Maxwell's equations with hypersingularities at a conical plasmonic tip

Lucas Chesnel¹

Collaboration with A.S. Bonnet-BenDhia² and M. Rihani^{1,2}.

¹IDEFIX, Inria-IPP-Edf, Ensta Paris, France ²POEMS, Cnrs-Inria-Ensta Paris, Ensta Paris, France

Online, 14/02/2022

Goal and motivation

We study 3D time harmonic Maxwell's equations in presence of an inclusion of negative material:

 $\mathbf{curl} \, \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \text{ in } \Omega$ $\mathbf{curl} \, \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = \boldsymbol{J} \text{ in } \Omega$ + PEC boundary cond.: $\boldsymbol{E} \times \nu = 0 \text{ on } \partial\Omega$ $\mu\boldsymbol{H} \cdot \nu = 0 \text{ on } \partial\Omega$

For metals at optical frequencies, ε < 0 and μ > 0.
 Artificial metamaterials have been realized which can be modelled for certain frequencies by ε < 0 and μ < 0.

Goal and motivation

We study 3D time harmonic Maxwell's equations in presence of an inclusion of negative material:

 $\mathbf{curl} \, \boldsymbol{E} - i\omega\mu\boldsymbol{H} = 0 \text{ in } \Omega$ $\mathbf{curl} \, \boldsymbol{H} + i\omega\varepsilon\boldsymbol{E} = \boldsymbol{J} \text{ in } \Omega$ + PEC boundary cond.: $\boldsymbol{E} \times \nu = 0 \text{ on } \partial\Omega$ $\mu\boldsymbol{H} \cdot \nu = 0 \text{ on } \partial\Omega$

For metals at optical frequencies, ε < 0 and μ > 0.
 Artificial metamaterials have been realized which can be modelled for certain frequencies by ε < 0 and μ < 0.

Particular motivation: non smooth gold nanoparticles.

Difficulty: usual results do not apply, singularities at the tip are amplified.

Outline of the talk

1 Positive coefficients

2 Sign-changing coefficients - non critical case

4 Sign-changing coefficients - critical case

2 Sign-changing coefficients - non critical case

Let us first consider the classical case where ε, μ ≥ c > 0 in Ω.
We focus our attention on the electric problem

$$(\mathscr{P}) \begin{vmatrix} \operatorname{\mathbf{curl}} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} - \omega^2 \varepsilon \boldsymbol{E} &= i \omega \boldsymbol{J} & \text{in } \Omega \\ \boldsymbol{E} \times \nu &= 0 & \text{in } \partial \Omega \end{vmatrix}$$

where $\boldsymbol{J} \in \mathbf{L}^2(\Omega) := \mathbf{L}^2(\Omega)^3$ is such that div $\boldsymbol{J} = 0$ in Ω .

Let us first consider the classical case where ε, μ≥ c > 0 in Ω.
 We focus our attention on the electric problem

$$(\mathscr{P}) \begin{vmatrix} \operatorname{\mathbf{curl}} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} - \omega^2 \varepsilon \boldsymbol{E} &= i \omega \boldsymbol{J} & \text{in } \Omega \\ \boldsymbol{E} \times \nu &= 0 & \text{in } \partial \Omega \end{vmatrix}$$

where $\boldsymbol{J} \in \mathbf{L}^2(\Omega) := \mathbf{L}^2(\Omega)^3$ is such that div $\boldsymbol{J} = 0$ in Ω .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_{\mathbf{H}}) \mid \operatorname{Find} \, \boldsymbol{E} \in \mathbf{H}_{N}(\operatorname{\mathbf{curl}}) \text{ such that for all } \boldsymbol{E}' \in \mathbf{H}_{N}(\operatorname{\mathbf{curl}}) \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \boldsymbol{E}' - \omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}' \, dx = i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}' \, dx,$$

where $\mathbf{H}_N(\mathbf{curl}) := \{ \boldsymbol{u} \in \mathbf{L}^2(\Omega) | \mathbf{curl} \, \boldsymbol{u} \in \mathbf{L}^2(\Omega) \text{ and } \boldsymbol{u} \times \nu = 0 \text{ on } \partial\Omega \}.$

Let us first consider the classical case where ε, μ≥ c > 0 in Ω.
 We focus our attention on the electric problem

$$(\mathscr{P}) \begin{vmatrix} \operatorname{\mathbf{curl}} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} - \omega^2 \varepsilon \boldsymbol{E} &= i \omega \boldsymbol{J} & \text{in } \Omega \\ \boldsymbol{E} \times \nu &= 0 & \text{in } \partial \Omega \end{vmatrix}$$

where $\boldsymbol{J} \in \mathbf{L}^2(\Omega) := \mathbf{L}^2(\Omega)^3$ is such that div $\boldsymbol{J} = 0$ in Ω .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_{\mathbf{H}}) \left| \begin{array}{c} \operatorname{Find} \, \boldsymbol{E} \in \mathbf{H}_{N}(\operatorname{\mathbf{curl}}) \text{ such that for all } \boldsymbol{E}' \in \mathbf{H}_{N}(\operatorname{\mathbf{curl}}) \\ \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \boldsymbol{E}' - \omega^{2} \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}' \, dx = i \omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}' \, dx, \end{array} \right.$$

where $\mathbf{H}_N(\mathbf{curl}) := \{ \boldsymbol{u} \in \mathbf{L}^2(\Omega) | \mathbf{curl} \, \boldsymbol{u} \in \mathbf{L}^2(\Omega) \text{ and } \boldsymbol{u} \times \nu = 0 \text{ on } \partial\Omega \}.$

Difficulty: $\nabla(\mathrm{H}_0^1) \subset \ker \operatorname{curl} \cdot$ and the embedding $\mathbf{H}_N(\operatorname{curl}) \subset \mathbf{L}^2(\Omega)$ is not compact which prevents using Fredholm alternative.

