SÉMINAIRE DE MATHÉMATIQUES APPLIQUÉES

Invisibilité en champ lointain pour un problème de diffraction acoustique

Lucas Chesnel¹

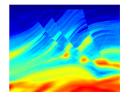
Coll. with A.-S. Bonnet-Ben Dhia², H. Haddar¹ and S.A. Nazarov³.

¹Defi team, CMAP, École Polytechnique, France ²Poems team, Ensta ParisTech, France

 3 FMM, St. Petersburg State University, Russia

General setting

- ▶ We are interested in methods based on the propagation of waves to determine the shape, the physical properties of objects, in an exact or qualitative manner, from given measurements.
- ► GENERAL PRINCIPLE OF THE METHODS:
 - i) send waves in the medium;
 - ii) measure the scattered field;
 - iii) deduce information on the structure.



- Many techniques: Xray, ultrasound imaging, seismic tomography, ...
- Many applications: biomedical imaging, non destructive testing of materials, geophysics, ...

Model problem

Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients A, ρ) in \mathbb{R}^2 .

$$A = \rho = 1$$

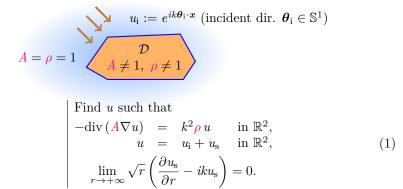
$$A \neq 1, \rho \neq 1$$
Find u such that
$$-\operatorname{div}(A\nabla u) = k^{2}\rho u \quad \text{in } \mathbb{R}^{2},$$

$$u = u_{i} + u_{s} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{s}}{\partial r} - iku_{s} \right) = 0.$$
(1)

Model problem

Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients A, ρ) in \mathbb{R}^2 .



Model problem

Scattering in time-harmonic regime of an incident plane wave by a bounded penetrable inclusion \mathcal{D} (coefficients A, ρ) in \mathbb{R}^2 .

$$u_{\bf i}:=e^{ik\pmb\theta_{\bf i}\cdot x}\ ({\rm incident\ dir.}\ \pmb\theta_{\bf i}\in\mathbb S^1)$$

$$A=\rho=1$$

$$D$$

$$A\neq 1,\ \rho\neq 1$$

Find
$$u$$
 such that
$$-\operatorname{div}(A\nabla u) = k^{2} \rho u \quad \text{in } \mathbb{R}^{2},$$

$$u = u_{i} + u_{s} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{s}}{\partial r} - iku_{s} \right) = 0.$$
(1)

Illustration of the scattering of a plane wave

 $\blacktriangleright\,$ Below, the movies represent a numerical approximation of the solution of the previous problem.

Incident field

Total field

Scattered field

$$t \mapsto \Re e \left(e^{-i\omega t} u_{\mathbf{i}}(\mathbf{x}) \right)$$

$$t \mapsto \Re e \left(e^{-i\omega t} u(\boldsymbol{x}) \right)$$

$$t \mapsto \Re e \left(e^{-i\omega t} u_{\scriptscriptstyle \mathrm{S}}(\boldsymbol{x}) \right)$$

▶ The pulsation ω is defined by $\omega = k/c$ where c = 1 is the celerity of the waves in the homogeneous medium.

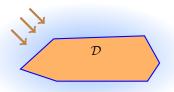
Outline of the talk

We are interested by defects that cannot be detected and by invisibility.

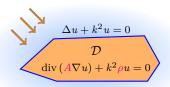
- For a given obstacle, is there an incident field that does not scatter?
- And when there is only a finite number of emitters/receivers?
- For a given obstacle and a finite number of emitters/receivers, how to build invisible obstacles?
- Introduction
- 2 The Interior Transmission Eigenvalue Problem (ITEP)
- 3 A discrete interior transmission eigenvalue problem
- Invisible inclusions for a finite number of incident/scattered directions
- 6 Conclusion

- Introduction
- 2 The Interior Transmission Eigenvalue Problem (ITEP)
- 3 A discrete interior transmission eigenvalue problem
- 4 Invisible inclusions for a finite number of incident/scattered directions
- 6 Conclusion

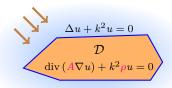
▶ We look for an incident field that does not scatter.



