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Goal and motivation

We study 3D time harmonic Maxwell’s equations in presence of an inclusion

of negative material:

curl E —iwpH =0 in
curl H + iweE = J in Q)

Positive material Negative material
+ PEC boundary cond.: e>0 <0
E xv =0 on 0N and >0 and/or <0

uwH - v =0 on 00

» For metals at optical frequencies, ¢ < 0 and p > 0.
» Artificial metamaterials have been realized which can be modelled for
certain frequencies by € < 0 and p < 0.
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Goal and motivation

We study 3D time harmonic Maxwell’s equations in presence of an inclusion
of negative material:

curl E —iwpH =0 in Q
curl H + iweE = J in Q)

Positive material Negative material
+ PEC boundary cond.: e>0 <0
E xv=0o0noN and p>0 and/or <0

uwH - v =0 on 00

» For metals at optical frequencies, ¢ < 0 and p > 0.
» Artificial metamaterials have been realized which can be modelled for
certain frequencies by € < 0 and p < 0.

Particular motivation: non
smooth gold nanoparticles.

Difficulty: usual results do not apply, singularities at the tip are amplified.
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Outline of the talk

@ Positive coefficients

e Sign-changing coefficients - non critical case

© Scalar problems

e Sign-changing coefficients - critical case
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@ Positive coefficients
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Classical case 1/3

» Let us first consider the classical case where e, u > ¢ >0 in .
» We focus our attention on the electric problem

curlpy~lcurl E —w?:E = iwJ in{

() B .
Exyv = 0 in 0Q

where J € L2(Q) := L?(Q)? is such that divJ = 0 in .
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Classical case

» Let us first consider the classical case where e, u > ¢ >0 in .

» We focus our attention on the electric problem

curlpy~lcurl E —w?:E = iwJ in{

(2) Exv = 0 in 0Q

where J € L2(Q) := L?(Q)? is such that divJ = 0 in .

1/3

Q

Find E € Hy(curl) such that for all E' € Hy(curl)

D) & | (¥

(Z) (Zn) /;flcurlE-curlE'—wQEE-E’dx:iw/ J - FE dx,
Q

where Hy (curl ) := {u € L*(Q) | curlu € L*(Q) and u x v = 0 on 90Q}.
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Classical case

» Let us first consider the classical case where e, u > ¢ >0 in .

» We focus our attention on the electric problem

curlpy~lcurl E —w?:E = iwJ in{

P
(2) Exv = 0 in 0Q

where J € L2(Q) := L?(Q)? is such that divJ = 0 in .

1/3

Q

Find E € Hy(curl) such that for all E' € Hy(curl)

P) | (2

(#) =] (Pn) /;flcurlE-curlE’ — W%E - Edx :iw/ J-E dz,
Q

where Hy (curl ) := {u € L*(Q) | curlu € L*(Q) and u x v = 0 on 90Q}.

A

Difficulty: V(H}) C kercurl- and the embedding Hy(curl) C
Lz(Q) is not compact which prevents using Fredholm alternative.
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Classical case 2/3

\ v
\Q\_ Use the divergence free condition and work in the space

Xn(e) :={u € Hy(curl)|div (cu) = 0 in 09}
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Classical case 2/3

\
N

\9\_ Use the divergence free condition and work in the space
Xn(e) :=={u € Hy(curl) |div (eu) = 0 in 99}
(H € Xr(p) :={u € H(curl) |div(pu) =0, pu-n =0 on 092} ).

» This leads to the problem

Find E € Xy (e) such that for all E' € Xy(e)
(Zx)

/ plcurl E-curl E' — w*cE - E' dx = iw/ J - E'dz.
Q Q
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Classical case

Y,
\Q\: Use the divergence free condition and work in the space
Xn(e) :={u € Hy(curl)|div (cu) = 0 in 09}
(H € Xr(p) :={u € H(curl) |div(pu) =0, pu-n =0 on 092} ).
» This leads to the problem

Find E € Xy (e) such that for all E' € Xy(e)

&
(#x) / plcurl E-curl E' — w*cE - E' dx = iw/ J - E'dz.
Q Q

2/3

ProPOSITION: When ¢, u > ¢ > 0:
- the embedding Xy (e) € L*(Q) is compact;

- (u,v) — / pteurlu - curl @ dr is coercive in Xy (e);
Q

so that (Px) satisfies the Fredholm alternative (uniqueness = existence).