Use the divergence free condition and work in the space

 $\mathbf{X}_N(\varepsilon) := \{ \boldsymbol{u} \in \mathbf{H}_N(\mathbf{curl}) \, | \, \mathrm{div}\,(\varepsilon \boldsymbol{u}) = 0 \text{ in } \partial \Omega \}$

Use the divergence free condition and work in the space $\mathbf{X}_{N}(\varepsilon) := \{ \boldsymbol{u} \in \mathbf{H}_{N}(\mathbf{curl}) \mid \operatorname{div}(\varepsilon \boldsymbol{u}) = 0 \text{ in } \partial\Omega \}$ $(\boldsymbol{H} \in \mathbf{X}_{T}(\mu) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}) \mid \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial\Omega \}).$

This leads to the problem

 $(\mathscr{P}_{\mathbf{X}}) \mid \text{Find } \mathbf{E} \in \mathbf{X}_{N}(\varepsilon) \text{ such that for all } \mathbf{E}' \in \mathbf{X}_{N}(\varepsilon) \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{E} \cdot \operatorname{curl} \mathbf{E}' - \omega^{2} \varepsilon \mathbf{E} \cdot \mathbf{E}' \, dx = i \omega \int_{\Omega} \mathbf{J} \cdot \mathbf{E}' \, dx.$

Use the divergence free condition and work in the space $\mathbf{X}_{N}(\varepsilon) := \{ \boldsymbol{u} \in \mathbf{H}_{N}(\mathbf{curl}) \mid \operatorname{div}(\varepsilon \boldsymbol{u}) = 0 \text{ in } \partial\Omega \}$ $(\boldsymbol{H} \in \mathbf{X}_{T}(\mu) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}) \mid \operatorname{div}(\mu \boldsymbol{u}) = 0, \ \mu \boldsymbol{u} \cdot \boldsymbol{n} = 0 \text{ on } \partial\Omega \}).$

This leads to the problem

$$(\mathscr{P}_{\mathbf{X}}) \left| \begin{array}{l} \text{Find} \ \mathbf{E} \in \mathbf{X}_{N}(\varepsilon) \text{ such that for all } \mathbf{E}' \in \mathbf{X}_{N}(\varepsilon) \\ \int_{\Omega} \mu^{-1} \mathbf{curl} \ \mathbf{E} \cdot \mathbf{curl} \ \mathbf{E}' - \omega^{2} \varepsilon \mathbf{E} \cdot \mathbf{E}' \ dx = i \omega \int_{\Omega} \mathbf{J} \cdot \mathbf{E}' \ dx. \end{array} \right.$$

PROPOSITION: When ε , $\mu \ge c > 0$:

- the embedding $\mathbf{X}_N(\varepsilon) \subset \mathbf{L}^2(\Omega)$ is compact;
- $(\boldsymbol{u}, \boldsymbol{v}) \mapsto \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{u} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{v}} \, dx$ is coercive in $\mathbf{X}_N(\varepsilon)$;

so that $(\mathscr{P}_{\mathbf{X}})$ satisfies the Fredholm alternative (uniqueness \Rightarrow existence).

• Well-posedness of the initial problem comes from the following result:

PROP.: Assume that $\varepsilon \geq c > 0$. Then *E* solves $(\mathscr{P}_{\mathbf{H}})$ iff *E* solves $(\mathscr{P}_{\mathbf{X}})$.

Proof. \Rightarrow This implication is direct.

 \Leftarrow Assume that **E** solves ($\mathscr{P}_{\mathbf{X}}$). For $\mathbf{E}' \in \mathbf{H}_N(\mathbf{curl})$, let $\varphi \in \mathrm{H}_0^1(\Omega)$ be s.t.

 $\operatorname{div}\left(\varepsilon\nabla\varphi\right) = \operatorname{div}\left(\varepsilon\boldsymbol{E}'\right)$

• Well-posedness of the initial problem comes from the following result:

PROP.: Assume that $\varepsilon \ge c > 0$. Then **E** solves $(\mathscr{P}_{\mathbf{H}})$ iff **E** solves $(\mathscr{P}_{\mathbf{X}})$.

 $\begin{array}{ll} \texttt{Proof.} & \Rightarrow \texttt{This implication is direct.} \\ \Leftarrow \texttt{Assume that } \pmb{E} \texttt{ solves } (\mathscr{P}_{\mathbf{X}}). \texttt{ For } \pmb{E}' \in \mathbf{H}_N(\mathbf{curl\,}), \, \mathrm{let } \, \varphi \in \mathrm{H}_0^1(\Omega) \texttt{ be s.t.} \end{array}$

 $\operatorname{div}\left(\varepsilon\nabla\varphi\right) = \operatorname{div}\left(\varepsilon\boldsymbol{E}'\right)$

Then we have $\mathbf{E}' - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$ so that we can write

 $\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \left(\boldsymbol{E}' - \nabla \varphi \right) - \omega^{2} \varepsilon \boldsymbol{E} \cdot \left(\boldsymbol{E}' - \nabla \varphi \right) dx = i \omega \int_{\Omega} \boldsymbol{J} \cdot \left(\boldsymbol{E}' - \nabla \varphi \right) dx.$

• Well-posedness of the initial problem comes from the following result:

PROP.: Assume that $\varepsilon \geq c > 0$. Then **E** solves $(\mathscr{P}_{\mathbf{H}})$ iff **E** solves $(\mathscr{P}_{\mathbf{X}})$.

