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Goal and motivation
We study 3D time harmonic Maxwell’s equations in presence of an inclusion
of negative material:

curlE − iωµH = 0 in Ω
curlH + iωεE = J in Ω
+ PEC boundary cond.:
E × ν = 0 on ∂Ω
µH · ν = 0 on ∂Ω

Negative material
ε < 0

and/or µ < 0

Positive material
ε > 0

and µ > 0

▶ For metals at optical frequencies, ε < 0 and µ > 0.
▶ Artificial metamaterials have been realized which can be modelled for
certain frequencies by ε < 0 and µ < 0.

Particular motivation: non
smooth gold nanoparticles.

Difficulty: usual results do not apply, singularities at the tip are amplified.
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Classical case 1/3
▶ Let us first consider the classical case where ε, µ ≥ c > 0 in Ω.
▶ We focus our attention on the electric problem

(P)
curlµ−1curlE − ω2εE = iωJ in Ω

E × ν = 0 in ∂Ω

where J ∈ L2(Ω) := L2(Ω)3 is such that divJ = 0 in Ω.

(P) ⇔ (PH)
Find E ∈ HN (curl ) such that for all E′ ∈ HN (curl )�

Ω
µ−1curlE · curlE′ − ω2εE ·E′ dx = iω

�
Ω
J ·E′ dx,

where HN (curl ) := {u ∈ L2(Ω) | curlu ∈ L2(Ω) and u× ν = 0 on ∂Ω}.

Difficulty: ∇(H1
0) ⊂ ker curl · and the embedding HN (curl ) ⊂

L2(Ω) is not compact which prevents using Fredholm alternative.
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Classical case 2/3

Use the divergence free condition and work in the space

XN (ε) := {u ∈ HN (curl ) | div (εu) = 0 in ∂Ω}

(H ∈ XT (µ) := {u ∈ H(curl ) | div (µu) = 0, µu · n = 0 on ∂Ω} ).

▶ This leads to the problem

(PX)
Find E ∈ XN (ε) such that for all E′ ∈ XN (ε)�

Ω
µ−1curlE · curlE′ − ω2εE ·E′ dx = iω

�
Ω
J ·E′ dx.

Proposition: When ε, µ ≥ c > 0:

- the embedding XN (ε) ⊂ L2(Ω) is compact;

- (u,v) 7→
�

Ω
µ−1curlu · curlv dx is coercive in XN (ε);

so that (PX) satisfies the Fredholm alternative (uniqueness ⇒ existence).
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Classical case 3/3
▶ Well-posedness of the initial problem comes from the following result:

Prop.: Assume that ε ≥ c > 0. Then E solves (PH) iff E solves (PX).

Proof. ⇒ This implication is direct.
⇐ Assume that E solves (PX). For E′ ∈ HN (curl ), let φ ∈ H1

0(Ω) be s.t.

div (ε∇φ) = div (εE′)
.

Then we have E′ − ∇φ ∈ XN (ε) so that we can write
�

Ω
µ−1curlE ·curl (E′ −∇φ)−ω2εE ·(E′ −∇φ) dx = iω

�
Ω
J ·(E′ −∇φ) dx.

This implies that E solves (PH).
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Sign-changing coefficients
▶ Now we allow for a possible change of sign of ε and/or µ in Ω.

Introduce the operator Aε : H1
0(Ω) → H1

0(Ω) such that

(Aεφ,φ
′)H1

0(Ω) =
�

Ω
ε∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

0(Ω).

Working as above, one shows:
Proposition: Assume that Aε is an isomorphism. Then E solves (PH)
iff E solves (PX).

Proposition: Assume that Aε is an isomorphism. Then we have

∥u∥Ω ≤ C ∥curlu∥Ω, ∀u ∈ XN (ε).

Thus XN (ε) endowed with (curl ·, curl ·)Ω is a Hilbert space.

Proof. Write u = ∇φ+ curlψ with φ ∈ H1
0(Ω) and ψ ∈ XT (1).