(6]
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Classical case 3/3

» Well-posedness of the initial problem comes from the following result:

PRrROP.: Assume that ¢ > ¢ > 0. Then E solves (Zn) iff E solves (Zx).

Proof. = This implication is direct.
< Assume that E solves (Px). For E' € Hy(curl), let ¢ € H{() be s.t.

div (eVp) = div (eE")
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Classical case 3/3

» Well-posedness of the initial problem comes from the following result:

PRrROP.: Assume that ¢ > ¢ > 0. Then E solves (Zn) iff E solves (Zx).

Proof. = This implication is direct.
< Assume that E solves (Px). For E' € Hy(curl), let ¢ € H{() be s.t.

div (eVp) = div (eE")

Then we have E' — Vo € Xy (¢) so that we can write

/ pteurl E-curl (E'— V) —w?eE-(E' -~ V) dz = iw /J (E'—Vy)dz.
Q Q
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Classical case 3/3

» Well-posedness of the initial problem comes from the following result:

PRrROP.: Assume that ¢ > ¢ > 0. Then E solves (Zn) iff E solves (Zx).

Proof. = This implication is direct.
< Assume that E solves (Px). For E' € Hy(curl), let ¢ € H{() be s.t.

div (eVp) = div (eE")

Then we have E' — Vo € Xy (¢) so that we can write

/u‘lcurlE-curlE’—w25E-E’dx:iw/ J - E'dz.
Q Q

This implies that E solves (Zy). O
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9 Sign-changing coefficients - non critical case
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Sign-changing coefficients

» Now we allow for a possible change of sign of € and/or p in .

Introduce the operator A. : H{(Q) — H{(Q) such that

(Aeps ¢ )1 (0) =/S26V¢-V?dx, Vo,¢' € Hy(Q).

Working as above, one shows:

PROPOSITION: Assume that A. is an isomorphism. Then E solves (%)
iff E solves (¥x).

9 /25



Sign-changing coefficients

» Now we allow for a possible change of sign of ¢ and/or u in Q.

Introduce the operator A. : H{(Q) — H{(Q) such that

(Aeps @ )mi () = /Q eV -V dz, Voo € Hy(Q).

Working as above, one shows:

PROPOSITION: Assume that A, is an isomorphism. Then E solves (%)
iff E solves (¥x).

PROPOSITION: Assume that A. is an isomorphism. Then we have

lulle < C|curl ulq, Vu € Xy (e).

Thus Xy (¢) endowed with (curl-, curl-)q is a Hilbert space.

Proof. Write u = Vi + curley with ¢ € H{(Q) and ¢ € X7(1).
Then use that curlcurly = At = curlu and A.¢ = div (ecurly).

O
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Sign-changing coefficients

How to study (#x) now?

Find E € Xy (¢) such that for all B’ € Xy(e) :

pteurl E - curlE' —w? | ecE-E' = | F- E,
(%)
Q Q Q

a(E,E") c(E,E’) o(E)

When g changes sign, a(-,-) is not coercive.

When e changes sign, is the embedding Xy (¢) € L?(Q) compact?

9 /25



T-coercivity in the vector case

If T is an isomorphism of Xy (¢), we have
a(E,E") —w?(E,E') = (E), VE' € Xy(e)

& a(E,TE')—w?c(E,TE') = (TE'), VE €Xy(e).

