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General setting
I We are interested in the propagation of waves in acoustic waveguides.

I In this talk, we study questions of invisibility.

Can we find situations where waves
go through like if there were no defect

• One can wish to have good energy transmission through the structure.
• One can wish to hide objects.
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Scattering problem in a waveguide
I Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For this problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n (propagating) for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.
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Goal of the talk

Definition: v is a non reflecting mode if vs is expo. decaying for x ≤ −L
⇔ γ−n = 0, n ∈ J0, N − 1K ⇔ energy is completely transmitted.

GOAL
For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

→ Note that non reflection occurs for particular vi to be computed.
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Outline of the talk

1 Introduction

2 Classical complex scaling

We recall how to use classical complex scaling to compute trapped modes
and complex resonances.

3 Conjugated complex scaling

We explain how to use conjugated complex scaling to compute non re-
flecting modes.
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Classical complex scaling to compute vs 1/2

Reminder: vs =
N−1∑
n=0

γ±n e
±iβnx cos(nπy) +

+∞∑
n=N

γ±n e
∓βnx cos(nπy), ±x ≥ L.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

θ
−iβ̃1

−iβ̃0

β̃2

β̃3

Modal exponents for vs (x ≤ −L)

Modal exponents for vθ (x ≤ −L)

I For θ ∈ (0;π/2), consider the complex change of variables

Iθ(x) =
−L+ (x+ L) eiθ for x ≤ −L

x for |x| < L
+L+ (x− L) eiθ for x ≥ L.

I Set vθ := vs ◦ (Iθ(x), y) .
1) vθ = vs for |x| < L.
2) vθ is exp. decaying at infinity.

vθ =
N−1∑
n=0

γ̃±n e
±iβ̃nx cos(nπy) +

+∞∑
n=N

γ̃±n e
∓β̃nx cos(nπy), ±x ≥ L β̃n = βne

iθ
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Classical complex scaling to compute vs 2/2

I vθ solves (∗) αθ
∂

∂x

(
αθ
∂vθ
∂x

)
+ ∂2vθ

∂y2 + k2vθ = 0 in Ω
∂nvθ = −∂nvi on ∂Ω.

αθ(x) = 1 for |x| < L αθ(x) = e−iθ for |x| ≥ L

• Numerically we solve (∗) in the truncated domain

αθ = e−iθ αθ = e−iθαθ = 1

+L−L +R−R

Dirichlet/
Neumann

Dirichlet/
Neumann

⇒ We obtain a good approximation of vs for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).
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Spectral analysis
I Define the operators A, Aθ of L2(Ω) such that

Av = −∆v, Aθv = −
(
αθ

∂

∂x

(
αθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� A is selfadjoint and positive.
� σ(A) = σess(A) = [0; +∞).
� σ(A) may contain embedded eigenvalues in the essential spectrum.

0 <e λ
=mλess. spectrum

trapped modes

� Aθ is not selfadjoint. σ(Aθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 0]}.
� σess(Aθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0}.
� real eigenvalues of Aθ = real eigenvalues of A.

2θ0 <e λ
=mλ

ess. spectrum
trapped modes
leaky modes
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Numerical results

I We work in the geometry
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Numerical results

I Discretized spectrum of Aθ in k (not in k2). We take θ = π/4.

0 1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

σess(Aθ) (in k)

Two trapped modes
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A new complex spectrum for non reflecting v

I Usual complex scaling selects scattered fields which are

outgoing at −∞ and outgoing at +∞.

Important remark: general v decompose as

v = vi +
N−1∑
n=0

γ−n w
−
n +

+∞∑
n=N

γ−n w
−
n x ≤ −L, v =

+∞∑
n=0

γ+
n w

+
n x ≥ L.

I In other words, non reflecting v are

ingoing at −∞ and outgoing at +∞.

Let us change the sign of the complex scaling at −∞!
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A new complex spectrum for non reflecting v

I For θ ∈ (0;π/2), consider the complex change of variables

Jθ(x) =
−L+ (x+ L) e−iθ for x ≤ −L

x for |x| < L

+L+ (x− L) e+iθ for x ≥ L.