Then use that curl curlψ = ∆ψ = curlu and Aεφ = div (εcurlψ).

How to study (PX) now?

(PX)

Find E ∈ XN (ε) such that for all E′ ∈ XN (ε) :�
Ω
µ−1curlE · curlE′︸ ︷︷ ︸

a(E,E′)

−ω2
�

Ω
εE ·E′︸ ︷︷ ︸

c(E,E′)

=
�

Ω
F ·E′︸ ︷︷ ︸

ℓ(E′)

,

When µ changes sign, a(·, ·) is not coercive.
When ε changes sign, is the embedding XN (ε) ⊂ L2(Ω) compact?
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T-coercivity in the vector case 1/2
If T is an isomorphism of XN (ε), we have

a(E,E′) − ω2c(E,E′) = ℓ(E′), ∀E′ ∈ XN (ε)
⇔ a(E,TE′) − ω2c(E,TE′) = ℓ(TE′), ∀E′ ∈ XN (ε).

The key idea is to construct T ∈ XN (ε) → XN (ε) such that
a(E,TE) =

�
Ω
µ−1curlE · curl (TE′) is coercive in XN (ε).

To present the construction, set H1
#(Ω) := {φ ∈ H1(Ω) |

�
Ω φdx = 0}.

Introduce the operator Aµ : H1
#(Ω) → H1

#(Ω) such that

(Aµφ,φ
′)H1

#(Ω) =
�

Ω
µ∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

#(Ω).
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T-coercivity in the vector case 2/2
Consider E ∈ XN (ε).

1 Introduce ψ ∈ H1
#(Ω) such that curlE− ∇ψ ∈ XT (µ). To proceed, solve

�
Ω
µ∇ψ ·∇ψ′ dx =

�
Ω
µcurlE ·∇ψ′ dx, ∀ψ′ ∈ H1

#(Ω).

 Ok when Aµ

is an isom.

2 Since div (µ(curlE − ∇ψ)) = 0, there is u ∈ XN (1) such that

curlu = µ (curlE − ∇ψ) in Ω.

3 Introduce φ ∈ H1
0(Ω) such that u− ∇φ ∈ XN (ε). To proceed, solve

�
Ω
ε∇φ · ∇φ′ dx =

�
Ω
εu · ∇φ′ dx, ∀φ′ ∈ H1

0(Ω).

 Ok when Aε

is an isom.

4 Finally, define TE := u− ∇φ ∈ XN (ε). There holds:

Lemma. Suppose that

Aε : H1
0(Ω) → H1

0(Ω) is an isomorphism

Aµ : H1
#(Ω) → H1

#(Ω) is an isomorphism.

Then, there exists T : XN (ε) → XN (ε) such that, for all E, E′

a(E,TE′) = a(TE,E′) =
�

Ω
curlE · curlE′ dx

(this implies in particular that T is an isomorphism of XN (ε)).
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Compact embedding and final result

Theorem. Assume that Aε : H1
0(Ω) → H1

0(Ω) is an isomorphism. Then the
embedding of XN (ε) in L2(Ω) is compact.

Proof. 1) div (εu) = 0 ⇒ εu = curlψ with ψ ∈ XT (1).
2) Then we get curl (ε−1curlψ) = curlu.
3) When Aε : H1

0(Ω) → H1
0(Ω) is an isom, there is T : XT (1) → XT (1) s.t.

∥curlψ∥2
Ω =

�
Ω
ε−1curlψ · curl (Tψ) dx =

�
Ω

curlu · (Tψ) dx.

▶ This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 14’):

Theorem. Suppose that

Aε : H1
0(Ω) → H1

0(Ω) is an isomorphism

Aµ : H1
#(Ω) → H1

#(Ω) is an isomorphism.

Then, the problem for the electric field is well-posed for all ω ∈ C\S where
S is a discrete (or empty) set of C.
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Comments and example
▶ We have a similar result for the magnetic problem.
▶ These results extend to:
- situations where Aε, Aµ are Fredholm of index zero with a non zero kernel;
- situations where Ω is not simply connected/∂Ω is not connected.