 $\begin{array}{ll} {\tt Proof.} & \Rightarrow {\rm This \ implication \ is \ direct.} \\ \Leftarrow {\rm Assume \ that} \ {\pmb E} \ {\rm solves} \ ({\mathscr P}_{{\bf X}}). \ {\rm For} \ {\pmb E}' \in {\bf H}_N({\bf curl\,}), \ {\rm let} \ \varphi \in {\rm H}^1_0(\Omega) \ {\rm be \ s.t.} \end{array}$

 $\operatorname{div}\left(\varepsilon\nabla\varphi\right) = \operatorname{div}\left(\varepsilon\boldsymbol{E}'\right)$

Then we have $\mathbf{E}' - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$ so that we can write

$$\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}' \, dx = i\omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}' \, dx.$$

• Well-posedness of the initial problem comes from the following result:

PROP.: Assume that $\varepsilon \geq c > 0$. Then **E** solves $(\mathscr{P}_{\mathbf{H}})$ iff **E** solves $(\mathscr{P}_{\mathbf{X}})$.

Proof. \Rightarrow This implication is direct. \Leftarrow Assume that \boldsymbol{E} solves $(\mathscr{P}_{\mathbf{X}})$. For $\boldsymbol{E}' \in \mathbf{H}_N(\mathbf{curl})$, let $\varphi \in \mathrm{H}_0^1(\Omega)$ be s.t.

 $\operatorname{div}\left(\varepsilon\nabla\varphi\right) = \operatorname{div}\left(\varepsilon\boldsymbol{E}'\right)$

Then we have $\mathbf{E}' - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$ so that we can write

$$\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \boldsymbol{E}' - \omega^2 \varepsilon \boldsymbol{E} \cdot \boldsymbol{E}' \, dx = i\omega \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{E}' \, dx.$$

This implies that \boldsymbol{E} solves $(\mathscr{P}_{\mathbf{H}})$.

2 Sign-changing coefficients - non critical case

Sign-changing coefficients

Now we allow for a possible change of sign of ε and/or μ in Ω .

Introduce the operator $A_{\varepsilon} : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ such that

$$(A_{\varepsilon}\varphi,\varphi')_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \qquad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

Working as above, one shows:

PROPOSITION: Assume that A_{ε} is an isomorphism. Then E solves $(\mathscr{P}_{\mathbf{H}})$ iff E solves $(\mathscr{P}_{\mathbf{X}})$.

Sign-changing coefficients

Now we allow for a possible change of sign of ε and/or μ in Ω .

Introduce the operator $A_{\varepsilon} : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ such that

$$(A_{\varepsilon}\varphi,\varphi')_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \qquad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

Working as above, one shows:

PROPOSITION: Assume that A_{ε} is an isomorphism. Then E solves $(\mathscr{P}_{\mathbf{H}})$ iff E solves $(\mathscr{P}_{\mathbf{X}})$.

PROPOSITION: Assume that A_{ε} is an isomorphism. Then we have

$$\|\boldsymbol{u}\|_{\Omega} \leq C \|\operatorname{curl} \boldsymbol{u}\|_{\Omega}, \quad \forall \boldsymbol{u} \in \mathbf{X}_N(\varepsilon).$$

Thus $\mathbf{X}_N(\varepsilon)$ endowed with $(\mathbf{curl} \cdot, \mathbf{curl} \cdot)_{\Omega}$ is a Hilbert space.

Proof. Write $\boldsymbol{u} = \nabla \varphi + \operatorname{curl} \boldsymbol{\psi}$ with $\varphi \in \mathrm{H}_0^1(\Omega)$ and $\boldsymbol{\psi} \in \mathbf{X}_T(1)$. Then use that $\operatorname{curl} \operatorname{curl} \boldsymbol{\psi} = \Delta \boldsymbol{\psi} = \operatorname{curl} \boldsymbol{u}$ and $A_{\varepsilon} \varphi = \operatorname{div} (\varepsilon \operatorname{curl} \boldsymbol{\psi})$. How to study $(\mathscr{P}_{\mathbf{X}})$ now?

$$(\mathscr{P}_{\mathbf{X}}) \left| \underbrace{\underbrace{\int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \in \mathbf{X}_{N}(\varepsilon) \text{ such that for all } \boldsymbol{E}' \in \mathbf{X}_{N}(\varepsilon) :}_{a(\boldsymbol{E}, \boldsymbol{E}')} - \omega^{2} \underbrace{\int_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{E}'}}_{c(\boldsymbol{E}, \boldsymbol{E}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \overline{\boldsymbol{E}'}}_{\ell(\boldsymbol{E}')}, \right.$$

When μ changes sign, $a(\cdot, \cdot)$ is not coercive.

When ε changes sign, is the embedding $\mathbf{X}_N(\varepsilon) \subset \mathbf{L}^2(\Omega)$ compact?

