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Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
time-harmonic regime (at a given frequency):

Negative material
ε< 0

and/or µ< 0

Positive material
ε> 0

and µ> 0

Do such negative materials occur in practice ?

I For metals at optical frequencies, ε < 0 and µ > 0.

I Recently, arti�cial metamaterials have been realized which can be
modelled (at some frequency of interest) by ε < 0 and µ < 0.

Zoom on a metamaterial: practical realizations of metamaterials are
achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)

Mathematical justi�cation of the homogenized model: Bouchitté,
Bourel and Felbacq, 09.
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Introduction: applications

Interfaces between negative materials and dielectrics occur in all (exciting)
applications...

I Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

e 2en = −1

n = 1

S

I The negative refraction at the interface metamaterial/dielectric could

allow the realization of perfect lenses (Pendry, 00), photonic traps ...
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Introduction: in this talk

Problem set in a bounded domain Ω ⊂ R3:

Ω2

Metamaterial

ε< 0
µ< 0

Ω1

Dielectric

Σ
ε> 0
µ> 0

Unusual transmission problem because the sign of the coe�cients ε and µ
changes through the interface Σ.

I Well-posedness is recovered by the presence of dissipation: =mε > 0
and =mµ > 0.

But interesting phenomena occur for almost dissipationless
materials.

I The relevant question is then: what happens if dissipation is neglected ?

Does well-posedness still hold ? What is the appropriate functional frame-
work ? What about the convergence of approximation methods ? ...
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Classical results for positive materials

Suppose we want to solve the following problem, for the electric �eld:

Find E ∈ H(curl ; Ω) such that:

curl µ−1
curlE − ω2εE = F in Ω and E × n = 0 on ∂Ω.

with F ∈ L2(Ω) := L2(Ω)3 such that divF = 0.

One possible approach is
to consider the following variational formulation:∫

Ω

µ−1
curlE · curlE′ − ω2εE ·E′ =

∫
Ω

F ·E′,

in VN (ε; Ω) := {u ∈ H(curl ; Ω) | div (εu) = 0, u× n = 0 on ∂Ω}.
Well-posedness follows from:

1 The compactness of the embedding VN (ε; Ω) ⊂ L2(Ω).

" Ok if ε > 0

2 The coercivity of a(E,E′) :=

∫
Ω

µ−1
curlE · curlE′.

" Ok if µ, ε > 0

What happens in presence of sign-changing ε and µ ?
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Outline of the talk

A T-coercivity method based on geometrical transformations to study the
scalar problems.

A T-coercivity method based on potentials to study the vectorial problems.

1 Introduction

2 The coerciveness issue for the scalar cases

3 The coerciveness and compactness issues for the vectorial cases

4 Conclusion
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A scalar model problem

Problem for Ez in 2D in case of an invariance with respect to z:

Find Ez ∈ H1
0(Ω) such that:

div(µ−1∇Ez) + ω2εEz = −f in Ω.

H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

Since H1
0(Ω) ⊂⊂ L2(Ω), we focus on the principal part.

(P)
Find u ∈ H1

0(Ω) s.t.:

div(µ−1∇u) = −f in Ω.
⇔ (PV )

Find u ∈ H1
0(Ω) s.t.:

a(u, v) = l(v), ∀v ∈ H1
0(Ω).

with a(u, v) =

∫
Ω

µ−1∇u · ∇v and l(v) = 〈f, v〉Ω.

Definition. We will say that the problem (P) is well-posed if the operator
A = div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

8 / 26
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A scalar model problem
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Mathematical di�culty

Classical case µ > 0 everywhere :

a(u, u) =

∫
Ω
µ−1 |∇u|2 ≥ min(µ−1) ‖u‖2H1

0(Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case µ changes sign :

a(u, u) =

∫
Ω
µ−1 |∇u|2 ≥ C ‖u‖2H1

0(Ω)
loss of coercivity

I For a symmetric domain (w.r.t. Σ) with µ2 = −µ1, we can build a
kernel of in�nite dimension.
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV )
Find u ∈ H1

0(Ω) such that:
a(u, v) = l(v), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0(Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0(Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0(Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + ... in Ω2

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0(Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + 2R1u1 in Ω2
, with

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0(Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + 2R1u1 in Ω2
, with

R1 transfer/extension operator continuous from Ω1 to Ω2

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0(Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0(Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0(Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

µ−1∇u · ∇(Tu) ≥ C ‖u‖2H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + 2R1u1 in Ω2
, with

R1 transfer/extension operator continuous from Ω1 to Ω2

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)

10 / 26



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|µ|−1|∇u|2 − 2

∫
Ω2

µ−1
2 ∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when |µ2| > ‖R1‖2 µ1 .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when µ1 > ‖R2‖2 |µ2| .