I Set uθ := v ◦ (Jθ(x), y) . 1) uθ = v for |x| < L.
2) uθ is exp. decaying at infinity.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

−θ −iβ̂1

−iβ̂0

β̂2

β̂3

Modal exponents for v (x ≤ −L) Modal exponents for uθ (x ≤ −L)

I uθ solves (∗) βθ
∂

∂x

(
βθ
∂uθ
∂x

)
+ ∂2uθ

∂y2 + k2uθ = 0 in Ω
∂nuθ = 0 on ∂Ω.

βθ(x) = 1 for |x| < L, βθ(x) = eiθ for x ≤ −L, βθ(x) = e−iθ for x ≥ L
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Spectral analysis

I Define the operator Bθ of L2(Ω) such that

Bθv = −
(
βθ

∂

∂x

(
βθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� Bθ is not selfadjoint. σ(Bθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 2θ]}.
� σess(Bθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0} ∪ {n2π2 + t e2iθ, t ≥ 0}.
� real eigenvalues of Bθ = real eigenvalues of A+non reflecting k2.

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
? modes
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Remark

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
? modes

I It is not simple to prove that σ(Bθ) \ σess(Bθ) is discrete.

→ Not true in general!

eikx ◦ Jθ is an eigenfunction for all k ∈ R.

→ A compact perturbation can change drastically the spectrum ( Bθ is not selfadjoint ).
Numerical consequences?
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Numerical results

I Again we work in the geometry

I Define the operators P (Parity), T (Time reversal) such that

Pv(x, y) = v(−x, y) and T v(x, y) = v(x, y).

Prop.: For symmetric Ω = {(−x, y) | (x, y) ∈ Ω}, Bθ is PT symmetric:

PT BθPT = Bθ.

As a consequence, σ(Bθ) = σ(Bθ).

⇒ If λ is an “isolated” eigenvalue located close to the real axis, then λ ∈ R !
15 / 22



Numerical results
I Discretized spectrum in k (not in k2). We take θ = π/4.

0 1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

2

3

4

5

σess(Bθ) (in k)

• The spectrum is indeed stable by conjugation.
• Much more eigenvalues on the real axis than before.

• PMLs with different signs Classical PMLs
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Numerical results

I We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).
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Numerical results
I Let us focus on the eigenmodes such that 0 < k < π.

First trapped mode Second trapped mode
k = 1.2355... k = 2.3897...

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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There is perfect agreement!
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Numerical results

I Now the geometry is not symmetric in x nor in y:

I The operator Bθ is no longer PT -symmetric and we expect:

� No trapped modes
� No invariance of the spectrum by complex conjugation.
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Numerical results
I Discretized spectrum of Bθ in k (not in k2). We take θ = π/4.
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• Indeed, the spectrum is not symmetric w.r.t. the real axis.
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Numerical results
I We compute k 7→ |R(k)| for 0 < k < π.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 1.28 + 0.0003i k = 2.3866 + 0.0005i k = 2.8647 + 0.0243i

Complex eigenvalues also contain information on almost no reflection.
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Spectra for a changing geometry

I Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h ∈ (1.3; 8) .

` = 2.5

h
Ωh

I The magenta marks on the real axis correspond to k = π/` & k = 2π/`.
For k = 2π/`, trapped modes and T = 1 should occur for certain h.
I We zoom at the region 0 < <e k < π.
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++ PMLs with different signs + Classical PMLs



Outline of the talk

1 Introduction

2 Classical complex scaling

3 Conjugated complex scaling
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Conclusion

What we did

♠ We presented an approach to compute non reflecting k (values of k
s.t. there is a vi whose vs is exp. decaying at −∞) for a given Ω.

♠ The technique works with other B.C. (Dirichlet, ...), other
kinds of perturbation (penetrable obstacles, ...), in any dim..

With N leads, 2N in/out spectra:
1 purely in, 1 purely out, 2N − 2 non reflecting spectra.

in/out

in/outin/out

Future work

1) How to justify the numerics? Absence of spectral pollution?
2) Can we find a spectral approach to compute completely reflecting or

completely invisible k for a given geometry?
3) Can we find a spectral approach to identify modal conversion?
4) Can we prove existence of non reflecting k for the PT -symmetric pb?
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v

vi

Thank you for your attention!
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