Maxwell's equations with hypersingularities at a conical plasmonic tip

Lucas Chesnel ${ }^{1}$

Collaboration with A.S. Bonnet-BenDhia ${ }^{2}$ and M. Rihani ${ }^{1,2}$.
${ }^{1}$ IDEFIX, Inria-IPP-Edf, Ensta Paris, France ${ }^{2}$ POEMS, Cnrs-Inria-Ensta Paris, Ensta Paris, France

Online, 14/02/2022

Goal and motivation

We study 3D time harmonic Maxwell's equations in presence of an inclusion of negative material:

$$
\begin{aligned}
& \operatorname{curl} \boldsymbol{E}-i \omega \mu \boldsymbol{H}=0 \text { in } \Omega \\
& \operatorname{curl} \boldsymbol{H}+i \omega \varepsilon \boldsymbol{E}=\boldsymbol{J} \text { in } \Omega \\
& +\mathrm{PEC} \text { boundary cond.: } \\
& \boldsymbol{E} \times \nu=0 \text { on } \partial \Omega \\
& \mu \boldsymbol{H} \cdot \nu=0 \text { on } \partial \Omega
\end{aligned}
$$

- For metals at optical frequencies, $\varepsilon<0$ and $\mu>0$.
- Artificial metamaterials have been realized which can be modelled for certain frequencies by $\varepsilon<0$ and $\mu<0$.

Goal and motivation

We study 3D time harmonic Maxwell's equations in presence of an inclusion of negative material:

$$
\begin{aligned}
& \operatorname{curl} \boldsymbol{E}-i \omega \mu \boldsymbol{H}=0 \text { in } \Omega \\
& \operatorname{curl} \boldsymbol{H}+i \omega \varepsilon \boldsymbol{E}=\boldsymbol{J} \text { in } \Omega \\
& + \text { PEC boundary cond.: } \\
& \boldsymbol{E} \times \nu=0 \text { on } \partial \Omega \\
& \mu \boldsymbol{H} \cdot \nu=0 \text { on } \partial \Omega
\end{aligned}
$$

- For metals at optical frequencies, $\varepsilon<0$ and $\mu>0$.
- Artificial metamaterials have been realized which can be modelled for certain frequencies by $\varepsilon<0$ and $\mu<0$.

Particular motivation: non smooth gold nanoparticles.

Difficulty: usual results do not apply, singularities at the tip are amplified.

Outline of the talk

(1) Positive coefficients
(2) Sign-changing coefficients - non critical case
(3) Scalar problems

4 Sign-changing coefficients - critical case
(1) Positive coefficients

(2) Sign-changing coefficients - non critical case

(3) Scalar problems

4 Sign-changing coefficients - critical case

Classical case

- Let us first consider the classical case where $\varepsilon, \mu \geq c>0$ in Ω.
- We focus our attention on the electric problem

$$
(\mathscr{P}) \left\lvert\, \begin{array}{rlll}
\operatorname{curl} \mu^{-1} \operatorname{curl} \boldsymbol{E}-\omega^{2} \varepsilon \boldsymbol{E} & =i \omega \boldsymbol{J} & & \text { in } \Omega \\
\boldsymbol{E} \times \nu & =0 & & \text { in } \partial \Omega
\end{array}\right.
$$

where $\boldsymbol{J} \in \mathbf{L}^{2}(\Omega):=\mathrm{L}^{2}(\Omega)^{3}$ is such that $\operatorname{div} \boldsymbol{J}=0$ in Ω.

Classical case

- Let us first consider the classical case where $\varepsilon, \mu \geq c>0$ in Ω.
- We focus our attention on the electric problem

$(\mathscr{P}) |$| $\operatorname{curl} \mu^{-1} \mathbf{c u r l} \boldsymbol{E}-\omega^{2} \varepsilon \boldsymbol{E}$ | $=i \omega \boldsymbol{J}$ | | in Ω |
| ---: | :--- | :--- | :--- |
| $\boldsymbol{E} \times \nu$ | $=0$ | | in $\partial \Omega$ |

where $\boldsymbol{J} \in \mathbf{L}^{2}(\Omega):=\mathrm{L}^{2}(\Omega)^{3}$ is such that $\operatorname{div} \boldsymbol{J}=0$ in Ω.

$$
(\mathscr{P}) \Leftrightarrow \begin{array}{|l|l}
\left(\mathscr{P}_{\mathbf{H}}\right) & \begin{array}{l}
\text { Find } \boldsymbol{E} \in \mathbf{H}_{N}(\mathbf{c u r l}) \text { such that for all } \boldsymbol{E}^{\prime} \in \mathbf{H}_{N}(\mathbf{c u r l}) \\
\int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{E} \cdot \mathbf{c u r l} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}^{\prime} d x
\end{array} \text {, }
\end{array}
$$

where $\mathbf{H}_{N}($ curl $):=\left\{\boldsymbol{u} \in \mathbf{L}^{2}(\Omega) \mid \mathbf{c u r l} \boldsymbol{u} \in \mathbf{L}^{2}(\Omega)\right.$ and $\boldsymbol{u} \times \nu=0$ on $\left.\partial \Omega\right\}$.

