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General setting

» We are interested in the propagation of waves in acoustic waveguides.

» In this talk, we study questions of invisibility.

Can we find situations where waves
go through like if there were no defect ®

e One can wish to have good energy transmission through the structure.

e One can wish to hide objects.
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Scattering problem in a waveguide

» Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + vs s. t.

Av+k*>n = 0 inQ,
v = 0 on 09,

Vg 18 outgoing.
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» Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + vs s. t.

Av+k*>n = 0 inQ,
v = 0 on 09,
vg 1s outgoing.

» For this problem with & € (N — 1)7; N7), N € N*, the modes are
Propagating | wE(z,y) = e*"#% cos(nmy), Bn = Vk2 —n272, n € [0,N — 1]
Evanescent | wi(x,y) = e¥% cos(nmy), Bn = Vn2n2 — k2, n > N.
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waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + vs s. t.

Av+k*>n = 0 inQ,

v; O,v = 0 on 09,
vg 1s outgoing.
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Scattering problem in a waveguide

» Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

» For this problem with k € (N

+L

Find v = v; + vs s. t.
Av+k*>n = 0 inQ,

O,v = 0 on 09,

vg 1s outgoing.

—1)m; Nm), N € N*, the modes are

Propagating | wE(z,y) = e*"#% cos(nmy), Bn = Vk2 —n272, n € [0,N — 1]
Evanescent | wi(z,y) = €¥50% cos(nmy), fn = Wﬂ ~FZ,n>N.

» Set v; = Z an'w

» v, is outgoing

54

(propagating) for some given (a,) - € CV.

Z,Y:I: +

for +x > L, with (y;F) € CV.




Goal of the talk

DEFINITION: v is a non reflecting mode if v is expo. decaying for z < —L
& v,=0,n€]0,N—1] < energy is completely transmitted.

For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.
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Goal of the talk

DEFINITION: v is a non reflecting mode if v is expo. decaying for z < —L
& v,=0,n€]0,N—1] < energy is completely transmitted.

GOAL For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

— Note that non reflection occurs for particular v; to be computed.
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Outline of the talk

a Introduction

© Classical complex scaling

° Conjugated complex scaling
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Classical complex scaling to compute v, 1/2

N-1 400
REMINDER: v; = Z vE et cos(nmy) + Z vE TP cos(nmy), +x > L.
n=0 n=N

........................... ° Y
® —if31
® —ifo

exp. growing s exp. decaying

Modal exponents for vs (x < —L)
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Classical complex scaling to compute v, 1/2

N-1 400
REMINDER: v; = Z vE et cos(nmy) + Z vE TP cos(nmy), +x > L.
n=0 n=N

B2 B3
........................... ° Y
® —if31
® —ifo
exp. growing s exp. decaying

Modal exponents for vs (x < —L)

» For 0 € (0;7/2), consider the complex change of variables

—L+(x+L)e"? forx<-L
Ty(x) = x for x| < L
+L+ (x—L)e?  forz> L.
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» For 0 € (0;7/2), consider the complex change of variables
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Ty(x) = x for x| < L
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g 7 1) vg = v, for |z| < L.
> t = .
et v :=vs 0 (To(2), ) 2) vp is exp. decaying at infinity.
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Classical complex scaling to compute v, 1/2

+oo
REMINDER: v; = Z yE eEPn® cos(nmy) + Z vE TP cos(nmy), +x > L.

n=N
B2 B3
......................... : ° °
é—iﬂl
® —ifo
exp. growing exp. decaying
Modal exponents for vs (x < —L)
oSt m T m T m I mmmmmmmmmm “
: N ‘
o I
I 3. ~ 7
w 5E eXBn® cog(nm 5E €T cos(nm +r>L B, =pPne? |
| Tn y Tn Y), I
I n=0 n=N :
|
|
|

g 7 1) vg = v, for |z| < L.
> t = .
et v :=vs 0 (To(2), ) 2) vp is exp. decaying at infinity.
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Classical complex scaling to compute v, 1/2

+oo
REMINDER: v; = Z yE eEPn® cos(nmy) + Z vE TP cos(nmy), +x > L.

