ 0.
This way we obtain a contradiction. �

Remark 3 The fact that C asy passes through
zero is quite mysterious. Without assumption
of symmetry, we do not have physical reason to
explain this miracle.

In the geometry of Figure 2, first we find that
trapped modes exist for ε = 0 and

√
λ0 ≈ 1.2395.

Then we approximate (FEM) T (ε, λ) (×) and
R(ε, λ) ( ) for

√
λ ∈ (1.2; 1.3) and ε = 0.05. As

predicted, we observe that λ 7→ T (ε, λ) passes
through zero around λ0. Finally, we display the
real part of u+ in Ωε for ε = 0.05 and

√
λ =

1.2449. In this setting, we have T (ε, λ) ≈ 0.
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Figure 2: Zero transmission in a waveguide.
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