- Let us first consider the classical case where $\varepsilon, \mu \geq c>0$ in Ω.
- We focus our attention on the electric problem

$(\mathscr{P}) |$| $\operatorname{curl} \mu^{-1} \operatorname{curl} \boldsymbol{E}-\omega^{2} \varepsilon \boldsymbol{E}$ | $=i \omega \boldsymbol{J}$ | | in Ω |
| ---: | :--- | :--- | :--- |
| $\boldsymbol{E} \times \nu$ | $=0$ | | in $\partial \Omega$ |

where $\boldsymbol{J} \in \mathbf{L}^{2}(\Omega):=\mathrm{L}^{2}(\Omega)^{3}$ is such that $\operatorname{div} \boldsymbol{J}=0$ in Ω.

$$
(\mathscr{P}) \Leftrightarrow \begin{array}{|l|l}
\left(\mathscr{P}_{\mathbf{H}}\right) & \begin{array}{l}
\text { Find } \boldsymbol{E} \in \mathbf{H}_{N}(\mathbf{c u r l}) \text { such that for all } \boldsymbol{E}^{\prime} \in \mathbf{H}_{N}(\text { curl }) \\
\int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{E} \cdot \mathbf{c u r l} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}^{\prime} d x
\end{array} \text {, }
\end{array}
$$

where $\mathbf{H}_{N}($ curl $):=\left\{\boldsymbol{u} \in \mathbf{L}^{2}(\Omega) \mid\right.$ curl $\boldsymbol{u} \in \mathbf{L}^{2}(\Omega)$ and $\boldsymbol{u} \times \nu=0$ on $\left.\partial \Omega\right\}$.

\triangle
Difficulty: $\nabla\left(\mathrm{H}_{0}^{1}\right) \subset$ kercurl \cdot and the embedding $\mathbf{H}_{N}($ curl $) \subset$ $\mathbf{L}^{2}(\Omega)$ is not compact which prevents using Fredholm alternative.

Classical case

"2:- Use the divergence free condition and work in the space

$$
\mathbf{X}_{N}(\varepsilon):=\left\{\boldsymbol{u} \in \mathbf{H}_{N}(\operatorname{curl}) \mid \operatorname{div}(\varepsilon \boldsymbol{u})=0 \text { in } \partial \Omega\right\}
$$

Classical case

"ค่: Use the divergence free condition and work in the space

$$
\mathbf{X}_{N}(\varepsilon):=\left\{\boldsymbol{u} \in \mathbf{H}_{N}(\operatorname{curl}) \mid \operatorname{div}(\varepsilon \boldsymbol{u})=0 \text { in } \partial \Omega\right\}
$$

$\left(\boldsymbol{H} \in \mathbf{X}_{T}(\mu):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l}) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0\right.$ on $\left.\partial \Omega\}\right)$.

- This leads to the problem

$$
\left(\mathscr{P}_{\mathbf{X}}\right) \left\lvert\, \begin{aligned}
& \text { Find } \boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon) \text { such that for all } \boldsymbol{E}^{\prime} \in \mathbf{X}_{N}(\varepsilon) \\
& \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{E} \cdot \mathbf{c u r l} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}^{\prime} d x .
\end{aligned}\right.
$$

Classical case

"? 2 ": Use the divergence free condition and work in the space

$$
\mathbf{X}_{N}(\varepsilon):=\left\{\boldsymbol{u} \in \mathbf{H}_{N}(\mathbf{c u r l}) \mid \operatorname{div}(\varepsilon \boldsymbol{u})=0 \text { in } \partial \Omega\right\}
$$

$\left(\boldsymbol{H} \in \mathbf{X}_{T}(\mu):=\{\boldsymbol{u} \in \mathbf{H}(\mathbf{c u r l}) \mid \operatorname{div}(\mu \boldsymbol{u})=0, \mu \boldsymbol{u} \cdot \boldsymbol{n}=0\right.$ on $\left.\partial \Omega\}\right)$.

- This leads to the problem

$$
\left(\mathscr{P}_{\mathbf{X}}\right) \left\lvert\, \begin{aligned}
& \text { Find } \boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon) \text { such that for all } \boldsymbol{E}^{\prime} \in \mathbf{X}_{N}(\varepsilon) \\
& \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{E} \cdot \mathbf{c u r l} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}^{\prime} d x .
\end{aligned}\right.
$$

Proposition: When $\varepsilon, \mu \geq c>0$:

- the embedding $\mathbf{X}_{N}(\varepsilon) \subset \mathbf{L}^{2}(\Omega)$ is compact;
- $(\boldsymbol{u}, \boldsymbol{v}) \mapsto \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} d x$ is coercive in $\mathbf{X}_{N}(\varepsilon)$;
so that $\left(\mathscr{P}_{\mathbf{X}}\right)$ satisfies the Fredholm alternative (uniqueness \Rightarrow existence).
- Well-posedness of the initial problem comes from the following result:

Prop.: Assume that $\varepsilon \geq c>0$. Then \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$ iff \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$.
Proof. $\quad \Rightarrow$ This implication is direct.
\Leftarrow Assume that \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$. For $\boldsymbol{E}^{\prime} \in \mathbf{H}_{N}($ curl $)$, let $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ be s.t.

$$
\operatorname{div}(\varepsilon \nabla \varphi)=\operatorname{div}\left(\varepsilon \boldsymbol{E}^{\prime}\right)
$$

- Well-posedness of the initial problem comes from the following result:

Prop.: Assume that $\varepsilon \geq c>0$. Then \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$ iff \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$.
Proof. $\quad \Rightarrow$ This implication is direct.
\Leftarrow Assume that \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$. For $\boldsymbol{E}^{\prime} \in \mathbf{H}_{N}(\mathbf{c u r l})$, let $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ be s.t.

$$
\operatorname{div}(\varepsilon \nabla \varphi)=\operatorname{div}\left(\varepsilon \boldsymbol{E}^{\prime}\right)
$$

Then we have $\boldsymbol{E}^{\prime}-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$ so that we can write $\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl}\left(\boldsymbol{E}^{\prime}-\nabla \varphi\right)-\omega^{2} \varepsilon \boldsymbol{E} \cdot\left(\boldsymbol{E}^{\prime}-\nabla \varphi\right) d x=i \omega \int_{\Omega}^{\boldsymbol{J}} \cdot\left(\boldsymbol{E}^{\prime}-\nabla \varphi\right) d x$.