1/2

./ | The key idea is to construct T € Xy (e) = Xn(e) such that
Q\ a(E,TE) = / p teurl E - curl (TE') is coercive in Xy (¢).
Q
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T-coercivity in the vector case

If T is an isomorphism of Xy (¢), we have
a(E,E") —w?(E,E') = (E), VE' € Xy(e)

& a(E,TE')—w?c(E,TE') = (TE'), VE €Xy(e).

1/2

./ | The key idea is to construct T € Xy (e) = Xn(e) such that
Q\ a(E,TE) = / p tcurl E - curl (TE') is coercive in Xy (¢).
Q

To present the construction, set H (Q) := {¢ € H'(Q)| [, ¢ dz = 0}.

Introduce the operator A, : H () — H () such that
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

/qu VY do = /Qucurlﬂvw’ dz, VY’ € Hy(Q).
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

/QMVl‘-Vl/)' dr = /QucurlE~V1/z' dz, V' € Hy(Q). [‘t Ok when 4, J

is an isom.
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/qu VY do = /Qucurlﬂvw’ dz, VY’ € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that

curlu = p(curl E — V)  in Q.
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/sv -w’df/fu'W’dx, V' € Hg(9).
Q Q
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T-coercivity in the vector case 2/2

Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/sv -Vgo’dx:/au~V<p’dx, v € H(@). | @ Ok when A
Q

Q is an isom.
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T-coercivity in the vector case 2/2
Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/ eVy - Vy'dr = / cu-Vy'dr, Vo e HV(Q). | Ok when A,
Q

Q is an isom.

O Finally, define TE := v — Vi € Xy(e).
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@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/ eVy - Vy'dr = / cu-Vy'dr, Vo e HV(Q). | Ok when A,
Q

Q is an isom.

@ Finally, define TE := v — V» € Xy(e). There holds:

a(E,TE) = / p tcurl E - curl (TE) dx
Q
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Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.
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T-coercivity in the vector case 2/2
Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/ eVy - Vy'dr = / cu-Vy'dr, Vo e HV(Q). | Ok when A,
Q

Q is an isom.

@ Finally, define TE := v — V» € Xy(e). There holds:

a(E,TE) = /

p tcurl E - curl wde = / curl E - (curl E — Vi) dx
Q

Q
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T-coercivity in the vector case 2/2
Consider E € Xy (¢).
@ Introduce ' € H#(Q) such that curl E — V) € Xp(u). To proceed, solve

@ Ok when A,

is an isom.

/QW Vyds = /Q peurl E-Vy' dx, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

® Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/ eVy - Vy'dr = / cu-Vy'dr, Vo e HV(Q). | Ok when A,
Q

Q is an isom.

@ Finally, define TE := v — V» € Xy(e). There holds:

a(E,TE) = /

p tcurl E - curl wde = / |curl E|? dz.
Q Q
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T-coercivity in the vector case 2/2

LEMMA. Suppose that
A, : H}(Q) — H{(Q) is an isomorphism
A, Hy () — H(Q) is an isomorphism.
Then, there exists T : X (¢) — Xy (¢) such that, for all E, E’

a(E,TE') = o(TE, E') = / curl E - curl E' du
Q

(this implies in particular that T is an isomorphism of Xy (e)).
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Compact embedding and final result

THEOREM. Assume that A. : H{(Q2) — H§(£) is an isomorphism. Then the
embedding of Xy (&) in L*(Q) is compact.

Proof. 1)div(eu)=0 = ecu=curly withy e Xp(l).
2) Then we get curl (¢~ lcurl) = curlu.
3) When A, : H}(Q) — H}(Q) is an isom, there is T : X7 (1) — Xz (1) s.t.

chrl’zb”?):/5_1curl'¢~curl(T'¢/))dx:/cur1u~(']I‘1/))dx. O
Q

Q

12 / 25



Compact embedding and final result

THEOREM. Assume that A. : H{(Q2) — H§(£) is an isomorphism. Then the
embedding of Xy (&) in L*(Q) is compact.