▶ We look for an incident field that does not scatter.



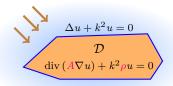
▶ We look for an incident field that does not scatter.



- ► This leads to study the interior transmission eigenvalue problem (Kirsch 86, Colton & Monk 88):
 - u is the total field in \mathcal{D}

$$\operatorname{div}(A\nabla u) + k^2 \rho u = 0 \quad \text{in } \mathcal{D}$$

▶ We look for an incident field that does not scatter.

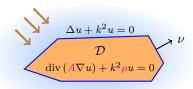


- ► This leads to study the interior transmission eigenvalue problem (Kirsch 86, Colton & Monk 88):
- rightharpoonup u is the total field in \mathcal{D}

w is the incident field in \mathcal{D}

$$\begin{vmatrix} \operatorname{div}(\mathbf{A}\nabla u) + k^2 \rho u &= 0 & \text{in } \mathcal{D} \\ \Delta w + k^2 w &= 0 & \text{in } \mathcal{D} \end{vmatrix}$$

▶ We look for an incident field that does not scatter.

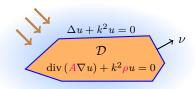


- ► This leads to study the interior transmission eigenvalue problem (Kirsch 86, Colton & Monk 88):
- rightharpoonup u is the total field in \mathcal{D}

w is the incident field in \mathcal{D}

$$\begin{vmatrix} \operatorname{div}(\mathbf{A}\nabla u) + k^2 \rho u &= 0 & \text{in } \mathcal{D} \\ \Delta w + k^2 w &= 0 & \text{in } \mathcal{D} \end{vmatrix}$$

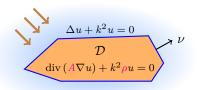
▶ We look for an incident field that does not scatter.



- ► This leads to study the interior transmission eigenvalue problem (Kirsch 86, Colton & Monk 88):
- rightharpoonup u is the total field in \mathcal{D}

ightharpoonup w is the incident field in \mathcal{D}

▶ We look for an incident field that does not scatter.



- ► This leads to study the interior transmission eigenvalue problem (Kirsch 86, Colton & Monk 88):
- rightharpoonup u is the total field in \mathcal{D}

ightharpoonup w is the incident field in \mathcal{D}

Trans. cond. on $\partial \mathcal{D}$

BCs?
$$\begin{bmatrix} [u] = 0 & \text{on } \partial \mathcal{D} \\ [\nu \cdot A \nabla u] = 0 & \text{on } \partial \mathcal{D} \end{bmatrix} + u = w + \mathbf{0} \text{ in } \mathbb{R}^2 \setminus \mathcal{D}.$$

► Generalized combination of incident plane waves:

$$w(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_i^n \cdot \boldsymbol{x}} \quad \Rightarrow \quad w(\boldsymbol{x}) = \underbrace{\int_{\mathbb{S}^1} g(\boldsymbol{\theta}_i) e^{ik\boldsymbol{\theta}_i \cdot \boldsymbol{x}} \, d\boldsymbol{\theta}_i}_{\text{Herglotz wave function}}, \qquad g \in L^2(\mathbb{S}^1).$$

► Generalized combination of incident plane waves:

$$w(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_i^n \cdot \boldsymbol{x}} \quad \Rightarrow \quad w(\boldsymbol{x}) = \underbrace{\int_{\mathbb{S}^1} g(\boldsymbol{\theta}_i) e^{ik\boldsymbol{\theta}_i \cdot \boldsymbol{x}} d\boldsymbol{\theta}_i}_{\text{Herglotz wave function}}, \quad g \in L^2(\mathbb{S}^1).$$

