Advanced theoretical and numerical methods for waves in structured media

A new complex spectrum related to invisibility in waveguides

Lucas Chesnel¹

Coll. with A.-S. Bonnet-Ben Dhia² and V. Pagneux³.

¹Defi team, CMAP, École Polytechnique, France ²Poems team, Ensta, France ³LAUM, Université du Maine, France

LAB. DE PHYS. NUCLÉAIRE ET DE HAUTES ÉNERGIES, PARIS, 14/03/2018

General setting

• We are interested in the propagation of waves in acoustic waveguides.

• In this talk, we study questions of invisibility.

Can we find situations where waves go through like if there were no defect

• One can wish to have good energy transmission through the structure.

• One can wish to hide objects.

Scattering in time-harmonic regime of an incident wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

Find $v = v_i + v_s$ s. t. $\Delta v + k^2 v = 0$ in Ω , $\partial_n v = 0$ on $\partial \Omega$, v_s is outgoing.

Scattering in time-harmonic regime of an incident wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

Find
$$v = v_i + v_s$$
 s. t.
 $\Delta v + k^2 v = 0$ in Ω ,
 $\partial_n v = 0$ on $\partial \Omega$,
 v_s is outgoing.

For this problem with $k \in ((N-1)\pi; N\pi)$, $N \in \mathbb{N}^*$, the modes are Propagating $\begin{vmatrix} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket$ Evanescent $\begin{vmatrix} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N.$

Scattering in time-harmonic regime of an incident wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

Find
$$v = v_i + v_s$$
 s. t.
 $\Delta v + k^2 v = 0$ in Ω ,
 $\partial_n v = 0$ on $\partial \Omega$,
 v_s is outgoing.

For this problem with $k \in ((N-1)\pi; N\pi)$, $N \in \mathbb{N}^*$, the modes are Propagating $\begin{vmatrix} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket$ Evanescent $\begin{vmatrix} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N.$

• Set $v_i = \sum_{n=0}^{N-1} \alpha_n w_n^+$ (propagating) for some given $(\alpha_n)_{n=0}^{N-1} \in \mathbb{C}^N$.

Scattering in time-harmonic regime of an incident wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

$$\begin{array}{lll} \mbox{Find} \ v = v_i + v_s \ {\rm s.} \ {\rm t.} \\ \Delta v + k^2 v &= 0 & \mbox{in} \ \Omega, \\ \partial_n v &= 0 & \mbox{on} \ \partial \Omega, \\ v_s \ {\rm is \ outgoing.} \end{array}$$

For this problem with $k \in ((N-1)\pi; N\pi)$, $N \in \mathbb{N}^*$, the modes are

 $\begin{array}{l} \text{Propagating} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N - 1 \rrbracket \\ \text{Evanescent} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N. \end{array} \right. \end{array}$

• Set $v_i = \sum_{n=0}^{N-1} \alpha_n w_n^+$ (propagating) for some given $(\alpha_n)_{n=0}^{N-1} \in \mathbb{C}^N$.

$$v_s \text{ is outgoing } \Leftrightarrow \quad v_s = \sum_{n=0}^{+\infty} \gamma_n^{\pm} w_n^{\pm} \quad \text{ for } \pm x \ge L, \text{ with } (\gamma_n^{\pm}) \in \mathbb{C}^{\mathbb{N}}.$$

Goal of the talk

DEFINITION: v is a non reflecting mode if v_s is expo. decaying for $x \leq -L$ $\Leftrightarrow \quad \gamma_n^- = 0, \ n \in [\![0, N-1]\!] \quad \Leftrightarrow \quad \text{energy is completely transmitted.}$

For a given geometry, we present a method to find values of k such that there is a non reflecting mode v.

Goal of the talk

DEFINITION: v is a non reflecting mode if v_s is expo. decaying for $x \leq -L$ $\Leftrightarrow \quad \gamma_n^- = 0, \ n \in [\![0, N-1]\!] \quad \Leftrightarrow \quad \text{energy is completely transmitted.}$

GOAL

For a given geometry, we present a method to find values of k such that there is a non reflecting mode v.

