Time harmonic Maxwell’s equations

with sign changing coefficients

Workshop : Around scattering by obstacles and billiards

A .-S. Bonnet-Ben Dhiaf, L. Chesnel®, P. Ciarlet’, X. Claeyst

JrPOems team, Ensta, Paris, France
IDMIA, ISAE, Toulouse, France

;«-il

ParisTech

University of Aveiro, Aveiro, Portugal, March 31, 2012 1/ 26



Introduction: objective
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Interfaces between negative materials and dielectrics occur in all (exciting)
applications...

» Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

» The negative refraction at the interface metamaterial/dielectric could

allow the realization of perfect lenses (Pendry, 00), photonic traps ...
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Introduction: in this talk

Problem set in a bounded domain 2 C R3:

3

e<0
n<0

~—

e>0 /\)'

Q
n>0 2

Metamaterial

0
Dielectric

Unusual transmission problem because the sign of the coefficients ¢ and
changes through the interface Y. J

» Well-posedness is recovered by the presence of dissipation: Sme > 0
and Sm p > 0. But interesting phenomena occur for almost dissipationless
materials.

» The relevant question is then: what happens if dissipation is neglected ?

Does well-posedness still hold ? What is the appropriate functional frame-
work 7 What about the convergence of approximation methods ? ... J
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Classical results for positive materials

Suppose we want to solve the following problem, for the electric field:

Find E € H(curl; ) such that:
curly~!curl E — w?cE =F in and E xn =0 on 0f.

with F € L*(Q) := L?(Q)? such that div F = 0.
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Well-posedness follows from:

© The compactness of the embedding V y(e; Q) € L2(€). ¢ Okife >0

@ The coercivity of a(E, E') := / pleurl E-curl E'. ¢ Okif p,c > 0
Q

(What happens in presence of sign-changing ¢ and p ? )
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div(u ! VE,) +w?E, = —f in Q.
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Problem for E, in 2D in case of an invariance with respect to z:

Find E, € H}(Q) such that:
div(p ' VE,) + w?eE, = —f in Q.

e H}(Q) = {v e L2(Q)| Vv € L?(Q); v]|aq = 0}

@ f is the source term in H=1(Q)

Since H} () cc L?(Q2), we focus on the principal part.

() Find v € H}(Q) s.t.:
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Q
o HY(Q) = {v € L3(Q)| Vo € LA(Q); v]on = 0} (ul — o, 07
@ f is the source term in H=1(£2) p2 = pilo, <0

(constant to simplify)

Since H} () cc L?(Q2), we focus on the principal part.

Find v € H}(Q) s.t.:

() Find u € H}(Q) s.t.:
div(p=tVu) = —f in Q.

& (Pv) a(u,v) = 1(v), Yo € HL(Q).

with a(u,v) = / ptVu-Vo and  1(v) = (f,v)q.
Q

A =div (u~1V-) is an isomorphism from H}(2) to H~1().

DEFINITION. We will say that the problem (£2) is well-posed if the operator
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Mathematical difficulty

o Classical case p > 0 everywhere :

a(u,u) = /Qu_l |Vu|? > min(p™t) ||u]|%1(1)(9) coercivity

Lax-Milgram theorem = (%) well-posed.

************************* VS, -
o The case p changes sign :
B 2 i
a(u,u) = i C HUHH}J(Q) loss of coercivity
» For a symmetric domain (w.r.t. ¥) with po = —p;, we can build a

kernel of infinite dimension.
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H3(Q).

Find u € H}(£2) such that:

(2) = (Pv) a(u,v) = 1(v), Vv € H}(Q).
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e One has a(u, Tyu) :/ |/1|*1\Vu|2—2/ stV - V(R uy)
Q Q2

Young’s inequality = @ is T-coercive when |us| > || R1||% 1 -

uy — 2R2u2 in Ql

. where Rs : Q3 — Q4, one
—us in QQ ) 2 2 15

e Working with Tou =

proves that a is T-coercive when pg > || Ra||? |u2| -

e Conclusion:

THEOREM. If the contrast k, = po/p1 ¢ [—||R1|* —1/||R2|?] (critical
interval) then div (=1 V-) is an isomorphism from H}(2) to H=1(1Q).
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Choice of R{,R,?