n=N )
B3 ..
.
B
L B2 B3 g °
........................ o o e
i 0\/ PR .
?—iﬂl e C @ —if3y
®—ifo . e —ijp
exp. growing exp. decaying
Modal exponents for vs (x < —L) Modal exponents for vy (x < —L)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !
|
‘ |
I 400 |
I 3. ~ 7
w E 'yi ifnz T cos(nmy) + E FE eFPnT cos(nmy), Lx > L  Bp = Pne? |
|
I n=0 n=N :
|
|
|

g 7 1) vg = v, for |z| < L.
> t = .
et v := s 0 (To(2), ) 2) vp is exp. decaying at infinity.
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Classical complex scaling to compute v, 2/2

I k2”U9 0 in Q
Opvg = —Opv; omn ON.

6 (9’0() 82”0()
> vy solves | (%) 0‘9%(0‘9%) + 0y?
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Classical complex scaling to compute v,

>

g solves

6 (9’0() 82”0()
(%) ‘“%(“9%) * o2

+ k2”U9 =

8n1)9 =

0

_8nvi

in Q
on 0.

ag(xz) =1 for |z| < L

ag(x) = e~ for |z| > L

2/2

8 /22



Classical complex scaling to compute v,

2/2

(9 51}9 8 Vo 2 _ .
» vy solves (*) a"a—x<a98—x> + 3y + k vy 0 in Q
Onvyp = —0nv; on Of.
ag(z) =1for |z| < L ag(z) = =0 for 2| > L

e Numerically we solve () in the truncated domain

-R —L +L

= We obtain a good approximation of vy for |z| < L.

e This is the method of Perfectly Matched Layers (PMLs).

+R
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Spectral analysis

» Define the operators A, A, of L?(2) such that

Av = —Awv, Apv = —(ag aa ( gz) + %) + 9,v =0 on 99.

A is selfadjoint and positive.
0(A) = 0ess(A4) = [0; +00).
o(A) may contain embedded eigenvalues in the essential spectrum.

[Sm A
— ess. spectrum sm
P Re A

e trapped modes 0 ‘

Ay is not selfadjoint. o(A4y) C {pe, p >0, v € [-26;0]}.
chs(AG) = UnEN{n27r2 + tei2wv t> O}
= real eigenvalues of Ag = real eigenvalues of A.

Re A

— ess. spectrum
e trapped modes
o leaky modes
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Numerical results

» We work in the geometry
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Numerical results

» Discretized spectrum of

1

in k (not in k%). We take § = /4.

[ J
N ]
L] o ° %
.Q. .. ° [
® )
3 L ® 1
& Y
I % L
‘. .\. ‘.
S ) L
e [}
e . °
L ° ° .’ ,
L .
- - Gess(Ay) (in k) % % A ¢
! I I Q. \.\. I .
1 2 4 5 6 7 8
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Numerical results

» Discretized spectrum of A, in k (not in k?). We take § = /4.

1r T T T T T T T

Two trapped modes

- == 0ess(Ap) (in k)

5L I
0 1 2 3 4
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Outline of the talk

Q Introduction

© Classical complex scaling

° Conjugated complex scaling
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A new complex spectrum for non reflecting v

» Usual complex scaling selects scattered fields which are

outgoing at —oo and outgoing at +oo.

IMPORTANT REMARK: general v decompose as

N—-1 “+o00 “+o0
v:vi+27;w;+z'y;w; x < —L, U:Zfﬁ{w;f x> L.
n=0 n=N n=0
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outgoing at —oo and outgoing at +oo0.
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1 “+o0 400
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A new complex spectrum for non reflecting v

» Usual complex scaling selects scattered fields which are

outgoing at —oo and outgoing at +o0.

IMPORTANT REMARK: non reflecting v decompose as
N—-1 +o00 +oco

v:Zanw:—i—ngw; z < —L, v:Z'y;fw: x> L.
n=0 n=N n=0

» In other words, non reflecting v are

ingoing at —oo and outgoing at +o00.

/

Let us change the sign of the complex scaling at —oc!

AN
s
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A new complex spectrum for non reflecting v

» For 6 € (0;7/2), consider the complex change of variables

~L+(x+L)e ™ forx<—L
Jo(z) = x for x| < L
+L+ (x—L) et  forx> L.
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A new complex spectrum for non reflecting v

» For 6 € (0;7/2), consider the complex change of variables
~L+(x+L)e ™ forx<—L
Jo(x) = x for |z| < L
+L+ (x—L) et  forx> L.
1) ugp = v for |z| < L.