Since Herglotz wave functions are dense in $\{w \in H^1(\mathcal{D}) \mid \Delta w + k^2 w = 0\}$, we consider the problem

Find
$$(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D})$$
 such that
$$\begin{aligned} \operatorname{div}(A\nabla u) + k^2 \rho u &= 0 & \text{in } \mathcal{D} \\ \Delta w + k^2 w &= 0 & \text{in } \mathcal{D} \\ u - w &= 0 & \text{in } \partial \mathcal{D} \\ \nu \cdot A\nabla u - \nu \cdot \nabla w &= 0 & \text{in } \partial \mathcal{D}. \end{aligned}$$

► Generalized combination of incident plane waves:

$$w(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_i^n \cdot \boldsymbol{x}} \quad \Rightarrow \quad w(\boldsymbol{x}) = \underbrace{\int_{\mathbb{S}^1} g(\boldsymbol{\theta}_i) e^{ik\boldsymbol{\theta}_i \cdot \boldsymbol{x}} \, d\boldsymbol{\theta}_i}_{\text{Herglotz wave function}}, \quad g \in L^2(\mathbb{S}^1).$$

Since Herglotz wave functions are dense in $\{w \in H^1(\mathcal{D}) \mid \Delta w + k^2 w = 0\}$, we consider the problem

DEFINITION. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

► Generalized combination of incident plane waves:

$$w(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_i^n \cdot \boldsymbol{x}} \quad \Rightarrow \quad w(\boldsymbol{x}) = \underbrace{\int_{\mathbb{S}^1} g(\boldsymbol{\theta}_i) e^{ik\boldsymbol{\theta}_i \cdot \boldsymbol{x}} \, d\boldsymbol{\theta}_i}_{\text{Herglotz wave function}}, \quad g \in L^2(\mathbb{S}^1).$$

Since Herglotz wave functions are dense in $\{w \in H^1(\mathcal{D}) \mid \Delta w + k^2 w = 0\}$, we consider the problem

Find
$$(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D})$$
 such that $\operatorname{div}(A\nabla u) + k^2\rho u = 0 \text{ in } \mathcal{D}$
 $\Delta w + k^2 w = 0 \text{ in } \mathcal{D}$
 $u - w = 0 \text{ in } \partial \mathcal{D}$
 $v \cdot A\nabla u - v \cdot \nabla w = 0 \text{ in } \partial \mathcal{D}$.

DEFINITION. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.

▶ For transmission eigenvalues, there are generalized combination of incident planes waves which produce arbitrarily small scattered fields.

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} \ d\boldsymbol{x} \ = \ k^2 \ \int_{\mathcal{D}} (\rho u \overline{u'} - w \overline{w'}) \ d\boldsymbol{x},$$

with
$$X = \{(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D}) \mid u - w \in H^1_0(\mathcal{D})\}.$$

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} \; d\boldsymbol{x} \;\; = \;\; k^2 \;\; \int_{\mathcal{D}} (\rho u \overline{u'} - w \overline{w'}) \; d\boldsymbol{x},$$

with
$$X = \{(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D}) \mid u - w \in H^1_0(\mathcal{D})\}.$$

► This is a non standard spectral problem (complex eigenvalues may exist).

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} \cdot \nabla w \cdot \overline{\nabla w'} \, d\boldsymbol{x} = k^2 \int_{\mathcal{D}} (\rho u \overline{u'} \cdot w \overline{w'}) \, d\boldsymbol{x},$$
not coercive on X

with
$$X = \{(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D}) \mid u - w \in H^1_0(\mathcal{D})\}.$$

► This is a non standard spectral problem (complex eigenvalues may exist).

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} \cdot \nabla w \cdot \overline{\nabla w'} \, d\boldsymbol{x} = k^2 \int_{\mathcal{D}} (\rho u \overline{u'} \cdot w \overline{w'}) \, d\boldsymbol{x},$$
not coercive on X
not an inner product

with
$$X = \{(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D}) \mid u - w \in H^1_0(\mathcal{D})\}.$$

► This is a non standard spectral problem (complex eigenvalues may exist).