5 Conclusion:

Theorem. If the contrast κµ = µ2/µ1 /∈ [−‖R1‖2;−1/‖R2‖2] (critical
interval) then div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

11 / 26



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|µ|−1|∇u|2 − 2

∫
Ω2

µ−1
2 ∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when |µ2| > ‖R1‖2 µ1 .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when µ1 > ‖R2‖2 |µ2| .

5 Conclusion:

Theorem. If the contrast κµ = µ2/µ1 /∈ [−‖R1‖2;−1/‖R2‖2] (critical
interval) then div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

11 / 26



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|µ|−1|∇u|2 − 2

∫
Ω2

µ−1
2 ∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when |µ2| > ‖R1‖2 µ1 .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when µ1 > ‖R2‖2 |µ2| .

5 Conclusion:

Theorem. If the contrast κµ = µ2/µ1 /∈ [−‖R1‖2;−1/‖R2‖2] (critical
interval) then div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

11 / 26



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|µ|−1|∇u|2 − 2

∫
Ω2

µ−1
2 ∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when |µ2| > ‖R1‖2 µ1 .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when µ1 > ‖R2‖2 |µ2| .

5 Conclusion:

Theorem. If the contrast κµ = µ2/µ1 /∈ [−‖R1‖2;−1/‖R2‖2] (critical
interval) then div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

11 / 26



Choice of R1,R2?

I A simple case: symmetric domain

Ω1

Ω2

Σ

R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I By localization techniques, we prove that (P) is well-posed in the
Fredholm sense if and only if κµ 6= −1 when Σ is smooth.

I Interface with a corner

Proposition. The problem (P) is well-posed in the Fredholm sense for a
polygonal interface if κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.
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The case of an interface with corners

Ω1

Ω2

σ

O

Σ

What happens when κµ ∈ [−Rσ;−1/Rσ]?

For κµ ∈ [−Rσ;−1/Rσ], κµ 6= −1:

There exists a propagative singularity ϕ(θ)r±iη = ϕ(θ)e±iη ln r with
η ∈ R∗ which belongs to H1−δ(Ω) but not to H1(Ω).

Due to this singularity, the problem is not Fredholm in H1(Ω).

We have justi�ed a new functional framework in which Fredholm
property is recovered, by selecting the outgoing singularity.
Bonnet-Ben Dhia, Chesnel and Claeys (submitted)
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Extensions for the scalar case

I The T-coercivity approach can be used to deal with the Neumann
problem.

I 3D geometries can be handled in the same way.

I The T-coercivity technique
allows to justify convergence of
standard �nite element method
for simple meshes (joint work
with P. Ciarlet Jr.).
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T-coercivity in the vector case 1/3

Let us consider the problem for the magnetic �eld H:

Find H ∈ VT (µ; Ω) such that for all H ′ ∈ VT (µ; Ω) :∫
Ω

ε−1
curlH · curlH ′︸ ︷︷ ︸
a(H,H′)

−ω2

∫
Ω

µH ·H ′︸ ︷︷ ︸
c(H,H′)

=

∫
Ω

F ·H ′︸ ︷︷ ︸
l(H′)

,

with VT (µ; Ω) := {u ∈ H(curl ; Ω) |div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT (µ; Ω)) such that

a(H,TH) =

∫
Ω

ε−1
curlH · curl (TH ′) is coercive on VT (µ; Ω).

First attempt

Let us try TH =
H1 in Ω1

−H2 + 2R1H1 in Ω2
, with R1 such that{

(R1H1)× n = H2 × n on Σ
µ1(R1H1) · n = µ2H2 · n on Σ

Not possible!
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T-coercivity in the vector case 2/3

Let us consider the problem for the magnetic �eld H:

Find H ∈ VT (µ; Ω) such that for all H ′ ∈ VT (µ; Ω) :∫
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By analogy with the scalar case, we look for T ∈ L(VT (µ; Ω)) such that

a(H,TH ′) =

∫
Ω

ε−1
curlH · curl (TH ′) is coercive on VT (µ; Ω).

Second attempt

Let us try to de�ne TH ∈ VT (µ; Ω) as �the function satisfying�

curl (TH) = ε curlH in Ω so that a(H,TH) =

∫
Ω

|curlH|2.

♠ Impossible because div (ε curlH) 6= 0.

The solution: add a gradient...
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T-coercivity in the vector case 3/3

Third attempt

Consider H ∈ VT (µ; Ω).

1 Introduce ϕ ∈ H1
0(Ω) such that div (ε(curlH −∇ϕ)) = 0.

" Ok if (ϕ,ϕ′) 7→
∫

Ω

ε∇ϕ · ∇ϕ′ is T-coercive on H1
0(Ω). (Aε)

2 Introduce u ∈ VT (1; Ω) the function satisfying

curlu = ε (curlH −∇ϕ) in Ω.