> Set up:=vo (Jo(z),y).
2) uyg is exp. decaying at infinity.
571',80 . .“;iﬁo
®—iB IS e _ip
,,,,,,,,,,,,,,,,,,,,,,,, e o | e S
B2 Bs '
‘e
Bz

exp. growing exp. decaying : .
Modal exponents for v (z < —L) Modal exponents for ug (z < —L)
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A new complex spectrum for non reflecting v

>

For 6 € (0;7/2), consider the complex change of variables

—L+(z+1L)

Jo(x) = x

+L+ (z — L) et

Set wug :=wvo (Jp(x),y) .

exp. growing

' —iBo

® —if3
......... ° °
B2 B3

exp. decaying

Modal exponents for v (z < —L)

up solves

e @ forz<-—L

for x| < L

for x > L.

1) ugp = v for |z| < L.

2) uyg is exp. decaying at infinity.

------------- 79[ ® —ify

‘.C'Qiéo

{ Bz .
Modal exponents for ug (z < —L)

(%) 5(9 (59 &w)

82’119
8 2

I kz’LLg
Ong

‘®.

B2
=0 inQ
=0 on 0N.
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A new complex spectrum for non reflecting v

» For 6 € (0;7/2), consider the complex change of variables
~L+(x+L)e ™ forx<—L
Jo(z) = x for x| < L
+L+ (x—L) et  forx> L.
1) ugp = v for |z| < L.

> Set up:=vo (Jy(x),y).
2) uyg is exp. decaying at infinity.

®—i |
= . ®—ifo
e —if ' ‘o —if
........................ ° °
B2 B3 ‘e
B2 .
‘..
exp. growing exp. decaying Bs

Modal exponents for v (z < —L) Modal exponents for ug (z < —L)

8UG 82’119
> uy solves | (%) 56 (69 ) 0y?

+k%up =0 inQ
Opug = 0 on ON.

Bo(z) =1for || < L, Bo(x)= € forx < —L, Bo(z)=e"" forz>1L 12/ 22



Spectral analysis

» Define the operator By of L?(Q) such that

Byv = —(ﬂe(% (ﬂe%) + 22;2}) + 0,v =0 on 0.

= By is not selfadjoint. o(By) C {pe®?, p >0, v € [—26;20]}.
® Oess(Bg) = Unen{n?n2 +te 29 t > 0} U {n2n2 +te? t > 0}.
» real eigenvalues of By = real eigenvalues of A+non reflecting k2.

essential spectrum
trapped modes

non reflecting modes
? modes

Re A\
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Remark

essential spectrum
trapped modes

non reflecting modes
? modes

Re A

» It is not simple to prove that o(By) \ dess(Bo) is discrete.
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e trapped modes

e non reflecting modes
® 7 modes
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— Not true in general!

A ’eikz o Jy is an eigenfunction for all k € Z.
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Remark

essential spectrum
trapped modes

non reflecting modes
? modes

Re A

» It is not simple to prove that o(By) \ dess(Bo) is discrete.

N o — Not true in general!
A ’eikz o Jp is an eigenfunction for all k € L%‘
— A compact perturbation can change drastically the spectrum ( By is not selfadjoint ).
Numerical consequences?

14 / 22



Numerical results

» Again we work in the geometry

» Define the operators P (Parity), 7 (Time reversal) such that

Po(z,y) =v(—z,y) and To(z,y)=v(z,y).

ProOP.: For symmetric Q = {(—=z,y) | (z,y) € Q}, By is PT symmetric:

PTByPT = By.

As a consequence, a(By) = a(By).

= If X\ is an “isolated” eigenvalue located close to the real axis, then A € R!

15 / 22



Numerical results

» Discretized spectrum in k (not in k%). We take 6 = 7 /4.

5 T T @ 2@ P
- - - 0ess(By) (in k) ....' .“.
4 .... ‘.‘.
.c‘. o®

e The spectrum is indeed stable by conjugation.