Proof. 1)div(eu)=0 = ecu=curly withy e Xp(l).
2) Then we get curl (¢~ lcurl) = curlu.
3) When A, : H}(Q) — H}(Q) is an isom, there is T : X7 (1) — Xz (1) s.t.

chrl’zb”?):/5_1curl'¢~curl(TQ/J)dx:/cur1u~(']I‘1/))dx. O
Q

Q

» This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 147):

THEOREM. Suppose that
A. : H{(Q) — H§(Q) is an isomorphism
A, Hy () — H(Q) is an isomorphism.

Then, the problem for the electric field is well-posed for all w € C\.# where
& is a discrete (or empty) set of C.

25



Comments and example

» We have a similar result for the magnetic problem.

» These results extend to:
- situations where A., A, are Fredholm of index zero with a non zero kernel;

- situations where  is not simply connected /9§ is not connected.

EXAMPLE OF THE FICHERA’S CUBE:

PROPOSITION. Assume that
E_ 1 _ 1 ,
;%[*73,*;] and *¢[*7§*§]- *®
Then, the problems for the electric and magnetic fields are well-posed for all
w € C\. where . is a discrete (or empty) set of C.

)
:5 Note that 7 is the ratio of the blue volume over the red volume... 13 / 25



© Scalar problems
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2D scalar problem 1/2

» Recall that (Aecp,go’)Hé(Q) = / eV -V dz, Yo, o' € HY(Q).
Q

Features of A, depend on the angle o and on the contrast xk :=e_ /e

> elf k¢ I :=[— 2= 21 A is Fredholm of index zero.

a 2T—a

o If k € I, A. is not Fredholm (its range is not close in H}(12)).
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2D scalar problem 1/2

» Recall that (Aecp,go’)Hé(Q) = / eV -V dz, Yo, o' € HY(Q).
Q

For a = /2,
I = [-3;-1/3].

Features of A, depend on the angle o and on the contrast xk :=e_ /e

> elf k¢ I :=[— 2= 21 A is Fredholm of index zero.

a 2T—a

o If k € I, A. is not Fredholm (its range is not close in H}(12)).

15 / 25



2D scalar problem 2/2

» For k€ I, \ {—1}, Fredholmness in H}(Q) is lost due to the existence of
propagating singularities: -
- .
+ +i .
s™(z) = r=10(0), neR\{0} e
div (eVst) = 0.

We have s* € L2(Q) but s* ¢ H'(Q).

+

Energy accumulates at the corner, s are called black-hole singularities.

16 / 25



2D scalar problem 2/2

» For k€ I, \ {—1}, Fredholmness in H}(Q) is lost due to the existence of
propagating singularities: -
- s
+ +i .
s™(z) = r=10(0), neR\{0} e
div (eVst) = 0.

We have s* € L2(Q) but s* ¢ H'(Q).

+

Energy accumulates at the corner, s are called black-hole singularities.

» To recover Fredholmness, we have to modify the functional framework
and take into account these singularities:

- The corner is like infinity for scattering problem: it is necessary to select
the outgoing behaviour s°"t.
- Set VU = span(s°") © V1 ,(Q) where V! 4() is a weighted Sobolev

space of functions which decay at the corner and " := ys°"" (localization).
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2D scalar problem 2/2

THEOREM: Let A2™ : Vo' — VE(Q)* be the operator such that

(A2 o) = ]éngo-Vde = —/ﬂccpdiv (6V5°”t)ﬂda&+/ﬂav¢~Vde

for all ¢ = ¢, 5°"* 4 @, ¥ € VE(Q).