If \mathbb{T} is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have

$$a(\boldsymbol{E}, \boldsymbol{E}') - \omega^2 c(\boldsymbol{E}, \boldsymbol{E}') = \ell(\boldsymbol{E}'), \qquad \forall \boldsymbol{E}' \in \mathbf{X}_N(\varepsilon)$$

$$\Leftrightarrow \quad a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') - \omega^2 c(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \ell(\mathbb{T}\boldsymbol{E}'), \qquad \forall \boldsymbol{E}' \in \mathbf{X}_N(\varepsilon).$$

The key idea is to construct
$$\mathbb{T} \in \mathbf{X}_N(\varepsilon) \to \mathbf{X}_N(\varepsilon)$$
 such that
 $a(\mathbf{E}, \mathbb{T}\mathbf{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{E} \cdot \operatorname{curl} (\overline{\mathbb{T}\mathbf{E}'})$ is coercive in $\mathbf{X}_N(\varepsilon)$.

1/2

If \mathbb{T} is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have

$$a(\boldsymbol{E}, \boldsymbol{E}') - \omega^2 c(\boldsymbol{E}, \boldsymbol{E}') = \ell(\boldsymbol{E}'), \qquad \forall \boldsymbol{E}' \in \mathbf{X}_N(\varepsilon)$$

$$\Leftrightarrow \quad a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') - \omega^2 c(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \ell(\mathbb{T}\boldsymbol{E}'), \qquad \forall \boldsymbol{E}' \in \mathbf{X}_N(\varepsilon).$$

The key idea is to construct
$$\mathbb{T} \in \mathbf{X}_N(\varepsilon) \to \mathbf{X}_N(\varepsilon)$$
 such that
 $a(\mathbf{E}, \mathbb{T}\mathbf{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{E} \cdot \operatorname{curl} (\overline{\mathbb{T}\mathbf{E}'})$ is coercive in $\mathbf{X}_N(\varepsilon)$.

To present the construction, set $\mathrm{H}^{1}_{\#}(\Omega) := \{\varphi \in \mathrm{H}^{1}(\Omega) \mid \int_{\Omega} \varphi \, dx = 0\}.$

Introduce the operator $A_{\mu} : \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ such that

$$(A_{\mu}\varphi,\varphi')_{\mathrm{H}^{1}_{\#}(\Omega)} = \int_{\Omega} \mu \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \qquad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $u \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}_{0}^{1}(\Omega).$$

• Ok when A_{ε} is an isom.

$$\textbf{4} \quad \text{Finally, define } \mathbb{T}\boldsymbol{E} := \boldsymbol{u} - \nabla \boldsymbol{\varphi} \in \mathbf{X}_N(\varepsilon).$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \cdot \mathbf{curl} \, (\overline{\mathbb{T}\boldsymbol{E}}) \, dx$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{u}} \, dx$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{ in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}_{0}^{1}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{u}} \, dx = \int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot (\overline{\operatorname{curl} \boldsymbol{E} - \nabla \psi}) \, dx$$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{u}} \, dx = \int_{\Omega} |\operatorname{curl} \boldsymbol{E}|^2 \, dx.$$

Compact embedding and final result

THEOREM. Assume that $A_{\varepsilon} : \mathrm{H}_{0}^{1}(\Omega) \to \mathrm{H}_{0}^{1}(\Omega)$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

Proof. 1) div $(\varepsilon \boldsymbol{u}) = 0 \Rightarrow \varepsilon \boldsymbol{u} = \operatorname{curl} \boldsymbol{\psi}$ with $\boldsymbol{\psi} \in \mathbf{X}_T(1)$. 2) Then we get $\operatorname{curl} (\varepsilon^{-1} \operatorname{curl} \boldsymbol{\psi}) = \operatorname{curl} \boldsymbol{u}$. 3) When $A_{\varepsilon} : \operatorname{H}_0^1(\Omega) \to \operatorname{H}_0^1(\Omega)$ is an isom, there is $\mathbb{T} : \mathbf{X}_T(1) \to \mathbf{X}_T(1)$ s.t.

$$\|\mathbf{curl}\,\boldsymbol{\psi}\|_{\Omega}^{2} = \int_{\Omega} \varepsilon^{-1} \mathbf{curl}\,\boldsymbol{\psi} \cdot \mathbf{curl}\,(\mathbb{T}\boldsymbol{\psi})\,dx = \int_{\Omega} \mathbf{curl}\,\boldsymbol{u} \cdot (\mathbb{T}\boldsymbol{\psi})\,dx. \quad \Box$$

Compact embedding and final result

THEOREM. Assume that $A_{\varepsilon} : \mathrm{H}_{0}^{1}(\Omega) \to \mathrm{H}_{0}^{1}(\Omega)$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

Proof. 1) div $(\varepsilon \boldsymbol{u}) = 0 \Rightarrow \varepsilon \boldsymbol{u} = \operatorname{curl} \boldsymbol{\psi}$ with $\boldsymbol{\psi} \in \mathbf{X}_T(1)$. 2) Then we get $\operatorname{curl} (\varepsilon^{-1} \operatorname{curl} \boldsymbol{\psi}) = \operatorname{curl} \boldsymbol{u}$. 3) When $A_{\varepsilon} : \operatorname{H}_0^1(\Omega) \to \operatorname{H}_0^1(\Omega)$ is an isom, there is $\mathbb{T} : \mathbf{X}_T(1) \to \mathbf{X}_T(1)$ s.t. $\|\operatorname{curl} \boldsymbol{\psi}\|_{\Omega}^2 = \int_{\Omega} \varepsilon^{-1} \operatorname{curl} \boldsymbol{\psi} \cdot \operatorname{curl} (\mathbb{T} \boldsymbol{\psi}) dx = \int_{\Omega} \operatorname{curl} \boldsymbol{u} \cdot (\mathbb{T} \boldsymbol{\psi}) dx$. \Box

This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 14'):

THEOREM. Suppose that

 $A_{\varepsilon}: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is an isomorphism

 $A_{\mu}: \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ is an isomorphism.