 \rightarrow Note that non reflection occurs for **particular** v_i to be computed.

1 Introduction

Classical complex scaling

We recall how to use classical complex scaling to compute trapped modes and complex resonances.

3 Conjugated complex scaling

We explain how to use conjugated complex scaling to compute non reflecting modes.

1 Introduction

2 Classical complex scaling

We recall how to use classical complex scaling to compute trapped modes and complex resonances.

3 Conjugated complex scaling

We explain how to use conjugated complex scaling to compute non reflecting modes.

$$\mathcal{I}_{\theta}(x) = \begin{vmatrix} -L + (x+L) e^{i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) e^{i\theta} & \text{for } x \geq L. \end{vmatrix}$$

• For $\theta \in (0; \pi/2)$, consider the complex change of variables

$$\mathcal{I}_{\theta}(x) = \begin{vmatrix} -L + (x+L) e^{i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) e^{i\theta} & \text{for } x \geq L. \end{vmatrix}$$

• Set $v_{\theta} := v_s \circ (\mathcal{I}_{\theta}(x), y)$.

$$v_{\theta} = \sum_{n=0}^{N-1} \tilde{\gamma}_n^{\pm} e^{\pm i\tilde{\beta}_n x} \cos(n\pi y) + \sum_{n=N}^{+\infty} \tilde{\gamma}_n^{\pm} e^{\pm \tilde{\beta}_n x} \cos(n\pi y), \quad \pm x \ge L \quad \tilde{\beta}_n = \beta_n e^{i\theta}$$

• Set $v_{\theta} := v_s \circ (\mathcal{I}_{\theta}(x), y)$.

1)
$$v_{\theta} = v_s$$
 for $|x| < L$.
2) v_{θ} is exp. decaying at infinity.

 \triangleright v_{θ} solves

(*)
$$\left| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_n v_{\theta} = -\partial_n v_i \quad \text{on } \partial\Omega. \end{array} \right.$$

2/2

 \triangleright v_{θ} solves

$$\mathbf{s}\left[(\ast) \middle| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^{2} v_{\theta}}{\partial y^{2}} + k^{2} v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_{n} v_{\theta} = -\partial_{n} v_{i} \quad \text{on } \partial\Omega. \end{array} \right.$$
$$\alpha_{\theta}(x) = 1 \text{ for } |x| < L \qquad \alpha_{\theta}(x) = e^{-i\theta} \text{ for } |x| \ge L$$

•
$$v_{\theta}$$
 solves $\left| \begin{array}{c} (*) \\ \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_n v_{\theta} = -\partial_n v_i \quad \text{on } \partial\Omega. \end{array} \right|$
 $\alpha_{\theta}(x) = 1 \text{ for } |x| < L \qquad \alpha_{\theta}(x) = e^{-i\theta} \text{ for } |x| \ge L$

• Numerically we solve (*) in the truncated domain

 \Rightarrow We obtain a good approximation of v_s for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).

Spectral analysis

• Define the operators A, A_{θ} of $L^{2}(\Omega)$ such that

$$Av = -\Delta v, \qquad A_{\theta}v = -\left(\alpha_{\theta}\frac{\partial}{\partial x}\left(\alpha_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

$$A_{\theta} \text{ is not selfadjoint. } \sigma(A_{\theta}) \subset \{\rho e^{i\gamma}, \ \rho \ge 0, \ \gamma \in [-2\theta; 0]\}.$$

$$\sigma_{\text{ors}}(A_{\theta}) = \bigcup_{n \in \mathbb{N}} \{n^2 \pi^2 + t e^{-2i\theta}, \ t \ge 0\}.$$

• real eigenvalues of A_{θ} = real eigenvalues of A.

• Discretized spectrum of A_{θ} in k (not in k^2). We take $\theta = \pi/4$.

10 / 23

• Discretized spectrum of A_{θ} in k (not in k^2). We take $\theta = \pi/4$.

10 / 23

1 Introduction

Classical complex scaling

We recall how to use classical complex scaling to compute trapped modes and complex resonances.