Then Agut is Fredholm of index zero. (B()nnet—BenDhia7 Chesnel, Claeys 13’)

- Set VU = span(s°") © V1 ,(Q) where V! 4() is a weighted Sobolev
space of functions which decay at the corner and " := ys°"" (localization).
16 / 25



3D scalar problem

» Let us consider the case of a conical tip, the simplest singular geometry
in 3D. Now propagating singularities are of the form

sT(x) == 129(0,4),  neR\{0}
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» Let us consider the case of a conical tip, the simplest singular geometry
in 3D. Now propagating singularities are of the form

st (x) == 20(0,9),  neR\{0}

L

For the circular conical tip, they exist iff &K € (—1; —aq) (but not for
k < —1!1) for a certain explicit a,.
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» Let us consider the case of a conical tip, the simplest singular geometry
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» Contrary to 2D, in 3D we can have N > 1 singularities sli, ey sﬁ.

Moreover N — 400 when k — —1% or @ — 0.
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3D scalar problem

» Let us consider the case of a conical tip, the simplest singular geometry
in 3D. Now propagating singularities are of the form

st (x) == 20(0,9),  neR\{0}

L

[v7e¢nn

Foe
E
05
008100

For the circular conical tip, they exist iff &K € (—1; —aq) (but not for
k < —1!1) for a certain explicit a,.

» Contrary to 2D, in 3D we can have N > 1 singularities sli7 ce sﬁ.

Moreover N — 400 when k — —1% or @ — 0.

The solution to div (eV¢) = f must be searched in

DS H{(Q) when k € [—1; —a.];

Veut = span(s™, ..., s3%) @ V1 4(Q)  when k € (=1; —aq).

17/ 25



e Sign-changing coefficients - critical case
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A new framework for electric fields

» We assume that the negative material has a conical tip and that there
are N propagating singularities 5", ... Q" for the operator div (V).

» We assume that y is such that A, : H (Q) — HL(Q) is an isomorphism.

» Define the new space
N
X3t (e) i={u = e, Vsi + @, c, € C, n € VO 4(Q)|
n=1

curlu € L*(Q),div(ew) =0 in Q and u x v = 0 on 9N}

Here VBB(Q) = {u|rPuecL*Q)}, 5 >0.

19 / 25



A new framework for electric fields

» We assume that the negative material has a conical tip and that there
are N propagating singularities 5", ... Q" for the operator div (V).

» We assume that y is such that A, : H (Q) — HL(Q) is an isomorphism.

» Define the new space
N
X3(e) = {u=Y e Vs + @1, ¢, €C, € VO y(Q)]
n=1

curlu € L*(Q),div(ew) =0 in Q and u x v = 0 on 9N}

Here VBB(Q) = {u|rPuecL*Q)}, 5 >0.

> Note that Xy (g) C X% (e) ¢ L*(Q) (infinite energy!).

PROPOSITION: When A" : Vo' — V1 (Q)* is an isomorphism, we have

lel + l[@llve (@) < Clleurlullo,  Vu € X{(e).

Thus X (¢) endowed with (curl-, curl-)q is a Hilbert space.
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A new functional framework

» Then we consider the problem

Find u € X% (£) such that for all v € X3 (¢)

,@ out
(o) /,u_lcurIUocurlEda:—wQ][5u-6d:c:z‘w/ J -vdx
Q Q Q

with ][ eu-vdr = cuﬁ/ div (eVs+)sT d:z:—l—/ ew - vdz.
Q Q Q
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Find u € X% (£) such that for all v € X3 (¢)

c@ out
(o) /,u_lcurIUocurlﬁd:c—wz][5Uo6d:€:iw/ J -vdx
Q Q Q

with ][ eu-vdr = cuﬁ/ div (eVs+)sT dz:+/ ew - vdz.
Q Q Q

PROPOSITION: When A2"* : Vo' — V1 (Q)* is an isomorphism, E solves
(Pxou) iff E solves the initial problem.
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A new functional framework

» Then we consider the problem

Find u € X% (£) such that for all v € X3 (¢)

c@ out
(o) /,uflcurlu~cur16d:c7w2][5Uo6d:c:iw/ J -vdx
Q Q Q

with ][ eu-vdr = cua/ div (eVst)s™ d;z:+/ ew - vdx.
Q Q Q

PROPOSITION: When A2"* : Vo' — V1 (Q)* is an isomorphism, E solves
(Pxou) iff E solves the initial problem.