- Well-posedness of the initial problem comes from the following result:

Prop.: Assume that $\varepsilon \geq c>0$. Then \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$ iff \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$.
Proof. $\quad \Rightarrow$ This implication is direct.
\Leftarrow Assume that \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$. For $\boldsymbol{E}^{\prime} \in \mathbf{H}_{N}(\mathbf{c u r l})$, let $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ be s.t.

$$
\operatorname{div}(\varepsilon \nabla \varphi)=\operatorname{div}\left(\varepsilon \boldsymbol{E}^{\prime}\right)
$$

Then we have $\boldsymbol{E}^{\prime}-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$ so that we can write

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}^{\prime} d x .
$$

- Well-posedness of the initial problem comes from the following result:

Prop.: Assume that $\varepsilon \geq c>0$. Then \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$ iff \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$.
Proof. $\quad \Rightarrow$ This implication is direct.
\Leftarrow Assume that \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$. For $\boldsymbol{E}^{\prime} \in \mathbf{H}_{N}(\mathbf{c u r l})$, let $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ be s.t.

$$
\operatorname{div}(\varepsilon \nabla \varphi)=\operatorname{div}\left(\varepsilon \boldsymbol{E}^{\prime}\right)
$$

Then we have $\boldsymbol{E}^{\prime}-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$ so that we can write

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}^{\prime}-\omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}^{\prime} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}^{\prime} d x .
$$

This implies that \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$.

(1) Positive coefficients

(2) Sign-changing coefficients - non critical case

(3) Scalar problems

4 Sign-changing coefficients - critical case

Sign-changing coefficients

- Now we allow for a possible change of sign of ε and/or μ in Ω.

Introduce the operator $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\left(A_{\varepsilon} \varphi, \varphi^{\prime}\right)_{\mathrm{H}_{0}^{1}(\Omega)}=\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x, \quad \forall \varphi, \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)
$$

Working as above, one shows:
Proposition: Assume that A_{ε} is an isomorphism. Then \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$ iff \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$.

Sign-changing coefficients

- Now we allow for a possible change of sign of ε and/or μ in Ω.

Introduce the operator $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega)$ such that

$$
\left(A_{\varepsilon} \varphi, \varphi^{\prime}\right)_{\mathrm{H}_{0}^{1}(\Omega)}=\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x, \quad \forall \varphi, \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)
$$

Working as above, one shows:
Proposition: Assume that A_{ε} is an isomorphism. Then \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{H}}\right)$ iff \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}}\right)$.

Proposition: Assume that A_{ε} is an isomorphism. Then we have

$$
\|\boldsymbol{u}\|_{\Omega} \leq C\|\operatorname{curl} \boldsymbol{u}\|_{\Omega}, \quad \forall \boldsymbol{u} \in \mathbf{X}_{N}(\varepsilon)
$$

Thus $\mathbf{X}_{N}(\varepsilon)$ endowed with $(\mathbf{c u r l} \cdot, \operatorname{curl} \cdot)_{\Omega}$ is a Hilbert space.
Proof. Write $\boldsymbol{u}=\nabla \varphi+\boldsymbol{\operatorname { c u r l }} \boldsymbol{\psi}$ with $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ and $\boldsymbol{\psi} \in \mathbf{X}_{T}(1)$.
Then use that $\operatorname{curl} \operatorname{curl} \boldsymbol{\psi}=\Delta \boldsymbol{\psi}=\operatorname{curl} \boldsymbol{u}$ and $A_{\varepsilon} \varphi=\operatorname{div}(\varepsilon \operatorname{curl} \psi)$.

Sign-changing coefficients

How to study $\left(\mathscr{P}_{\mathbf{X}}\right)$ now?

$$
\left(\mathscr{P}_{\mathbf{X}}\right) \mid \underbrace{\int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{E} \cdot \mathbf{c u r l} \overline{\boldsymbol{E}^{\prime}}}_{a\left(\boldsymbol{E}, \boldsymbol{E}^{\prime}\right)}-\omega^{2} \underbrace{\int_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{E}^{\prime}}}_{c\left(\boldsymbol{E}, \boldsymbol{E}^{\prime}\right)}=\underbrace{\int_{\Omega} \boldsymbol{F} \cdot \overline{\boldsymbol{E}^{\prime}}}_{\ell\left(\boldsymbol{E}^{\prime}\right)}
$$

When μ changes sign, $a(\cdot, \cdot)$ is not coercive.
When ε changes sign, is the embedding $\mathbf{X}_{N}(\varepsilon) \subset \mathbf{L}^{2}(\Omega)$ compact?

\mathbb{T}-coercivity in the vector case

If \mathbb{T} is an isomorphism of $\mathbf{X}_{N}(\varepsilon)$, we have

$$
\begin{aligned}
a\left(\boldsymbol{E}, \boldsymbol{E}^{\prime}\right)-\omega^{2} c\left(\boldsymbol{E}, \boldsymbol{E}^{\prime}\right) & =\ell\left(\boldsymbol{E}^{\prime}\right), & & \forall \boldsymbol{E}^{\prime} \in \mathbf{X}_{N}(\varepsilon) \\
\Leftrightarrow \quad a\left(\boldsymbol{E}, \mathbb{T} \boldsymbol{E}^{\prime}\right)-\omega^{2} c\left(\boldsymbol{E}, \mathbb{T} \boldsymbol{E}^{\prime}\right) & =\ell\left(\mathbb{T} \boldsymbol{E}^{\prime}\right), & & \forall \boldsymbol{E}^{\prime} \in \mathbf{X}_{N}(\varepsilon) .
\end{aligned}
$$

"
The key idea is to construct $\mathbb{T} \in \mathbf{X}_{N}(\varepsilon) \rightarrow \mathbf{X}_{N}(\varepsilon)$ such that $a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl}\left(\overline{\mathbb{T} \boldsymbol{E}^{\prime}}\right)$ is coercive in $\mathbf{X}_{N}(\varepsilon)$.