Then, the problem for the electric field is well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

Comments and example

- We have a similar result for the magnetic problem.
- These results extend to:
- situations where A_{ε} , A_{μ} are Fredholm of index zero with a non zero kernel;
- situations where Ω is not simply connected/ $\partial \Omega$ is not connected.

EXAMPLE OF THE FICHERA'S CUBE:

PROPOSITION. Assume that $\frac{\varepsilon_{-}}{\varepsilon_{+}} \notin \left[-7; -\frac{1}{7}\right]$

and
$$\frac{\mu_{-}}{\mu_{+}} \notin [-7; -\frac{1}{7}]$$
.

Then, the problems for the electric and magnetic fields are well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

X Note that 7 is the ratio of the blue volume over the red volume...

2 Sign-changing coefficients - non critical case

• Recall that
$$(A_{\varepsilon}\varphi,\varphi')_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \qquad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

Features of A_{ε} depend on the angle α and on the contrast $\kappa := \varepsilon_{-}/\varepsilon_{+}$:

$$\succ$$

- If $\kappa \notin I_c := \left[-\frac{2\pi \alpha}{\alpha}; -\frac{\alpha}{2\pi \alpha} \right]$, A_{ε} is Fredholm of index zero.
 - If $\kappa \in I_c$, A_{ε} is not Fredholm (its range is not close in $\mathrm{H}^1_0(\Omega)$).

• Recall that
$$(A_{\varepsilon}\varphi,\varphi')_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \quad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

Features of A_{ε} depend on the angle α and on the contrast $\kappa := \varepsilon_{-}/\varepsilon_{+}$:

$$\succ$$

- If $\kappa \notin I_c := \left[-\frac{2\pi \alpha}{\alpha}; -\frac{\alpha}{2\pi \alpha} \right]$, A_{ε} is Fredholm of index zero.
 - If $\kappa \in I_c$, A_{ε} is not Fredholm (its range is not close in $\mathrm{H}^1_0(\Omega)$).

2/2

For $\kappa \in I_c \setminus \{-1\}$, Fredholmness in $H_0^1(\Omega)$ is lost due to the existence of propagating singularities:

$$s^{\pm}(x) = r^{\pm i\eta} \Phi(\theta), \quad \eta \in \mathbb{R} \setminus \{0\}$$

div $(\varepsilon \nabla s^{\pm}) = 0.$

We have $s^{\pm} \in L^{2}(\Omega)$ but $s^{\pm} \notin H^{1}(\Omega)$. Energy accumulates at the corner, s^{\pm} are called black-hole singularities.

2/2

For $\kappa \in I_c \setminus \{-1\}$, Fredholmness in $H_0^1(\Omega)$ is lost due to the existence of propagating singularities:

$$s^{\pm}(x) = r^{\pm i\eta} \Phi(\theta), \quad \eta \in \mathbb{R} \setminus \{0\}$$

div $(\varepsilon \nabla s^{\pm}) = 0.$

We have $s^{\pm} \in L^{2}(\Omega)$ but $s^{\pm} \notin H^{1}(\Omega)$. Energy accumulates at the corner, s^{\pm} are called black-hole singularities.

▶ To recover Fredholmness, we have to modify the functional framework and take into account these singularities:

- The corner is like infinity for scattering problem: it is necessary to select the outgoing behaviour s^{out} .

- Set $\mathbf{V}^{\text{out}} := \operatorname{span}(\mathfrak{s}^{\text{out}}) \oplus \mathbf{V}^{1}_{-\beta}(\Omega)$ where $\mathbf{V}^{1}_{-\beta}(\Omega)$ is a weighted Sobolev space of functions which decay at the corner and $\mathfrak{s}^{\text{out}} := \chi s^{\text{out}}$ (localization).

For $\kappa \in I_c \setminus \{-1\}$, Fredholmness in $H_0^1(\Omega)$ is lost due to the existence of propagating singularities:

$$s^{\pm}(x) = r^{\pm i\eta} \Phi(\theta), \quad \eta \in \mathbb{R} \setminus \{0\}$$

div $(\varepsilon \nabla s^{\pm}) = 0.$

THEOREM: Let $A_{\varepsilon}^{\text{out}} : \mathbf{V}^{\text{out}} \to \mathbf{V}_{\beta}^{1}(\Omega)^{*}$ be the operator such that $\langle A_{\varepsilon}^{\text{out}}\varphi,\psi\rangle = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\psi} \, dx := -\int_{\Omega} c_{\varphi} \text{div} \left(\varepsilon \nabla \mathfrak{s}^{\text{out}}\right) \overline{\psi} \, dx + \int_{\Omega} \varepsilon \nabla \widetilde{\varphi} \cdot \nabla \overline{\psi} \, dx$ for all $\varphi = c_{\varphi} \mathfrak{s}^{\text{out}} + \widetilde{\varphi}, \, \psi \in \mathbf{V}_{\beta}^{1}(\Omega).$ Then $A_{\varepsilon}^{\text{out}}$ is Fredholm of index zero. (Bonnet-BenDhia, Chesnel, Claeves 13')

- Set $\mathbf{V}^{\text{out}} := \operatorname{span}(\mathfrak{s}^{\text{out}}) \oplus \mathbf{V}^{1}_{-\beta}(\Omega)$ where $\mathbf{V}^{1}_{-\beta}(\Omega)$ is a weighted Sobolev space of functions which decay at the corner and $\mathfrak{s}^{\text{out}} := \chi s^{\text{out}}$ (localization).

• Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

$$s^{\pm}(x) = r^{\pm i\eta - 1/2} \Phi(\theta, \psi), \qquad \eta \in \mathbb{R} \setminus \{0\}$$

▶ Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

 $s^{\pm}(x) = r^{\pm i\eta - 1/2} \Phi(\theta, \psi), \qquad \eta \in \mathbb{R} \setminus \{0\}$

For the **circular conical tip**, they exist iff $\kappa \in (-1; -a_{\alpha})$ (but not for $\kappa < -1!$) for a certain explicit a_{α} .

▶ Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

 $s^{\pm}(x) = r^{\pm i\eta - 1/2} \Phi(\theta, \psi), \qquad \eta \in \mathbb{R} \setminus \{0\}$

For the **circular conical tip**, they exist iff $\kappa \in (-1; -a_{\alpha})$ (but not for $\kappa < -1!$) for a certain explicit a_{α} .

• Contrary to 2D, in 3D we can have N > 1 singularities $s_1^{\pm}, \ldots, s_N^{\pm}$. Moreover $N \to +\infty$ when $\kappa \to -1^+$ or $\alpha \to 0^+$.

▶ Let us consider the case of a conical tip, the simplest singular geometry in 3D. Now propagating singularities are of the form

 $s^{\pm}(x) = r^{\pm i\eta - 1/2} \Phi(\theta, \psi), \qquad \eta \in \mathbb{R} \setminus \{0\}$

For the **circular conical tip**, they exist iff $\kappa \in (-1; -a_{\alpha})$ (but not for $\kappa < -1!$) for a certain explicit a_{α} .

• Contrary to 2D, in 3D we can have N > 1 singularities $s_1^{\pm}, \ldots, s_N^{\pm}$. Moreover $N \to +\infty$ when $\kappa \to -1^+$ or $\alpha \to 0^+$.

The solution to div $(\varepsilon \nabla \varphi) = f$ must be searched in

$$\begin{split} \mathrm{H}^{1}_{0}(\Omega) & \text{when } \boldsymbol{\kappa} \notin [-\mathbf{1}; -\boldsymbol{a}_{\boldsymbol{\alpha}}]; \\ \mathrm{V}^{\mathrm{out}} := \mathrm{span}(\mathfrak{s}^{\mathrm{out}}_{1}, \dots, \mathfrak{s}^{\mathrm{out}}_{N}) \oplus \mathrm{V}^{1}_{-\beta}(\Omega) & \text{when } \boldsymbol{\kappa} \in (-\mathbf{1}; -\boldsymbol{a}_{\boldsymbol{\alpha}}). \end{split}$$

2 Sign-changing coefficients - non critical case

Sign-changing coefficients - critical case

A new framework for electric fields

• We assume that the negative material has a conical tip and that there are N propagating singularities $\mathfrak{s}_1^{\text{out}}, \ldots, \mathfrak{s}_N^{\text{out}}$ for the operator div $(\varepsilon \nabla \cdot)$.

• We assume that μ is such that $A_{\mu} : \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ is an isomorphism.

• Define the new space

$$\begin{split} \mathbf{X}_{N}^{\mathrm{out}}(\varepsilon) &:= \{ \boldsymbol{u} = \sum_{n=1}^{N} c_{n} \nabla \mathfrak{s}_{n}^{\mathrm{out}} + \tilde{\boldsymbol{u}}, \, c_{n} \in \mathbb{C}, \, \tilde{\boldsymbol{u}} \in \mathbf{V}_{-\beta}^{0}(\Omega) \, | \\ \mathbf{curl} \, \boldsymbol{u} \in \mathbf{L}^{2}(\Omega), \mathrm{div}\left(\varepsilon \boldsymbol{u}\right) = 0 \text{ in } \Omega \text{ and } \boldsymbol{u} \times \nu = 0 \text{ on } \partial \Omega \} \end{split}$$

Here $\mathbf{V}_{-\beta}^{0}(\Omega) := \{ \boldsymbol{u} \mid r^{-\beta}\boldsymbol{u} \in \mathbf{L}^{2}(\Omega) \}, \ \beta > 0.$

A new framework for electric fields

• We assume that the negative material has a conical tip and that there are N propagating singularities $\mathfrak{s}_1^{\text{out}}, \ldots, \mathfrak{s}_N^{\text{out}}$ for the operator div $(\varepsilon \nabla \cdot)$.

• We assume that μ is such that $A_{\mu} : \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ is an isomorphism.

• Define the new space

$$\begin{split} \mathbf{X}_{N}^{\mathrm{out}}(\varepsilon) &:= \{ \boldsymbol{u} = \sum_{n=1}^{N} c_{n} \nabla \mathfrak{s}_{n}^{\mathrm{out}} + \tilde{\boldsymbol{u}}, \, c_{n} \in \mathbb{C}, \, \tilde{\boldsymbol{u}} \in \mathbf{V}_{-\beta}^{0}(\Omega) \, | \\ \mathbf{curl} \, \boldsymbol{u} \in \mathbf{L}^{2}(\Omega), \mathrm{div} \, (\varepsilon \boldsymbol{u}) = 0 \, \mathrm{in} \, \Omega \, \mathrm{and} \, \boldsymbol{u} \times \nu = 0 \, \mathrm{on} \, \partial \Omega \} \end{split}$$

Here
$$\mathbf{V}_{-\beta}^{0}(\Omega) := \{ \boldsymbol{u} \mid r^{-\beta}\boldsymbol{u} \in \mathbf{L}^{2}(\Omega) \}, \ \beta > 0.$$

Note that $\mathbf{X}_N(\varepsilon) \subset \mathbf{X}_N^{\text{out}}(\varepsilon) \not\subset \mathbf{L}^2(\Omega)$ (infinite energy!).