» To study (Pxeu), next we construct a T-coercivity operator in X' (¢).
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T-coercivity in X% (¢)

Consider E € X% (¢).
@ Introduce ' € H, () such that curl E — V> € X7 (u). To proceed, solve

@ Ok when A,

is an isom.

/qu VY da = /Qucurlﬂvw’ dr, VY’ € Hy(Q).

@ Since div (u(curl E — Vb)) = 0, there is u € X (1) such that
curlu = p(curl E— V) in Q.
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T-coercivity in X}"(¢)
Consider E € X% (¢).
@ Introduce ' € H, () such that curl E — V> € X7 (u). To proceed, solve

@ Ok when A,
is an isom.

/qu Ve dx = /QucurlE-vw’ dr, VY’ € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E— V) in Q.
Additionally, we can prove that © € V% 5(€2) for some 3 > 0.

@ Introduce » € VOU such that u — Vo € X3*(¢). To proceed, solve

Aout — —div (8 ) - Ok when A(S)Ut

is an isom.
O Finally, define TE := « — V». There holds:
a(E,TE) = / p teurl E - curl dr = / curl E - (curl E — Vi) dx
Q Q
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Aout — —div (8 ) - Ok when A(S)Ut

is an isom.
O Finally, define TE := « — V». There holds:
a(E,TE) = / p tcurl E - curl wde = / |curl E|? dz.
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T-coercivity in X% (¢)

LEMMA. When

Aout ;. yout Vg(Q)* is an isomorphism
A, Hy () — HL(Q) is an isomorphism,
there exists T : X3(e) — X3*(¢) such that, for all E, E’
a(E,TE') = o(TE, E') = / curl E - curl E' dz

Q

(this implies in particular that T is an isomorphism of X3'*(¢)).
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Compact embedding and final result

THEOREM. Assume that A2 : Vo' — V1(Q)* is an isomorphism. Then
the embedding of X% () in L?() is compact.
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Compact embedding and final result

THEOREM. Assume that A2"* : Vo' — VE(Q)* is an isomorphism. Then
the embedding of X% () in L?() is compact.

» This yields the final result (Bonnet-BenDhia, Chesnel, Rihani 227):

THEOREM. Suppose that
AUt VOU — VE(Q)* is an isomorphism
A H# Q) — H;E(Q) is an isomorphism.

Then, the problem (Pxour) and the initial problem are well-posed for all
w € C\.¥ where . is a discrete (or empty) set of C.
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@ Positive coefficients

@ Sign-changing coefficients - non critical case

© Scalar problems

e Sign-changing coefficients - critical case
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Conclusion

‘ What we obtained ‘

1) When A. : H{(Q) — H}(Q), A, : H#(Q) — H?I#(Q) are isomorphisms,
the Maxwell’s equations are well-posed in the usual spaces.
— For the circular conical tip, this corresponds to ke, Ky & [—1; —aa].

2) For the circular conical tip with ke € (—1; —aa), ku € [—1; —aa],
the Maxwell’s equations are well-posed only in a singular space.
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Conclusion

What we obtained

1) When A. : H{(Q) — H}(Q), A, : H#(Q) — H?I#(Q) are isomorphisms,
the Maxwell’s equations are well-posed in the usual spaces.
— For the circular conical tip, this corresponds to ke, Ky & [—1; —aa].

2) For the circular conical tip with ke € (—1; —aa), ku € [—1; —aa],
the Maxwell’s equations are well-posed only in a singular space.

Comments and open questions

& In case 2), we also have a formulation for H (a bit more complex).
Useful to study the case where both A, and A, are not Fredholm.

& In case 2), the problem (#x) (in Xy (e)) is Fredholm but
equivalence with the initial problem fails.

& Numerically, it is not clear how to compute the solution in case 2).

& How to study other 3D singular geometries, in particular with edges?

4
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