\mathbb{T}-coercivity in the vector case

If \mathbb{T} is an isomorphism of $\mathbf{X}_{N}(\varepsilon)$, we have

$$
\begin{aligned}
a\left(\boldsymbol{E}, \boldsymbol{E}^{\prime}\right)-\omega^{2} c\left(\boldsymbol{E}, \boldsymbol{E}^{\prime}\right) & =\ell\left(\boldsymbol{E}^{\prime}\right), & & \forall \boldsymbol{E}^{\prime} \in \mathbf{X}_{N}(\varepsilon) \\
\Leftrightarrow \quad a\left(\boldsymbol{E}, \mathbb{T} \boldsymbol{E}^{\prime}\right)-\omega^{2} c\left(\boldsymbol{E}, \mathbb{T} \boldsymbol{E}^{\prime}\right) & =\ell\left(\mathbb{T} \boldsymbol{E}^{\prime}\right), & & \forall \boldsymbol{E}^{\prime} \in \mathbf{X}_{N}(\varepsilon) .
\end{aligned}
$$

"2:
The key idea is to construct $\mathbb{T} \in \mathbf{X}_{N}(\varepsilon) \rightarrow \mathbf{X}_{N}(\varepsilon)$ such that $a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl}\left(\overline{\mathbb{T} \boldsymbol{E}^{\prime}}\right)$ is coercive in $\mathbf{X}_{N}(\varepsilon)$.

To present the construction, set $\mathrm{H}_{\#}^{1}(\Omega):=\left\{\varphi \in \mathrm{H}^{1}(\Omega) \mid \int_{\Omega} \varphi d x=0\right\}$.
Introduce the operator $A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega)$ such that

$$
\left(A_{\mu} \varphi, \varphi^{\prime}\right)_{\mathrm{H}_{\#}^{1}(\Omega)}=\int_{\Omega} \mu \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x, \quad \forall \varphi, \varphi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega) .
$$

\mathbb{T}-coercivity in the vector case
Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.
(Ok when A_{μ} is an isom.

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.
(-) Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
$$

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)
$$

(Ok when A_{ε} is an isom.

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)
$$

- Ok when A_{ε} is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$.

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.
(-) Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)
$$

(Ok when A_{ε} is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl}(\overline{\mathbb{T} \boldsymbol{E}}) d x
$$

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.
(-) Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)
$$

- Ok when A_{ε} is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \bar{u} d x
$$

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
$$

(- Ok when A_{ε} is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \bar{u} d x=\int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot(\overline{\operatorname{curl} \boldsymbol{E}-\nabla \psi}) d x
$$

\mathbb{T}-coercivity in the vector case

Consider $\boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve
$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

(3) Introduce $\varphi \in \mathrm{H}_{0}^{1}(\Omega)$ such that $u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. To proceed, solve

$$
\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi^{\prime} d x=\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi^{\prime} d x, \quad \forall \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega) .
$$

Ok when A_{ε} is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \bar{u} d x=\int_{\Omega}|\operatorname{curl} \boldsymbol{E}|^{2} d x .
$$

\mathbb{T}-coercivity in the vector case

Lemma. Suppose that

$$
\begin{aligned}
& A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \text { is an isomorphism } \\
& A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega) \text { is an isomorphism. }
\end{aligned}
$$

Then, there exists $\mathbb{T}: \mathbf{X}_{N}(\varepsilon) \rightarrow \mathbf{X}_{N}(\varepsilon)$ such that, for all $\boldsymbol{E}, \boldsymbol{E}^{\prime}$

$$
a\left(\boldsymbol{E}, \mathbb{T} \boldsymbol{E}^{\prime}\right)=a\left(\mathbb{T} \boldsymbol{E}, \boldsymbol{E}^{\prime}\right)=\int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{E}^{\prime}} d x
$$

(this implies in particular that \mathbb{T} is an isomorphism of $\mathbf{X}_{N}(\varepsilon)$).
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi \in \mathbf{X}_{N}(\varepsilon)$. There holds:
$a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{cur} \boldsymbol{E} E \cdot \operatorname{curl} \bar{u} d x=\int_{\Omega} \mid \operatorname{cur} 1 \boldsymbol{E}^{2} d x$.

Compact embedding and final result

Theorem. Assume that $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega)$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

Proof. 1) $\operatorname{div}(\varepsilon \boldsymbol{u})=0 \Rightarrow \varepsilon \boldsymbol{u}=\operatorname{curl} \boldsymbol{\psi} \quad$ with $\boldsymbol{\psi} \in \mathbf{X}_{T}(1)$.
2) Then we get $\operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \boldsymbol{\psi}\right)=\operatorname{curl} \boldsymbol{u}$.
3) When $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega)$ is an isom, there is $\mathbb{T}: \mathbf{X}_{T}(1) \rightarrow \mathbf{X}_{T}(1)$ s.t.

$$
\|\operatorname{curl} \boldsymbol{\psi}\|_{\Omega}^{2}=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{\psi} \cdot \operatorname{curl}(\mathbb{T} \boldsymbol{\psi}) d x=\int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot(\mathbb{T} \boldsymbol{\psi}) d x
$$

Compact embedding and final result

Theorem. Assume that $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega)$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

Proof. 1) $\operatorname{div}(\varepsilon \boldsymbol{u})=0 \quad \Rightarrow \quad \varepsilon \boldsymbol{u}=\operatorname{curl} \boldsymbol{\psi} \quad$ with $\boldsymbol{\psi} \in \mathbf{X}_{T}(1)$.
2) Then we get $\operatorname{curl}\left(\varepsilon^{-1} \operatorname{curl} \psi\right)=\operatorname{curl} \boldsymbol{u}$.
3) When $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega)$ is an isom, there is $\mathbb{T}: \mathbf{X}_{T}(1) \rightarrow \mathbf{X}_{T}(1)$ s.t.

$$
\|\operatorname{curl} \boldsymbol{\psi}\|_{\Omega}^{2}=\int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{\psi} \cdot \operatorname{curl}(\mathbb{T} \boldsymbol{\psi}) d x=\int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot(\mathbb{T} \boldsymbol{\psi}) d x
$$

- This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 14'):

Theorem. Suppose that

$$
\begin{aligned}
& A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega) \text { is an isomorphism } \\
& A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega) \text { is an isomorphism. }
\end{aligned}
$$

Then, the problem for the electric field is well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.