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} \cdot \nabla w \cdot \overline{\nabla w'} \, d\mathbf{x} = k^2 \int_{\mathcal{D}} (\rho u \overline{u'} \cdot w \overline{w'}) \, d\mathbf{x},$$
not coercive on X
not an inner product
$$\int_{\mathcal{D}} (\rho u \overline{u'} \cdot w \overline{w'}) \, d\mathbf{x},$$

$$\int_{\mathcal{D}} (\rho u \overline{u'} \cdot w \overline{w'}) \, d\mathbf{x},$$

with
$$X = \{(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D}) \mid u - w \in H^1_0(\mathcal{D})\}.$$

- ▶ This is a non standard spectral problem (complex eigenvalues may exist).
- ▶ One first goal is to prove that transmission eigenvalues form a discrete set (because we need to avoid these frequencies to implement reconstruction techniques like the Linear Sampling Method (Colton & Kirsch 96)).

▶ k is a transmission eigenvalue if and only if there exists $(u, w) \in X \setminus \{0\}$ such that, for all $(u', w') \in X$,

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} \cdot \nabla w \cdot \overline{\nabla w'} \, d\mathbf{x} = k^2 \int_{\mathcal{D}} (\rho u \overline{u'} \cdot w \overline{w'}) \, d\mathbf{x},$$
not coercive on X not an inner product

with
$$X = \{(u, w) \in H^1(\mathcal{D}) \times H^1(\mathcal{D}) \mid u - w \in H^1_0(\mathcal{D})\}.$$

- ▶ This is a non standard spectral problem (complex eigenvalues may exist).
- ▶ One first goal is to prove that transmission eigenvalues form a discrete set (because we need to avoid these frequencies to implement reconstruction techniques like the Linear Sampling Method (Colton & Kirsch 96)).
- \blacktriangleright Define on X × X the sesquilinear form

$$a_k((u,w),(u',w')) = \int_{\overline{\mathcal{D}}} A\nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} - k^2(\rho u \overline{u'} - w \overline{w'}) dx.$$

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[\quad (\mathscr{P}_V) \quad a_k((u,w),(u',w')) = \ell(u',w'), \quad \forall (u',w') \in \mathbf{X}]$$

$$\Leftrightarrow \quad [\quad (\mathscr{P}_V^{\mathsf{T}}) \quad a_k((u,w), \mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathbf{X}]$$

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[\quad (\mathscr{P}_V) \quad a_k((u, w), (u', w')) = \ell(u', w'), \quad \forall (u', w') \in \mathbf{X}]$$

$$\Leftrightarrow \quad [\quad (\mathscr{P}_V^{\mathtt{T}}) \quad a_k((u,w),\mathtt{T}(u',w')) = \ell(\mathtt{T}(u',w')), \quad \forall (u',w') \in \mathbf{X}]$$

In this case, Lax-Milgram \Rightarrow $(\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

[
$$(\mathscr{P}_V)$$
 $a_k((u, w), (u', w')) = \ell(u', w'), \forall (u', w') \in X$]

$$\Leftrightarrow \quad [\quad (\mathscr{P}_{V}^{\mathsf{T}}) \quad a_{k}((u,w),\mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathbf{X}]$$

In this case, Lax-Milgram \Rightarrow $(\mathscr{P}_V^{\mathbb{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define T(u, w) = (u, -w + ...).

- First, we consider the source term problem.
- Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[(\mathscr{P}_V) \quad a_k((u, w), (u', w')) = \ell(u', w'), \quad \forall (u', w') \in X]$$

$$\Leftrightarrow [(\mathscr{P}_V^{\mathsf{T}}) \quad a_k((u,w),\mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathsf{X}]$$

In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

- 1 Define T(u, w) = (u, -w + ...).