3 Conjugated complex scaling

We explain how to use conjugated complex scaling to compute non reflecting modes.

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: general v decompose as

$$v = v_i + \sum_{n=0}^{N-1} \gamma_n^- w_n^- + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: **non reflecting** v decompose as

$$v = v_i + \sum_{n=0}^{N-1} w_n^- w_n^- + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: **non reflecting** v decompose as

$$v = \sum_{n=0}^{N-1} \alpha_n w_n^+ + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• In other words, **non reflecting** v are

ingoing at $-\infty$ and outgoing at $+\infty$.

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: **non reflecting** v decompose as

$$v = \sum_{n=0}^{N-1} \alpha_n w_n^+ + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

 \blacktriangleright In other words, **non reflecting** v are

ingoing at $-\infty$ and outgoing at $+\infty$.

Let us **change the sign** of the complex scaling at $-\infty$!

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) & e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) & e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) & e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) & e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$
Set $u_{\theta} := v \circ (\mathcal{J}_{\theta}(x), y)$.

$$1) \ u_{\theta} = v \text{ for } |x| < L.$$

$$2) \ u_{\theta} \text{ is exp. decaying at infinity.}$$

$$\underbrace{\bullet^{-i\beta_{1}}}_{\beta_{2}} \quad \underbrace{\bullet^{-i\beta_{1}}}_{\beta_{3}} \quad \underbrace{\bullet^{-i\beta_{1}}}_{\beta_{2}} \quad \underbrace{\bullet^{-i\beta_{1}}}_{\beta_{3}} \quad \underbrace{\bullet^$$

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) & e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) & e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$
Set $u_{\theta} := v \circ (\mathcal{J}_{\theta}(x), y)$.
$$\begin{array}{c} 1) & u_{\theta} = v \text{ for } |x| < L. \\ 2) & u_{\theta} \text{ is exp. decaying at infinity.} \end{aligned}$$

$$\begin{array}{c} \bullet & -i\beta_{0} \\ \bullet & -i\beta_{1} \\ \theta_{2} & \theta_{3} \\ exp. \text{ growing} & exp. \text{ decaying} \\ \end{array}$$
Modal exponents for $v \ (x \leq -L) \end{array}$
Modal exponents for $u_{\theta} \ (x \leq -L)$

$$u_{\theta} \text{ solves} \left[(*) \middle| \begin{array}{c} \beta_{\theta} \frac{\partial}{\partial x} \left(\beta_{\theta} \frac{\partial u_{\theta}}{\partial x} \right) + \frac{\partial^{2} u_{\theta}}{\partial y^{2}} + k^{2} u_{\theta} = 0 & \text{in } \Omega \\ \partial_{n} u_{\theta} = 0 & \text{on } \partial \Omega. \\ \end{array} \right]$$

For $\theta \in (0; \pi/2)$, consider the complex change of variables

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) & e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) & e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$

$$\text{Set } u_{\theta} := v \circ (\mathcal{J}_{\theta}(x), y) \text{.} \qquad 1) \quad u_{\theta} = v \text{ for } |x| < L. \\ 2) \quad u_{\theta} \text{ is exp. decaying at infinity.} \end{vmatrix}$$

$$\overset{\bullet^{-i\beta_0}}{\overset{\bullet^{-i\beta_1}}}{\overset{\bullet^{-i\beta_1}}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}}{\overset{\bullet^{-i\beta_1}}{\overset{\bullet^{-i\beta_1}}}}}}}}}}} \\ \mathcal{I}$$

12 / 23

Spectral analysis

• Define the operator B_{θ} of $L^2(\Omega)$ such that

$$B_{\theta}v = -\left(\beta_{\theta}\frac{\partial}{\partial x}\left(\beta_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

B_θ is not selfadjoint. σ(B_θ) ⊂ {ρe^{iγ}, ρ ≥ 0, γ ∈ [-2θ; 2θ]}.
σ_{ess}(B_θ) = ∪_{n∈N}{n²π² + t e^{-2iθ}, t ≥ 0} ∪ {n²π² + t e^{2iθ}, t ≥ 0}.
real eigenvalues of B_θ = real eigenvalues of A+non reflecting k².