Comments and example

- We have a similar result for the magnetic problem.
- These results extend to:
- situations where A_{ε}, A_{μ} are Fredholm of index zero with a non zero kernel;
- situations where Ω is not simply connected $/ \partial \Omega$ is not connected.

Example of the Fichera's cube:

Proposition. Assume that

$$
\frac{\varepsilon_{-}}{\varepsilon_{+}} \notin\left[-7 ;-\frac{1}{7}\right] \quad \text { and } \quad \frac{\mu_{-}}{\mu_{+}} \notin\left[-7 ;-\frac{1}{7}\right] .
$$

Then, the problems for the electric and magnetic fields are well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.

(1) Positive coefficients

(2) Sign-changing coefficients - non critical case

(3) Scalar problems

4 Sign-changing coefficients - critical case

- Recall that $\left(A_{\varepsilon} \varphi, \varphi^{\prime}\right)_{\mathrm{H}_{0}^{1}(\Omega)}=\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x, \quad \forall \varphi, \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$.

Features of A_{ε} depend on the angle α and on the contrast $\kappa:=\varepsilon_{-} / \varepsilon_{+}$:

- If $\kappa \notin I_{c}:=\left[-\frac{2 \pi-\alpha}{\alpha} ;-\frac{\alpha}{2 \pi-\alpha}\right], A_{\varepsilon}$ is Fredholm of index zero.
- If $\kappa \in I_{c}, A_{\varepsilon}$ is not Fredholm (its range is not close in $\mathrm{H}_{0}^{1}(\Omega)$).
- Recall that $\left(A_{\varepsilon} \varphi, \varphi^{\prime}\right)_{\mathrm{H}_{0}^{1}(\Omega)}=\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x, \quad \forall \varphi, \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$.

For $\alpha=\pi / 2$,
$I_{c}=[-3 ;-1 / 3]$.

Features of A_{ε} depend on the angle α and on the contrast $\kappa:=\varepsilon_{-} / \varepsilon_{+}$:

- If $\kappa \notin I_{c}:=\left[-\frac{2 \pi-\alpha}{\alpha} ;-\frac{\alpha}{2 \pi-\alpha}\right], A_{\varepsilon}$ is Fredholm of index zero.
- If $\kappa \in I_{c}, A_{\varepsilon}$ is not Fredholm (its range is not close in $\mathrm{H}_{0}^{1}(\Omega)$).
- For $\kappa \in I_{c} \backslash\{-1\}$, Fredholmness in $\mathrm{H}_{0}^{1}(\Omega)$ is lost due to the existence of propagating singularities:

$$
\begin{aligned}
& s^{ \pm}(x)=r^{ \pm i \eta} \Phi(\theta), \quad \eta \in \mathbb{R} \backslash\{0\} \\
& \operatorname{div}\left(\varepsilon \nabla s^{ \pm}\right)=0 .
\end{aligned}
$$

We have $s^{ \pm} \in \mathrm{L}^{2}(\Omega)$ but $s^{ \pm} \notin \mathrm{H}^{1}(\Omega)$.
Energy accumulates at the corner, $s^{ \pm}$are called black-hole singularities.

- For $\kappa \in I_{c} \backslash\{-1\}$, Fredholmness in $\mathrm{H}_{0}^{1}(\Omega)$ is lost due to the existence of propagating singularities:

$$
\begin{aligned}
& s^{ \pm}(x)=r^{ \pm i \eta} \Phi(\theta), \quad \eta \in \mathbb{R} \backslash\{0\} \\
& \operatorname{div}\left(\varepsilon \nabla s^{ \pm}\right)=0 .
\end{aligned}
$$

We have $s^{ \pm} \in \mathrm{L}^{2}(\Omega)$ but $s^{ \pm} \notin \mathrm{H}^{1}(\Omega)$.
Energy accumulates at the corner, $s^{ \pm}$are called black-hole singularities.

- To recover Fredholmness, we have to modify the functional framework and take into account these singularities:
- The corner is like infinity for scattering problem: it is necessary to select the outgoing behaviour $s^{\text {out }}$.
- Set $V^{\text {out }}:=\operatorname{span}\left(\mathfrak{s}^{\text {out }}\right) \oplus \mathrm{V}_{-\beta}^{1}(\Omega)$ where $\mathrm{V}_{-\beta}^{1}(\Omega)$ is a weighted Sobolev space of functions which decay at the corner and $\mathfrak{s}^{\text {out }}:=\chi s^{\text {out }}$ (localization).

2D scalar problem

- For $\kappa \in I_{c} \backslash\{-1\}$, Fredholmness in $\mathrm{H}_{0}^{1}(\Omega)$ is lost due to the existence of propagating singularities:

$$
\left\lvert\, \begin{aligned}
& s^{ \pm}(x)=r^{ \pm i \eta} \Phi(\theta), \quad \eta \in \mathbb{R} \backslash\{0\} \\
& \operatorname{div}\left(\varepsilon \nabla s^{ \pm}\right)=0 .
\end{aligned}\right.
$$

THEOREM: Let $A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*}$ be the operator such that $\left\langle A_{\varepsilon}^{\text {out }} \varphi, \psi\right\rangle=f_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \bar{\psi} d x:=-\int_{\Omega} c_{\varphi} \operatorname{div}\left(\varepsilon \nabla \mathfrak{s}^{\text {out }}\right) \bar{\psi} d x+\int_{\Omega} \varepsilon \nabla \tilde{\varphi} \cdot \nabla \bar{\psi} d x$
for all $\varphi=c_{\varphi} \mathfrak{s}^{\text {out }}+\tilde{\varphi}, \psi \in \mathrm{V}_{\beta}^{1}(\Omega)$.
Then $A_{\varepsilon}^{\text {out }}$ is Fredholm of index zero. (Bonnet-BenDhia, Chesnel, Claeys 13')

- Set $V^{\text {out }}:=\operatorname{span}\left(\mathfrak{s}^{\text {out }}\right) \oplus \mathrm{V}_{-\beta}^{1}(\Omega)$ where $\mathrm{V}_{-\beta}^{1}(\Omega)$ is a weighted Sobolev space of functions which decay at the corner and $\mathfrak{s}^{\text {out }}:=\chi s^{\text {out }}$ (localization).