Find
$$(u, w) \in X$$
 such that:

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} \, d\boldsymbol{x} = k^2 \int_{\mathcal{D}} (\rho u \overline{u'} - w \overline{w'}) \, d\boldsymbol{x}, \quad \forall (u', w') \in X.$$

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[\quad (\mathscr{P}_V) \quad a_k((u,w),(u',w')) = \ell(u',w'), \quad \forall (u',w') \in \mathbf{X}]$$

$$\Leftrightarrow \quad [\quad (\mathscr{P}_V^{\mathtt{T}}) \quad a_k((u,w),\mathtt{T}(u',w')) = \ell(\mathtt{T}(u',w')), \quad \forall (u',w') \in \mathbf{X}]$$

In this case, Lax-Milgram \Rightarrow $(\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define T(u, w) = (u, -w + ...).

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[\quad (\mathscr{P}_V) \quad a_k((u, w), (u', w')) = \ell(u', w'), \quad \forall (u', w') \in \mathbf{X}]$$

$$\Leftrightarrow \quad [\quad (\mathscr{P}_V^{\mathsf{T}}) \quad a_k((u,w), \mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathsf{X}]$$

In this case, Lax-Milgram \Rightarrow $(\mathscr{P}_V^{\mathbb{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define T(u, w) = (u, -w + 2u).

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[\quad (\mathscr{P}_V) \quad a_k((u, w), (u', w')) = \ell(u', w'), \quad \forall (u', w') \in X]$$

$$\Leftrightarrow \quad [\quad (\mathscr{P}_{V}^{\mathsf{T}}) \quad a_{k}((u,w),\mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathsf{X}]$$

In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define T(u, w) = (u, -w + 2u).

On $\partial \mathcal{D}$, we have $-w + 2u = u \implies \mathsf{T}(u, w) \in \mathsf{X}$.

- First, we consider the source term problem.
- ▶ Let T be an isomorphism of X. For $\ell \in X'$, we have

$$[\quad (\mathscr{P}_V) \quad a_k((u,w),(u',w')) = \ell(u',w'), \quad \forall (u',w') \in \mathbf{X}]$$

$$\Leftrightarrow \quad [\quad (\mathscr{P}_V^{\mathsf{T}}) \quad a_k((u,w), \mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathsf{X}]$$

In this case, Lax-Milgram \Rightarrow $(\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define T(u, w) = (u, -w + 2u).

- First, we consider the source term problem.
- Let T be an isomorphism of X. For $\ell \in X'$, we have

[
$$(\mathscr{P}_V)$$
 $a_k((u, w), (u', w')) = \ell(u', w'), \forall (u', w') \in X$]

$$\Leftrightarrow \quad [\quad (\mathscr{P}_V^{\mathsf{T}}) \quad a_k((u,w), \mathsf{T}(u',w')) = \ell(\mathsf{T}(u',w')), \quad \forall (u',w') \in \mathsf{X}]$$

In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

- 1 Define T(u, w) = (u, -w + 2u).
- 2 $T \circ T = Id$ so T is an isomorphism of X.

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\boldsymbol{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\boldsymbol{x}.$$

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\mathbf{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\mathbf{x}.$$

Young's inequality $\Rightarrow a_k(\cdot, \mathbf{T} \cdot)$ is coercive when A > 1 and $\rho > 1$.

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\mathbf{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\mathbf{x}.$$

Young's inequality $\Rightarrow a_k(\cdot, T \cdot)$ is coercive when A > 1 and $\rho > 1$.

▶ Introduce the operator $\mathscr{A}_k : X \to X$ such that

$$(\mathscr{A}_k(u, w), (u', w'))_X = a_k((u, w), (u', w'))$$

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\mathbf{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\mathbf{x}.$$

Young's inequality \Rightarrow \mathscr{A}_k is an isomorphism when A > 1 and $\rho > 1$.