» A simple case: symmetric domain
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o ) P s
so that [|[Ry]| = ||R2]| =1

» By localization techniques, we prove that (&) is well-posed in the
Fredholm sense if and only if x, # —1 when ¥ is smooth.

» Interface with a corner

> Action of R;: symmetry + dilatation w.r.t ¢
—~ Action of 52: symn;etry + dilatation w.r.t 0
[Ru]] = IR2|* = Ro = (2w — o)/
(2) well-posed <= K, & [-R.;—1/1,]

PROPOSITION. The problem (&) is well-posed in the Fredholm sense for a
polygonal interface if k,, ¢ [-7R,; —1/R,] where o is the smallest angle.
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For k, € [-R,;—1/R.], k, # —1:

@ There exists a propagative singularity ¢(6)r®" = ¢(0)eTn" with
n € R* which belongs to H*~°(Q) but not to H(Q).

@ Due to this singularity, the problem is not Fredholm in H*(£).

@ We have justified a new functional framework in which Fredholm
property is recovered, by selecting the outgoing singularity.
Bonnet-Ben Dhia, Chesnel and Claeys (submitted)
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Extensions for the scalar case

» The T-coercivity approach can be used to deal with the Neumann
problem.
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Extensions for the scalar case

» The T-coercivity approach can be used to deal with the Neumann
problem.

» 3D geometries can be handled in the same way.

d
&4

» The T-coercivity technique
allows to justify convergence of
standard finite element method
for simple meshes (joint work
with P. Ciarlet Jr.).
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© The coerciveness and compactness issues for the vectorial cases
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T-coercivity in the vector case 1/3

Let us consider the problem for the magnetic field H:
Find H € V(p; Q) such that for all H' € Vo (u; Q) :
/5_1cur1H-cur1Hl —wQ/ uH-H' = / F-H',
Q Q Q

a(H,H') o(H,H') I(H")

with Vp(u; Q) := {u € H(curl; Q) |div(pu) =0, pu-n =0 on 9Q}.
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T-coercivity in the vector case 2/3

Let us consider the problem for the magnetic field H:

Find H € V1 (u; Q) such that for all H € Vp(u; Q) :

/E‘lcurlH-curlH’—oﬂ/ uH-H = | F-H',
Q Q Q

a(H,H') c(H,H") I(H")
with Vr(u; Q) := {u € H(curl; Q) |div(zu) =0, pu-n =0 on 9Q}.

By analogy with the scalar case, we look for T € L(Vr(u; ©)) such that
a(H,TH') = / e tcurl H - curl (TH') is coercive on Vo (u; Q).
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By analogy with the scalar case, we look for T € L(Vr(u; ©)) such that
a(H,TH') = / e tcurl H - curl (TH') is coercive on Vo (u; Q).

Second attempt
Let us try to define TH € Vp(u; Q) as “the function satisfying”
curl(TH)=ccurlH inQ so that a(H,TH) = / |curl H|?.
Q

& Tmpossible because div (ecurl H) # 0. The solution: add a gradient...
17 / 26



T-coercivity in the vector case 3/3
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T-coercivity in the vector case 3/3

Third attempt

Consider H € Vr(u; Q).
@ [utroduce € HY() such that div (s(curl H — V) = 0.

vV Ok if (p,¢) — / eV - V' is T-coercive on H(Q). (A.)
Q
e Introduce u € Vr(1; Q) the function satisfying
curlu =¢(curl H —Vy) in Q.
e Introduce ' € H'(Q)/R such that © — Vi € Vo (u; Q).
vV Ok if (1, 0) — / uVp - Vi)' is T-coercive on HY(Q)/R. (A,,)
Q

@ rinally, define TH := « — Vi € Vo (y; Q). There holds:

o(H, TH) = /

5_1cur1H-cur1u:/ |cur1H|2.
Q Q

(ﬂ“ Use the results of the previous section to check (.A.) and (.A,L).)
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T-coercivity in the vector case 3/3

LEMMA. Suppose
(@, ") = / eV - V¢ is T-coercive on H§(Q);
Q
(¢, ") / Ve - V' is T-coercive on H'(Q2)/R.
Q

Then, there exists T € £(Vr(u; ©)) such that, for all H, H'

a(H,TH’):a(TH,H'):/curlH-curlH’.
Q
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A result of compact embedding
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(p, ") /Q/,LVQO - V¢ is T-coercive on H!(Q)/R. (A,,)

19 / 26



A result of compact embedding

» Using the analogue of the previous result in , we can prove the

THEOREM. Suppose
(p, ") / uVp - Vo' is T-coercive on H(Q)/R. (A,,)
Then, the embeddinz of
Vr(u; Q) :={u € H(curl; Q) |div(pu) =0, pu-n = 0 on 00}

in L(Q) is compact.