3D scalar problem

- Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

$$
s^{ \pm}(x)=r^{ \pm i \eta-1 / 2} \Phi(\theta, \psi), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

3D scalar problem

- Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

$$
s^{ \pm}(x)=r^{ \pm i \eta-1 / 2} \Phi(\theta, \psi), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

For the circular conical tip, they exist iff $\boldsymbol{\kappa} \in\left(-\mathbf{1} ;-\boldsymbol{a}_{\alpha}\right)$ (but not for $\kappa<-1$!) for a certain explicit a_{α}.

3D scalar problem

- Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

$$
s^{ \pm}(x)=r^{ \pm i \eta-1 / 2} \Phi(\theta, \psi), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

For the circular conical tip, they exist iff $\boldsymbol{\kappa} \in\left(\mathbf{- 1} ;-\boldsymbol{a}_{\alpha}\right.$) (but not for $\kappa<-1$!) for a certain explicit a_{α}.

- Contrary to 2 D , in 3 D we can have $N>1$ singularities $s_{1}^{ \pm}, \ldots, s_{N}^{ \pm}$. Moreover $N \rightarrow+\infty$ when $\kappa \rightarrow-1^{+}$or $\alpha \rightarrow 0^{+}$.

3D scalar problem

- Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

$$
s^{ \pm}(x)=r^{ \pm i \eta-1 / 2} \Phi(\theta, \psi), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

For the circular conical tip, they exist iff $\kappa \in\left(-\mathbf{1} ;-\boldsymbol{a}_{\alpha}\right.$) (but not for $\kappa<-1$!) for a certain explicit a_{α}.

- Contrary to 2 D , in 3 D we can have $N>1$ singularities $s_{1}^{ \pm}, \ldots, s_{N}^{ \pm}$. Moreover $N \rightarrow+\infty$ when $\kappa \rightarrow-1^{+}$or $\alpha \rightarrow 0^{+}$.

The solution to $\operatorname{div}(\varepsilon \nabla \varphi)=f$ must be searched in

$$
\mathrm{H}_{0}^{1}(\Omega) \quad \text { when } \boldsymbol{\kappa} \notin\left[-1 ;-\boldsymbol{a}_{\alpha}\right] ;
$$

$$
\mathrm{V}^{\text {out }}:=\operatorname{span}\left(\mathfrak{s}_{1}^{\text {out }}, \ldots, \mathfrak{s}_{N}^{\text {out }}\right) \oplus \mathrm{V}_{-\beta}^{1}(\Omega) \quad \text { when } \boldsymbol{\kappa} \in\left(-\mathbf{1} ;-\boldsymbol{a}_{\alpha}\right)
$$

(1) Positive coefficients

(2) Sign-changing coefficients - non critical case

(3) Scalar problems

4 Sign-changing coefficients - critical case

A new framework for electric fields

- We assume that the negative material has a conical tip and that there are N propagating singularities $\mathfrak{s}_{1}^{\text {out }}, \ldots, \mathfrak{s}_{N}^{\text {out }}$ for the operator $\operatorname{div}(\varepsilon \nabla \cdot)$.
- We assume that μ is such that $A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega)$ is an isomorphism.
- Define the new space

$$
\begin{aligned}
\mathbf{X}_{N}^{\text {out }}(\varepsilon):= & \left\{\boldsymbol{u}=\sum_{n=1}^{N} c_{n} \nabla \mathfrak{s}_{n}^{\text {out }}+\tilde{\boldsymbol{u}}, c_{n} \in \mathbb{C}, \tilde{\boldsymbol{u}} \in \mathbf{V}_{-\beta}^{0}(\Omega) \mid\right. \\
& \left.\operatorname{curl} \boldsymbol{u} \in \mathbf{L}^{2}(\Omega), \operatorname{div}(\varepsilon \boldsymbol{u})=0 \text { in } \Omega \text { and } \boldsymbol{u} \times \nu=0 \text { on } \partial \Omega\right\}
\end{aligned}
$$

Here $\mathbf{V}_{-\beta}^{0}(\Omega):=\left\{\boldsymbol{u} \mid r^{-\beta} \boldsymbol{u} \in \mathbf{L}^{2}(\Omega)\right\}, \beta>0$.

A new framework for electric fields

- We assume that the negative material has a conical tip and that there are N propagating singularities $\mathfrak{s}_{1}^{\text {out }}, \ldots, \mathfrak{s}_{N}^{\text {out }}$ for the operator $\operatorname{div}(\varepsilon \nabla \cdot)$.
- We assume that μ is such that $A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega)$ is an isomorphism.
- Define the new space

$$
\begin{aligned}
\mathbf{X}_{N}^{\text {out }}(\varepsilon):= & \left\{\boldsymbol{u}=\sum_{n=1}^{N} c_{n} \nabla \boldsymbol{s}_{n}^{\text {out }}+\tilde{\boldsymbol{u}}, c_{n} \in \mathbb{C}, \tilde{\boldsymbol{u}} \in \mathbf{V}_{-\beta}^{0}(\Omega) \mid\right. \\
& \left.\operatorname{curl} \boldsymbol{u} \in \mathbf{L}^{2}(\Omega), \operatorname{div}(\varepsilon \boldsymbol{u})=0 \text { in } \Omega \text { and } \boldsymbol{u} \times \nu=0 \text { on } \partial \Omega\right\}
\end{aligned}
$$

Here $\mathbf{V}_{-\beta}^{0}(\Omega):=\left\{\boldsymbol{u} \mid r^{-\beta} \boldsymbol{u} \in \mathbf{L}^{2}(\Omega)\right\}, \beta>0$.