Example of the Fichera’s cube:

ε+, µ+

ε−, µ−

Proposition. Assume that
ε−

ε+
/∈ [−7; −

1
7 ] and

µ−

µ+
/∈ [−7; −

1
7 ] . N

Then, the problems for the electric and magnetic fields are well-posed for all
ω ∈ C\S where S is a discrete (or empty) set of C.

N Note that 7 is the ratio of the blue volume over the red volume... 13 / 25



1 Positive coefficients

2 Sign-changing coefficients - non critical case

3 Scalar problems

4 Sign-changing coefficients - critical case
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2D scalar problem 1/2

▶ Recall that (Aεφ,φ
′)H1

0(Ω) =
�

Ω
ε∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

0(Ω).

For α = π/2,
Ic = [−3; −1/3].

Features of Aε depend on the angle α and on the contrast κ := ε−/ε+:

• If κ /∈ Ic :=
[

− 2π−α
α ; − α

2π−α

]
, Aε is Fredholm of index zero.

• If κ ∈ Ic, Aε is not Fredholm (its range is not close in H1
0(Ω)).
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2D scalar problem 2/2
▶ For κ ∈ Ic \ {−1}, Fredholmness in H1

0(Ω) is lost due to the existence of
propagating singularities:

s±(x) = r±iηΦ(θ), η ∈ R \ {0}
div (ε∇s±) = 0.

We have s± ∈ L2(Ω) but s± /∈ H1(Ω).
Energy accumulates at the corner, s± are called black-hole singularities.

▶ To recover Fredholmness, we have to modify the functional framework
and take into account these singularities:

- The corner is like infinity for scattering problem: it is necessary to select
the outgoing behaviour sout.
- Set Vout := span(sout) ⊕ V1

−β(Ω) where V1
−β(Ω) is a weighted Sobolev

space of functions which decay at the corner and sout := χsout (localization).

Theorem: Let Aout
ε : Vout → V1

β(Ω)∗ be the operator such that

⟨Aout
ε φ,ψ⟩ =

 
Ω
ε∇φ ·∇ψ dx := −

�
Ω
cφdiv (ε∇sout)ψ dx+

�
Ω
ε∇φ̃ ·∇ψ dx

for all φ = cφ sout + φ̃, ψ ∈ V1
β(Ω).

Then Aout
ε is Fredholm of index zero. (Bonnet-BenDhia, Chesnel, Claeys 13’)
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3D scalar problem
▶ Let us consider the case of a conical tip, the simplest singular geometry
in 3D. Now propagating singularities are of the form

s±(x) = r±iη−1/2Φ(θ, ψ), η ∈ R \ {0}

For the circular conical tip, they exist iff κ ∈ (−1; −aα) (but not for
κ < −1!) for a certain explicit aα.

▶ Contrary to 2D, in 3D we can have N > 1 singularities s±
1 , . . . , s

±
N .

Moreover N → +∞ when κ → −1+ or α → 0+.

The solution to div (ε∇φ) = f must be searched in

H1
0(Ω) when κ /∈ [−1; −aα];

Vout := span(sout
1 , . . . , sout

N ) ⊕ V1
−β(Ω) when κ ∈ (−1; −aα).
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A new framework for electric fields
▶ We assume that the negative material has a conical tip and that there
are N propagating singularities sout

1 , . . . , sout
N for the operator div (ε∇·).

▶ We assume that µ is such that Aµ : H1
#(Ω) → H1

#(Ω) is an isomorphism.

▶ Define the new space

Xout
N (ε) := {u =

N∑
n=1

cn∇sout
n + ũ, cn ∈ C, ũ ∈ V0

−β(Ω) |

curlu ∈ L2(Ω),div (εu) = 0 in Ω and u× ν = 0 on ∂Ω}

Here V0
−β(Ω) := {u | r−βu ∈ L2(Ω)}, β > 0.

▶ Note that XN (ε) ⊂ Xout
N (ε) ̸⊂ L2(Ω) (infinite energy!).