19 / 26



A result of compact embedding

» Using the analogue of the previous result in , we can prove the

THEOREM. Suppose
(p, ") / uVp - Vo' is T-coercive on H(Q)/R. (A,,)
Then, the embeddinz of
Vr(u; Q) :={u € H(curl; Q) |div(pu) =0, pu-n = 0 on 00}
in L(Q) is compact.

Moreover, the map (H, H') — / curl H -curl H' defines an inner product
on Vp(u; Q). §

19 / 26



A result of compact embedding

» Using the analogue of the previous result in , we can prove the

THEOREM. Suppose
(p, ") / uVp - Vo' is T-coercive on H(Q)/R. (A,,)
Then, the embeddinz of
Vr(u; Q) :={u € H(curl; Q) |div(pu) =0, pu-n = 0 on 00}
in L(Q) is compact.

Moreover, the map (H, H') — / curl H -curl H' defines an inner product
on Vp(u; Q). §

» Since for all H, H’

a(H,’]I‘H'):CL(’]I‘H,H/):/cur1H~curlH’7
Q

we deduce a posteriori that T is an isomorphism of Vo (u; Q).
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The result for the magnetic field

Consider F € L*(Q) such that div F € L*(Q).

THEOREM. Suppose
(p, ") = / eV - V' is T-coercive on H(€); (Ae)

Q
(p, ) — / puVp - V¢ is T-coercive on H(2)/R.  (A,,)

Q

Then, the problem for the magnetic field

Find H € H(curl; ) such that:
curle 'curl H —w?uH = F in Q
wH -n=0 on 0S).

is well-posed for all w € C\.# where . is a discrete (or empty) set of C.
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. and the result for the electric field

Consider F € L*(Q) such that div F € L*(Q).

THEOREM. Suppose
(p, ") = / eV - V' is T-coercive on H(€); (Ae)

Q
(p, ) — / puVp - V¢ is T-coercive on H(2)/R.  (A,,)

Q

Then, the problem for the electric field

Find E € H(curl; ) such that:
curly~lcurlE —w?E=F inQ
Exn=0 on 0f.

is well-posed for all w € C\.# where . is a discrete (or empty) set of C.
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Application to the Fichera’s corner

PROPOSITION. Suppose
1 1
ke & [-T; 7?} and Ky & [—T; 75} .

Then, the problems for the electric and magnetic fields are well-posed for all
w € C\.7 where . is a discrete (or empty) set of C.

Note that 7 is the ratio of the blue volume over the red volume... 22 / 26
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¢ We have studied the scalar problem with a geometric T-coercivity.

v/ We have proved that the Maxwell’s problems for E and H are well-posed as
soon as the two scalar problems are well-posed.

(For the numerical methods)

¢/ In the scalar case: in practice, usual methods converge. Partial proofs are
available Bonnet-Ben Dhia et al., 10, Nicaise-Venel, 11, Chesnel-Ciarlet,
submitted.

& In the vector case: convergence of an edge elements method has to be studied.

(Inside the critical interval)

¢/ In the scalar case, we have developed a functional framework to take into
account the propagative singularity Bonnet-Ben Dhia et al., submitted.
& In the vector case: a theoretical study is in progress.
& Our new model raises a lot of questions, related to the physics of plasmonics
and metamaterials.
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Perspectives for the scattering problem

\\l\ v We hope to be able to deal with the
scattering problem for a bounded
Positive [ Negative negative obstacle using a Dtn
material { material operator and the results presented in
this talk.
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Thank you for your attention.

A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for scalar
interface problems between dielectrics and metamaterials, M2AN, to appear,
2012.

A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for the
Mazwell transmission problem between a dielectric and a negative material, on
going work.

L. Chesnel, P. Ciarlet Jr., T-coercivity and continuous Galerkin methods:
application to transmission problems with sign changing coefficients,
submitted.

A .-S. Bonnet-Ben Dhia, L. Chesnel, X. Claeys, Radiation condition for a
non-smooth interface between a dielectric and a metamaterial, submitted.
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