- Note that $\mathbf{X}_{N}(\varepsilon) \subset \mathbf{X}_{N}^{\text {out }}(\varepsilon) \not \subset \mathbf{L}^{2}(\Omega)$ (infinite energy!).

Proposition: When $A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism, we have

$$
|c|+\|\tilde{\boldsymbol{u}}\|_{\mathbf{v}_{-\beta}^{0}(\Omega)} \leq C\|\operatorname{curl} \boldsymbol{u}\|_{\Omega}, \quad \forall \boldsymbol{u} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)
$$

Thus $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$ endowed with $(\mathbf{c u r l} \cdot, \mathbf{c u r l} \cdot)_{\Omega}$ is a Hilbert space.

A new functional framework

- Then we consider the problem

$$
\left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right) \left\lvert\, \begin{aligned}
& \text { Find } \boldsymbol{u} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon) \text { such that for all } \boldsymbol{v} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon) \\
& \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} d x-\omega^{2} f_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{v}} d x
\end{aligned}\right.
$$

with $f_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} d x=c_{\boldsymbol{u}} \overline{c_{\boldsymbol{v}}} \int_{\Omega} \operatorname{div}\left(\varepsilon \nabla \overline{s^{+}}\right) s^{+} d x+\int_{\Omega} \varepsilon \tilde{\boldsymbol{u}} \cdot \overline{\boldsymbol{v}} d x$.

A new functional framework

- Then we consider the problem

$$
\begin{aligned}
& \text { Find } \boldsymbol{u} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon) \text { such that for all } \boldsymbol{v} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon) \\
& \left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right) \mid \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} d x-\omega^{2} f_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{v}} d x
\end{aligned}
$$

with $f_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} d x=c_{\boldsymbol{u}} \overline{c_{\boldsymbol{v}}} \int_{\Omega} \operatorname{div}\left(\varepsilon \nabla \overline{s^{+}}\right) s^{+} d x+\int_{\Omega} \varepsilon \tilde{\boldsymbol{u}} \cdot \overline{\boldsymbol{v}} d x$.

Proposition: When $A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism, \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right)$ iff \boldsymbol{E} solves the initial problem.

A new functional framework

- Then we consider the problem

$$
\begin{aligned}
& \text { Find } \boldsymbol{u} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon) \text { such that for all } \boldsymbol{v} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon) \\
& \left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right) \mid \int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} d x-\omega^{2} f_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} d x=i \omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{v}} d x
\end{aligned}
$$

with $f_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} d x=c_{\boldsymbol{u}} \overline{c_{\boldsymbol{v}}} \int_{\Omega} \operatorname{div}\left(\varepsilon \nabla \overline{s^{+}}\right) s^{+} d x+\int_{\Omega} \varepsilon \tilde{\boldsymbol{u}} \cdot \overline{\boldsymbol{v}} d x$.

Proposition: When $A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism, \boldsymbol{E} solves $\left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right)$ iff \boldsymbol{E} solves the initial problem.

- To study $\left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right)$, next we construct a \mathbb{T}-coercivity operator in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$.

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.
(3) Introduce $\varphi \in \mathrm{V}^{\text {out }}$ such that $u-\nabla \varphi \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$. To proceed, solve

$$
A_{\varepsilon}^{\text {out }} \varphi=-\operatorname{div}(\varepsilon u)
$$

(Ok when $A_{\varepsilon}^{\text {out }}$ is an isom.

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.
(3) Introduce $\varphi \in \mathrm{V}^{\text {out }}$ such that $u-\nabla \varphi \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$. To proceed, solve

$$
A_{\varepsilon}^{\text {out }} \varphi=-\operatorname{div}(\varepsilon u) .
$$

(Ok when $A_{\varepsilon}^{\text {out }}$ is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi$. There holds:

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.
(3) Introduce $\varphi \in \mathrm{V}^{\text {out }}$ such that $u-\nabla \varphi \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$. To proceed, solve

$$
A_{\varepsilon}^{\text {out }} \varphi=-\operatorname{div}(\varepsilon u) .
$$

(Ok when $A_{\varepsilon}^{\text {out }}$ is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl}(\overline{\mathbb{T} \boldsymbol{E}}) d x
$$

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.
(3) Introduce $\varphi \in \mathrm{V}^{\text {out }}$ such that $u-\nabla \varphi \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$. To proceed, solve

$$
A_{\varepsilon}^{\text {out }} \varphi=-\operatorname{div}(\varepsilon u) .
$$

(Ok when $A_{\varepsilon}^{\text {out }}$ is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \bar{u} d x
$$

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.
(3) Introduce $\varphi \in \mathrm{V}^{\text {out }}$ such that $u-\nabla \varphi \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$. To proceed, solve

$$
A_{\varepsilon}^{\text {out }} \varphi=-\operatorname{div}(\varepsilon u) .
$$

(Ok when $A_{\varepsilon}^{\text {out }}$ is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \bar{u} d x=\int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot(\overline{\operatorname{curl} \boldsymbol{E}-\nabla \psi}) d x
$$

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Consider $\boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$.
(1) Introduce $\psi \in \mathrm{H}_{\#}^{1}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E}-\nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve $\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi^{\prime} d x=\int_{\Omega} \mu \operatorname{curl} \boldsymbol{E} \cdot \nabla \psi^{\prime} d x, \quad \forall \psi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$.