-4t . . .

e Much more eigenvalues on the real axis than before. 5

5 I I I I "e "e I o
0 1 2 3 4 5 6 7
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Numerical results

» Discretized spectrum in k (not in k%). We take 6 = 7 /4.
o

5

4

Oess(Byg) (in k)

@
.‘

o°

o®
‘.6°
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Numerical results

» Discretized spectrum in k (not in k%). We take 6 = 7 /4.

5 T T @ 2@
- - - 0ess(By) (in k) ....' .“.
4 .‘.. ‘.‘.
.c‘. o®

e PMLs with different signs + Classical PMLs

15 / 22



Numerical results

» We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).

- T TIESTH
T e I 1.
— L, ——— L i | [
L Dws){ B S
[ — i 215§ mm el S
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Numerical results

» Let us focus on the eigenmodes such that 0 < k& < 7.

S m— e

First trapped mode Second trapped mode
k =1.2355... k =2.3897...
& N
First non reflecting mode Second non reflecting mode
k=1.4513... k = 2.8896...
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Numerical results

»  To check our results, we compute k+— |R(k)| for 0 < k < .

0.6 - b
0.5 N
04 N
0.3 N
0.2 b

0.1 N

0 I I & I I &

0 05 1 15 2 25 3
N
I 0
First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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Numerical results

»  To check our results, we compute k+— |R(k)| for 0 < k < .

0.6 -

0.5

04

0.3

0.2

0.1

) = ) I-

First non reflecting mode

k=1.4513...

Second non reflecting mode
k = 2.8896...

There is perfect agreement!
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Numerical results

» Now the geometry is not symmetric in & nor in y:

» The operator By is no longer P7T-symmetric and we expect:

m No trapped modes

®  No invariance of the spectrum by complex conjugation.
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Numerical results

» Discretized spectrum of By in k (not in k?). We take = /4.
5 T
- - - Oess(Byg) (in k)

e Indeed, the spectrum is not symmetric w.r.t. the real axis.
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Numerical results

» We compute k+— |R(k)| for 0 < k < .

1 0

09

0.8

0.7

0.6

05
0.4
03
021

01

F'.L"\ L"\

k =1.28 4+ 0.0003¢ = 2.3866 + 0.0005¢ = 2.8647 + 0.0243:
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Numerical results

» We compute k+— |R(k)| for 0 < k < .

1 0

09

0.8

0.7

0.6

05

0.4

03

021

01

0

=] L"\ -_-'1

k =1.28 4+ 0.0003¢ = 2.3866 + 0.0005¢ = 2.8647 + 0.0243:

‘ Complex eigenvalues also contain information on almost no reflection.
17/ 2




Spectra for a changing geometry

» Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h € (1.3;8).

» The magenta marks on the real axis correspond to k = 7 /¢ & k = 27 /¢.
For k = 27/¢, trapped modes and T = 1 should occur for certain h.

» We zoom at the region 0 < Rek < 7.
18 / 22



0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

h = 1.3335
L % ,
I * *
i .
N [N Wl |
N N N —r
+ *
- |
i % + ]
*
i + * ++,
- + .

0.5

% PMLs with different signs

O R R T
(=)6r/+]

4+ Classical PMLs



Outline of the talk
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Conclusion

What we did

& We presented an approach to compute non reflecting &k (values of k
s.t. there is a v; whose v is exp. decaying at —oo) for a given ().
| |

& The technique works with other B.C. (Dirichlet, ...), other /oyt
kinds of perturbation (penetrable obstacles, ...), in any dim..

With N leads, 2V in/out spectra: - .
1 purely in, 1 purely out, 2 — 2 non reflecting spectra.
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Conclusion

What we did

& We presented an approach to compute non reflecting &k (values of k

s.t. there is a v; whose v is exp. decaying at —oo) for a given ().
| |

& The technique works with other B.C. (Dirichlet, ...), other /oyt
kinds of perturbation (penetrable obstacles, ...), in any dim..
With N leads, 2V in/out spectra: - -
1 purely in, 1 purely out, 2 — 2 non reflecting spectra.

1) How to justify the numerics? Absence of spectral pollution?

2) Can we find a spectral approach to compute completely reflecting or
completely invisible k for a given geometry?

3) Can we find a spectral approach to identify modal conversion?

4) Can we prove existence of non reflecting k for the P7T-symmetric pb?

t
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Thank you for your attention!
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