PROPOSITION: When $A_{\varepsilon}^{\text{out}} : \mathcal{V}^{\text{out}} \to \mathcal{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism, we have $|c| + \|\tilde{\boldsymbol{u}}\|_{\mathbf{V}_{-\beta}^{0}(\Omega)} \leq C \|\mathbf{curl}\,\boldsymbol{u}\|_{\Omega}, \qquad \forall \boldsymbol{u} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon).$

Thus $\mathbf{X}_N^{\text{out}}(\varepsilon)$ endowed with $(\mathbf{curl} \cdot, \mathbf{curl} \cdot)_{\Omega}$ is a Hilbert space.

19

A new functional framework

Then we consider the problem

$$(\mathscr{P}_{\mathbf{X}^{\text{out}}}) \left| \begin{array}{l} \text{Find } \boldsymbol{u} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon) \text{ such that for all } \boldsymbol{v} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon) \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} \, dx - \omega^{2} \oint_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} \, dx = i\omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{v}} \, dx \end{array} \right.$$

with
$$\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} \, dx = c_{\boldsymbol{u}} \overline{c_{\boldsymbol{v}}} \int_{\Omega} \operatorname{div} (\varepsilon \nabla \overline{s^+}) s^+ \, dx + \int_{\Omega} \varepsilon \widetilde{\boldsymbol{u}} \cdot \overline{\widetilde{\boldsymbol{v}}} \, dx.$$

A new functional framework

Then we consider the problem

$$(\mathscr{P}_{\mathbf{X}^{\text{out}}}) \left| \begin{array}{l} \text{Find } \boldsymbol{u} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon) \text{ such that for all } \boldsymbol{v} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon) \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} \, dx - \omega^{2} \oint_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} \, dx = i\omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{v}} \, dx \end{array} \right.$$

with
$$\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} \, dx = c_{\boldsymbol{u}} \overline{c_{\boldsymbol{v}}} \int_{\Omega} \operatorname{div} \left(\varepsilon \nabla \overline{s^+} \right) s^+ dx + \int_{\Omega} \varepsilon \widetilde{\boldsymbol{u}} \cdot \overline{\widetilde{\boldsymbol{v}}} \, dx.$$

PROPOSITION: When $A_{\varepsilon}^{\text{out}} : \mathcal{V}^{\text{out}} \to \mathcal{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism, \boldsymbol{E} solves $(\mathscr{P}_{\mathbf{X}^{\text{out}}})$ iff \boldsymbol{E} solves the initial problem.

A new functional framework

Then we consider the problem

$$\left(\mathscr{P}_{\mathbf{X}^{\text{out}}}\right) \left| \begin{array}{l} \text{Find } \boldsymbol{u} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon) \text{ such that for all } \boldsymbol{v} \in \mathbf{X}_{N}^{\text{out}}(\varepsilon) \\ \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \overline{\boldsymbol{v}} \, dx - \omega^{2} \oint_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} \, dx = i\omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{v}} \, dx \end{array} \right.$$

with
$$\int_{\Omega} \varepsilon \boldsymbol{u} \cdot \overline{\boldsymbol{v}} \, dx = c_{\boldsymbol{u}} \overline{c_{\boldsymbol{v}}} \int_{\Omega} \operatorname{div} (\varepsilon \nabla \overline{s^+}) s^+ \, dx + \int_{\Omega} \varepsilon \widetilde{\boldsymbol{u}} \cdot \overline{\tilde{\boldsymbol{v}}} \, dx.$$

PROPOSITION: When $A_{\varepsilon}^{\text{out}} : \mathcal{V}^{\text{out}} \to \mathcal{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism, \boldsymbol{E} solves $(\mathscr{P}_{\mathbf{X}^{\text{out}}})$ iff \boldsymbol{E} solves the initial problem.

• To study $(\mathscr{P}_{\mathbf{X}^{\text{out}}})$, next we construct a \mathbb{T} -coercivity operator in $\mathbf{X}_{N}^{\text{out}}(\varepsilon)$.

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{ in } \Omega.$

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{\mathbf{curl}} \boldsymbol{u} = \mu \left(\operatorname{\mathbf{curl}} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{ in } \Omega.$$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}^{0}_{-\beta}(\Omega)$ for some $\beta > 0$.

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{ in } \Omega.$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}^{0}_{-\beta}(\Omega)$ for some $\beta > 0$.

3 Introduce $\varphi \in V^{\text{out}}$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N^{\text{out}}(\varepsilon)$. To proceed, solve

$$A_{\varepsilon}^{\mathrm{out}} \varphi = -\mathrm{div}\,(\varepsilon \mathbf{u}).$$

• Ok when $A_{\varepsilon}^{\text{out}}$ is an isom.

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2) Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}_{-\beta}^{0}(\Omega)$ for some $\beta > 0$.

3 Introduce $\varphi \in V^{\text{out}}$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N^{\text{out}}(\varepsilon)$. To proceed, solve

$$A_{\varepsilon}^{\mathrm{out}}\boldsymbol{\varphi} = -\mathrm{div}\,(\varepsilon\boldsymbol{u}).$$

• Ok when
$$A_{\varepsilon}^{\text{out}}$$
 is an isom.

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2) Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}^{0}_{-\beta}(\Omega)$ for some $\beta > 0$.