Proposition: When Aout
ε : Vout → V1

β(Ω)∗ is an isomorphism, we have

|c| + ∥ũ∥V0
−β

(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ Xout
N (ε).

Thus Xout
N (ε) endowed with (curl ·, curl ·)Ω is a Hilbert space.
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A new functional framework

▶ Then we consider the problem

(PXout)
Find u ∈ Xout

N (ε) such that for all v ∈ Xout
N (ε)�

Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = iω

�
Ω
J · v dx

with
 

Ω
εu · v dx = cucv

�
Ω

div (ε∇s+)s+ dx+
�

Ω
εũ · ṽ dx.

Proposition: When Aout
ε : Vout → V1

β(Ω)∗ is an isomorphism, E solves
(PXout) iff E solves the initial problem.

▶ To study (PXout), next we construct a T-coercivity operator in Xout
N (ε).
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T-coercivity in Xout
N (ε)

Consider E ∈ Xout
N (ε).

1 Introduce ψ ∈ H1
#(Ω) such that curlE− ∇ψ ∈ XT (µ). To proceed, solve

�
Ω
µ∇ψ ·∇ψ′ dx =

�
Ω
µcurlE ·∇ψ′ dx, ∀ψ′ ∈ H1

#(Ω).  Ok when Aµ

is an isom.

2 Since div (µ(curlE − ∇ψ)) = 0, there is u ∈ XN (1) such that

curlu = µ (curlE − ∇ψ) in Ω.

Additionally, we can prove that u ∈ V0
−β(Ω) for some β > 0.

3 Introduce φ ∈ Vout such that u− ∇φ ∈ Xout
N (ε). To proceed, solve

Aout
ε φ = −div (εu).

 Ok when Aout
ε

is an isom.

4 Finally, define TE := u− ∇φ. There holds:

Lemma. When

Aout
ε : Vout → V1

β(Ω)∗ is an isomorphism

Aµ : H1
#(Ω) → H1

#(Ω) is an isomorphism,

there exists T : Xout
N (ε) → Xout

N (ε) such that, for all E, E′

a(E,TE′) = a(TE,E′) =
�

Ω
curlE · curlE′ dx

(this implies in particular that T is an isomorphism of Xout
N (ε)).
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 Ok when Aout
ε

is an isom.

4 Finally, define TE := u− ∇φ. There holds:

Lemma. When

Aout
ε : Vout → V1

β(Ω)∗ is an isomorphism

Aµ : H1
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Compact embedding and final result

Theorem. Assume that Aout
ε : Vout → V1

β(Ω)∗ is an isomorphism. Then
the embedding of Xout

N (ε) in L2(Ω) is compact.

▶ This yields the final result (Bonnet-BenDhia, Chesnel, Rihani 22’):

Theorem. Suppose that

Aout
ε : Vout → V1

β(Ω)∗ is an isomorphism

Aµ : H1
#(Ω) → H1

#(Ω) is an isomorphism.

Then, the problem (PXout) and the initial problem are well-posed for all
ω ∈ C\S where S is a discrete (or empty) set of C.
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Conclusion

What we obtained

1) When Aε : H1
0(Ω) → H1

0(Ω), Aµ : H1
#(Ω) → H1

#(Ω) are isomorphisms,
the Maxwell’s equations are well-posed in the usual spaces.

→ For the circular conical tip, this corresponds to κε, κµ /∈ [−1; −aα].

2) For the circular conical tip with κε ∈ (−1; −aα), κµ /∈ [−1; −aα],
the Maxwell’s equations are well-posed only in a singular space.

Comments and open questions

♠ In case 2), we also have a formulation for H (a bit more complex).
Useful to study the case where both Aε and Aµ are not Fredholm.

♠ In case 2), the problem (PX) (in XN (ε)) is Fredholm but
equivalence with the initial problem fails.

♠ Numerically, it is not clear how to compute the solution in case 2).

♠ How to study other 3D singular geometries, in particular with edges?
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