- Ok when A_{μ} is an isom.
(2) Since $\operatorname{div}(\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi))=0$, there is $u \in \mathbf{X}_{N}(1)$ such that

$$
\operatorname{curl} u=\mu(\operatorname{curl} \boldsymbol{E}-\nabla \psi) \quad \text { in } \Omega .
$$

Additionally, we can prove that $u \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta>0$.
(3) Introduce $\varphi \in \mathrm{V}^{\text {out }}$ such that $u-\nabla \varphi \in \mathbf{X}_{N}^{\text {out }}(\varepsilon)$. To proceed, solve

$$
A_{\varepsilon}^{\text {out }} \varphi=-\operatorname{div}(\varepsilon u) .
$$

(Ok when $A_{\varepsilon}^{\text {out }}$ is an isom.
(4) Finally, define $\mathbb{T} \boldsymbol{E}:=u-\nabla \varphi$. There holds:

$$
a(\boldsymbol{E}, \mathbb{T} \boldsymbol{E})=\int_{\Omega} \mu^{-1} \mathbf{c u r l} \boldsymbol{E} \cdot \operatorname{curl} \bar{u} d x=\int_{\Omega}|\operatorname{curl} \boldsymbol{E}|^{2} d x
$$

\mathbb{T}-coercivity in $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$

Lemma. When

$$
\begin{aligned}
& A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*} \text { is an isomorphism } \\
& A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega) \text { is an isomorphism, }
\end{aligned}
$$

there exists $\mathbb{T}: \mathbf{X}_{N}^{\text {out }}(\varepsilon) \rightarrow \mathbf{X}_{N}^{\text {out }}(\varepsilon)$ such that, for all $\boldsymbol{E}, \boldsymbol{E}^{\prime}$

$$
a\left(\boldsymbol{E}, \mathbb{T} \boldsymbol{E}^{\prime}\right)=a\left(\mathbb{T} \boldsymbol{E}, \boldsymbol{E}^{\prime}\right)=\int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{E}^{\prime}} d x
$$

(this implies in particular that \mathbb{T} is an isomorphism of $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$).
(4) Finally, define $\mathbb{T}:=u-\nabla \varphi$. There holds:
$a(E, \mathbb{T} E)=\int_{\Omega} \mu^{-1} \operatorname{curl} E \cdot \operatorname{curl} \bar{d} d x=\int_{\Omega}|\operatorname{curl} E|^{2} d x$.

Compact embedding and final result

Theorem. Assume that $A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

Compact embedding and final result

Theorem. Assume that $A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}^{\text {out }}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

- This yields the final result (Bonnet-BenDhia, Chesnel, Rihani 22'):

Theorem. Suppose that

$$
\begin{aligned}
& A_{\varepsilon}^{\text {out }}: \mathrm{V}^{\text {out }} \rightarrow \mathrm{V}_{\beta}^{1}(\Omega)^{*} \text { is an isomorphism } \\
& A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega) \text { is an isomorphism. }
\end{aligned}
$$

Then, the problem $\left(\mathscr{P}_{\mathbf{X}^{\text {out }}}\right)$ and the initial problem are well-posed for all $\omega \in \mathbb{C} \backslash \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C}.
(1) Positive coefficients
(2) Sign-changing coefficients - non critical case
(3) Scalar problems

4 Sign-changing coefficients - critical case

Conclusion

What we obtained

1) When $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega), A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega)$ are isomorphisms, the Maxwell's equations are well-posed in the usual spaces.
\rightarrow For the circular conical tip, this corresponds to $\kappa_{\varepsilon}, \boldsymbol{\kappa}_{\boldsymbol{\mu}} \notin\left[-\mathbf{1 ;} \boldsymbol{-} \boldsymbol{a}_{\boldsymbol{\alpha}}\right]$.
2) For the circular conical tip with $\boldsymbol{\kappa}_{\varepsilon} \in\left(-\mathbf{1} ;-\boldsymbol{a}_{\boldsymbol{\alpha}}\right), \boldsymbol{\kappa}_{\boldsymbol{\mu}} \notin\left[-\mathbf{1} ;-\boldsymbol{a}_{\boldsymbol{\alpha}}\right]$, the Maxwell's equations are well-posed only in a singular space.

Conclusion

What we obtained

1) When $A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{0}^{1}(\Omega), A_{\mu}: \mathrm{H}_{\#}^{1}(\Omega) \rightarrow \mathrm{H}_{\#}^{1}(\Omega)$ are isomorphisms, the Maxwell's equations are well-posed in the usual spaces.
\rightarrow For the circular conical tip, this corresponds to $\kappa_{\varepsilon}, \kappa_{\mu} \notin\left[-\mathbf{1} ;-\boldsymbol{a}_{\alpha}\right]$.
2) For the circular conical tip with $\kappa_{\varepsilon} \in\left(-\mathbf{1} ;-\boldsymbol{a}_{\boldsymbol{\alpha}}\right), \boldsymbol{\kappa}_{\boldsymbol{\mu}} \notin\left[-\mathbf{1} ;-\boldsymbol{a}_{\boldsymbol{\alpha}}\right]$, the Maxwell's equations are well-posed only in a singular space.

Comments and open questions

© In case 2), we also have a formulation for \boldsymbol{H} (a bit more complex). Useful to study the case where both A_{ε} and A_{μ} are not Fredholm.
© In case 2), the problem $\left(\mathscr{P}_{\mathbf{X}}\right)\left(\right.$ in $\left.\mathbf{X}_{N}(\varepsilon)\right)$ is Fredholm but equivalence with the initial problem fails.

A Numerically, it is not clear how to compute the solution in case 2).
^ How to study other 3D singular geometries, in particular with edges?

Thank you!

A.-S. Bonnet-BenDhia, L. Chesnel, X. Claeys, Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Meth. App. Sci., vol. 23, 9:1629-1662, 2013.
A.-S. Bonnet-BenDhia, L. Chesnel, M. Rihani, Maxwell's equations with hypersingularities at a conical plasmonic tip, JMPA, to appear, 2022.
A.-S. Bonnet-BenDhia, L. Chesnel, P. Ciarlet Jr., T-coercivity for the Maxwell problem with sign-changing coefficients, Comm. Partial Differential Equations, vol. 39, 06:1007-1031, 2014.
H.-M. Nguyen, S. Sil, Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients, Commun. Math. Phys., vol. 379, 145-176, 2020.
M. Rihani, Maxwell's equations in presence of negative materials, PhD thesis, 2022.