3 Introduce $\varphi \in V^{\text{out}}$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N^{\text{out}}(\varepsilon)$. To proceed, solve

$$A_{\varepsilon}^{\mathrm{out}}\varphi = -\mathrm{div}\,(\varepsilon \mathbf{u}).$$

• Ok when
$$A_{\varepsilon}^{\text{out}}$$
 is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \left(\overline{\mathbb{T}\boldsymbol{E}}\right) dx$$

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2) Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}^{0}_{-\beta}(\Omega)$ for some $\beta > 0$.

3 Introduce $\varphi \in V^{\text{out}}$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N^{\text{out}}(\varepsilon)$. To proceed, solve

$$A_{\varepsilon}^{\mathrm{out}}\varphi = -\mathrm{div}\,(\varepsilon \mathbf{u}).$$

• Ok when
$$A_{\varepsilon}^{\text{out}}$$
 is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{u}} \, dx$$

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}^{0}_{-\beta}(\Omega)$ for some $\beta > 0$.

3 Introduce $\varphi \in V^{\text{out}}$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N^{\text{out}}(\varepsilon)$. To proceed, solve

$$A_{\varepsilon}^{\mathrm{out}}\varphi = -\mathrm{div}\,(\varepsilon \boldsymbol{u}).$$

• Ok when
$$A_{\varepsilon}^{\text{out}}$$
 is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{u}} \, dx = \int_{\Omega} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot (\overline{\operatorname{\mathbf{curl}} \boldsymbol{E} - \nabla \psi}) \, dx$$

Consider $\boldsymbol{E} \in \mathbf{X}_N^{\mathrm{out}}(\varepsilon)$.

1 Introduce $\psi \in \mathrm{H}^{1}_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \psi \in \mathbf{X}_{T}(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

2) Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

Additionally, we can prove that $\boldsymbol{u} \in \mathbf{V}^{0}_{-\beta}(\Omega)$ for some $\beta > 0$.

3 Introduce $\varphi \in V^{\text{out}}$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N^{\text{out}}(\varepsilon)$. To proceed, solve

$$A_{\varepsilon}^{\mathrm{out}}\varphi = -\mathrm{div}\,(\varepsilon \boldsymbol{u}).$$

• Ok when
$$A_{\varepsilon}^{\text{out}}$$
 is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{u}} \, dx = \int_{\Omega} |\operatorname{\mathbf{curl}} \boldsymbol{E}|^2 \, dx.$$

\mathbb{T} -coercivity in $\mathbf{X}_N^{\mathrm{out}}(\varepsilon)$

Compact embedding and final result

THEOREM. Assume that $A_{\varepsilon}^{\text{out}} : \mathcal{V}^{\text{out}} \to \mathcal{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}^{\text{out}}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

Compact embedding and final result

THEOREM. Assume that $A_{\varepsilon}^{\text{out}} : \mathcal{V}^{\text{out}} \to \mathcal{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism. Then the embedding of $\mathbf{X}_{N}^{\text{out}}(\varepsilon)$ in $\mathbf{L}^{2}(\Omega)$ is compact.

This yields the final result (Bonnet-BenDhia, Chesnel, Rihani 22'):

THEOREM. Suppose that

 $A_{\varepsilon}^{\mathrm{out}}: \mathcal{V}^{\mathrm{out}} \to \mathcal{V}_{\beta}^{1}(\Omega)^{*}$ is an isomorphism

 $A_{\mu}: \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ is an isomorphism.

Then, the problem $(\mathscr{P}_{\mathbf{X}^{\text{out}}})$ and the initial problem are well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

2 Sign-changing coefficients - non critical case

What we obtained

- 1) When $A_{\varepsilon} : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega), A_{\mu} : \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ are isomorphisms, the Maxwell's equations are well-posed in the usual spaces.
 - \rightarrow For the circular conical tip, this corresponds to κ_{ε} , $\kappa_{\mu} \notin [-1; -a_{\alpha}]$.
- 2) For the circular conical tip with $\kappa_{\varepsilon} \in (-1; -a_{\alpha}), \kappa_{\mu} \notin [-1; -a_{\alpha}],$ the Maxwell's equations are well-posed only in a singular space.

What we obtained

- 1) When $A_{\varepsilon} : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega), A_{\mu} : \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ are isomorphisms, the Maxwell's equations are well-posed in the usual spaces.
 - \rightarrow For the circular conical tip, this corresponds to κ_{ε} , $\kappa_{\mu} \notin [-1; -a_{\alpha}]$.
- 2) For the circular conical tip with $\kappa_{\varepsilon} \in (-1; -a_{\alpha}), \kappa_{\mu} \notin [-1; -a_{\alpha}],$ the Maxwell's equations are well-posed only in a singular space.

Comments and open questions

- In case 2), we also have a formulation for H (a bit more complex). Useful to study the case where both A_{ε} and A_{μ} are not Fredholm.
- ▲ In case 2), the problem $(\mathscr{P}_{\mathbf{X}})$ (in $\mathbf{X}_N(\varepsilon)$) is Fredholm but equivalence with the initial problem fails.

♠ Numerically, it is not clear how to compute the solution in case 2).

How to study other 3D singular geometries, in particular with edges?

Thank you!

A.-S. Bonnet-BenDhia, L. Chesnel, M. Rihani, Maxwell's equations with hypersingularities at a conical plasmonic tip, JMPA, to appear, 2022.

H.-M. Nguyen, S. Sil, Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients, Commun. Math. Phys., vol. 379, 145-176, 2020.

M. Rihani, Maxwell's equations in presence of negative materials, PhD thesis, 2022.