3 Introduce ψ ∈ H1(Ω)/R such that u−∇ψ ∈ VT (µ; Ω).

" Ok if (ψ,ψ′) 7→
∫

Ω

µ∇ψ · ∇ψ′ is T-coercive on H1(Ω)/R. (Aµ)

4 Finally, de�ne TH := u−∇ψ ∈ VT (µ; Ω). There holds:


 Use the results of the previous section to check (Aε) and (Aµ).

Lemma. Suppose

(ϕ,ϕ′) 7→
∫

Ω

ε∇ϕ · ∇ϕ′ is T-coercive on H1
0(Ω); (Aε)

(ϕ,ϕ′) 7→
∫

Ω

µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, there exists T ∈ L(VT (µ; Ω)) such that, for all H, H ′

a(H,TH ′) = a(TH,H ′) =

∫
Ω

curlH · curlH ′.
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A result of compact embedding

I Using the analogue of the previous result in VN (1; Ω), we can prove the

Theorem. Suppose

(ϕ,ϕ′) 7→
∫

Ω

µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, the embedding of

VT (µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}

in L2(Ω) is compact.

Moreover, the map (H,H ′) 7→
∫

Ω

curlH ·curlH ′ de�nes an inner product

on VT (µ; Ω).

I Since for all H, H ′

a(H,TH ′) = a(TH,H ′) =

∫
Ω

curlH · curlH ′,

we deduce a posteriori that T is an isomorphism of VT (µ; Ω).
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The result for the magnetic �eld

Consider F ∈ L2(Ω) such that divF ∈ L2(Ω).

Theorem. Suppose

(ϕ,ϕ′) 7→
∫

Ω

ε∇ϕ · ∇ϕ′ is T-coercive on H1
0(Ω); (Aε)

(ϕ,ϕ′) 7→
∫

Ω

µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, the problem for the magnetic �eld

Find H ∈ H(curl ; Ω) such that:
curl ε−1

curlH − ω2µH = F in Ω
µH · n = 0 on ∂Ω.

is well-posed for all ω ∈ C\S where S is a discrete (or empty) set of C.
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... and the result for the electric �eld

Consider F ∈ L2(Ω) such that divF ∈ L2(Ω).

Theorem. Suppose

(ϕ,ϕ′) 7→
∫

Ω

ε∇ϕ · ∇ϕ′ is T-coercive on H1
0(Ω); (Aε)

(ϕ,ϕ′) 7→
∫

Ω

µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, the problem for the electric �eld

Find E ∈ H(curl ; Ω) such that:
curl µ−1

curlE − ω2εE = F in Ω
E × n = 0 on ∂Ω.

is well-posed for all ω ∈ C\S where S is a discrete (or empty) set of C.
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Application to the Fichera's corner

Proposition. Suppose

κε /∈ [−7;−
1

7
] and κµ /∈ [−7;−

1

7
] . N

Then, the problems for the electric and magnetic �elds are well-posed for all
ω ∈ C\S where S is a discrete (or empty) set of C.

N Note that 7 is the ratio of the blue volume over the red volume... 22 / 26
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Conclusions for the bounded domain

For the continuous problem

" We have studied the scalar problem with a geometric T-coercivity.

" We have proved that the Maxwell's problems for E and H are well-posed as
soon as the two scalar problems are well-posed.

For the numerical methods

" In the scalar case: in practice, usual methods converge. Partial proofs are
available Bonnet-Ben Dhia et al., 10, Nicaise-Venel, 11, Chesnel-Ciarlet,
submitted.

♠ In the vector case: convergence of an edge elements method has to be studied.

Inside the critical interval

" In the scalar case, we have developed a functional framework to take into
account the propagative singularity Bonnet-Ben Dhia et al., submitted.

♠ In the vector case: a theoretical study is in progress.

♠ Our new model raises a lot of questions, related to the physics of plasmonics
and metamaterials.
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Perspectives for the scattering problem

" We hope to be able to deal with the
scattering problem for a bounded
negative obstacle using a Dtn
operator and the results presented in
this talk.

♠ For an unbounded negative obstacle,
the problem looks more complicated.
The exterior problem is not standard.

Negative
material

Positive
material

DtN

Negative
material

Positive
material

DtN?
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Thank you for your attention.

A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T -coercivity for scalar

interface problems between dielectrics and metamaterials, M2AN, to appear,
2012.

A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for the

Maxwell transmission problem between a dielectric and a negative material, on
going work.

L. Chesnel, P. Ciarlet Jr., T-coercivity and continuous Galerkin methods:

application to transmission problems with sign changing coe�cients,
submitted.

A.-S. Bonnet-Ben Dhia, L. Chesnel, X. Claeys, Radiation condition for a

non-smooth interface between a dielectric and a metamaterial, submitted.
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