1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

 \rightarrow Not true in general!

 $e^{ikx} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.

1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

 \rightarrow Not true in general!

 $e^{ikx} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.

1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

 $\rightarrow \mathbb{C} \setminus \sigma_{ess}(B_{\theta}) \text{ is not connected} \Rightarrow \text{ we cannot apply simply the analytic Fredholm thm.}$ $\rightarrow A \text{ compact perturbation can change drastically the spectrum (} \frac{B_{\theta} \text{ is not selfadjoint}}{B_{\theta} \text{ is not selfadjoint}}\text{).}$ Numerical consequences?

 \rightarrow Not true in general!

• Define the operators \mathcal{P} (Parity), \mathcal{T} (Time reversal) such that

$$\mathcal{P}v(x,y) = v(-x,y)$$
 and $\mathcal{T}v(x,y) = \overline{v(x,y)}.$

PROP.: For symmetric $\Omega = \{(-x, y) | (x, y) \in \Omega\}, B_{\theta} \text{ is } \mathcal{PT} \text{ symmetric:}$

 $\mathcal{PT}B_{\theta}\mathcal{PT} = B_{\theta}.$

As a consequence, $\sigma(B_{\theta}) = \overline{\sigma(B_{\theta})}$.

 \Rightarrow If λ is an "isolated" eigenvalue located close to the real axis, then $\lambda \in \mathbb{R}$!

• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.

• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.

• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.

15 / 23

• We display the eigenmodes for the ten first real eigenvalues in the whole computational domain (including PMLs).

• Let us focus on the eigenmodes such that $0 < k < \pi$.

First trapped mode k = 1.2355...

Second trapped mode k = 2.3897...

First non reflecting mode k = 1.4513...

Second non reflecting mode k = 2.8896...

• To check our results, we compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

First non reflecting mode k = 1.4513...

Second non reflecting mode k = 2.8896...

• To check our results, we compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

• Now the geometry is not symmetric in x nor in y:

- The operator B_{θ} is no longer \mathcal{PT} -symmetric and we expect:
 - No trapped modes
 - No invariance of the spectrum by complex conjugation.

• Discretized spectrum of B_{θ} in k (not in k^2). We take $\theta = \pi/4$.

• We compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

• We compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

Complex eigenvalues also contain information on almost no reflection.

17 / 23

• For the Dirichlet problem

Find
$$v = v_i + v_s$$
 s. t.
 $\Delta v + k^2 v = 0$ in Ω ,
 $v = 0$ on $\partial \Omega$,
 v_s is outgoing

in the junction of waveguides

the set $\mathbb{C} \setminus \sigma_{\text{ess}}(B_{\theta})$ is connected. The sets of threshold frequencies are $\{n^2\pi^2, n \in \mathbb{N}^*\}$ and $\{m^2\pi^2/2, m \in \mathbb{N}^*\}$.

• Discretized spectrum of B_{θ} (Dirichlet) in k (not in k^2) with $\theta = \pi/4$.

Spectra for a changing geometry

▶ Two series of computations: one with PMLs with different sign, one with classical PMLs. We compute the spectra for $h \in (1.3; 8)$.

The magenta marks on the real axis correspond to $k = \pi/\ell \& k = 2\pi/\ell$. For $k = 2\pi/\ell$, trapped modes and T = 1 should occur for certain h.

• We zoom at the region
$$0 < \Re e k < \pi$$
.

* PMLs with different signs

+ Classical PMLs

1 Introduction

2 Classical complex scaling

3 Conjugated complex scaling

Future work

- 1) How to justify the numerics? Absence of spectral pollution?
- 2) Can we find a spectral approach to compute completely reflecting or completely invisible k for a given geometry?
- 3) Can we find a spectral approach to identify modal conversion?
- 4) Can we prove existence of non reflecting k for the \mathcal{PT} -symmetric pb?

Thank you for your attention!