▶ Introduce the operator $\mathscr{A}_k : X \to X$ such that

$$(\mathscr{A}_k(u, w), (u', w'))_X = a_k((u, w), (u', w'))$$

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\mathbf{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\mathbf{x}.$$

Young's inequality \Rightarrow \mathscr{A}_k is an isomorphism when A > 1 and $\rho > 1$.

▶ Introduce the operator $\mathscr{A}_k : X \to X$ such that

$$(\mathscr{A}_k(u, w), (u', w'))_X = a_k((u, w), (u', w'))$$

▶ For $k \in \mathbb{C}$, $\mathscr{A}_k - \mathscr{A}_i : X \to X$ is compact and $k \mapsto \mathscr{A}_k$ is analytic. Using the analytic Fredholm theorem, we obtain the following result:

PROPOSITION. Suppose that A>1 and $\rho>1$. Then the set of transmission eigenvalues is discrete and countable.

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\mathbf{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\mathbf{x}.$$

Young's inequality \Rightarrow \mathscr{A}_k is an isomorphism when A > 1 and $\rho > 1$.

▶ Introduce the operator $\mathscr{A}_k : X \to X$ such that

$$(\mathscr{A}_k(u, w), (u', w'))_X = a_k((u, w), (u', w'))$$

▶ For $k \in \mathbb{C}$, $\mathscr{A}_k - \mathscr{A}_i : X \to X$ is compact and $k \mapsto \mathscr{A}_k$ is analytic. Using the analytic Fredholm theorem, we obtain the following result:

PROPOSITION. Suppose that A>1 and $\rho>1$. Then the set of transmission eigenvalues is discrete and countable.

▶ This approach also works only assuming that A-1 and n-1 have a constant sign in a neighbourhood of $\partial \mathcal{D}$.

3 For $k \in \mathbb{R}i \setminus \{0\}$, one finds

$$a_k((u, w), \mathbf{T}(u, w)) = \int_{\mathcal{D}} A|\nabla u|^2 + |\nabla w|^2 + |k|^2(\rho|u|^2 + |w|^2) d\mathbf{x},$$
$$-2\int_{\mathcal{D}} \nabla w \cdot \overline{\nabla u} + |k|^2 w \overline{u} d\mathbf{x}.$$

Young's inequality \Rightarrow \mathscr{A}_k is an isomorphism when A > 1 and $\rho > 1$.

Introduce the operator $\mathcal{A}_k: X \to X$ such that

$$(\mathscr{A}_k(u, w), (u', w'))_X = a_k((u, w), (u', w'))$$

For $k \in \mathbb{C}$, $\mathscr{A}_k - \mathscr{A}_i : X \to X$ is compact and $k \mapsto \mathscr{A}_k$ is analytic. Using

Find
$$(u, w) \in X$$
 such that:

$$\int_{\mathcal{D}} A \nabla u \cdot \overline{\nabla u'} - \nabla w \cdot \overline{\nabla w'} \, d\boldsymbol{x} = k^2 \int_{\mathcal{D}} (\rho u \overline{u'} - w \overline{w'}) \, d\boldsymbol{x}, \quad \forall (u', w') \in X.$$

When A=1, the principal symbol vanishes. It is necessary to modify the functional framework (also sometimes when A-1 changes sign on $\partial \mathcal{D}$).

Many other interesting questions

- ▶ Recently, other topics have been considered:
 - existence of real and complex transmission eigenvalues;
 - localization of transmission eigenvalues in the complex plane;
 - Weyl laws for the transmission eigenvalues;
 - ...

but many questions remain open (see the recent review F. Cakoni, H. Haddar, Transmission Eigenvalues in Inverse Scattering Theory, Inside Out II, 60, MSRI Publi., 527-578, 2012).

Many other interesting questions

- Recently, other topics have been considered:
 - existence of real and complex transmission eigenvalues:
 - localization of transmission eigenvalues in the complex plane;
 - Weyl laws for the transmission eigenvalues;

but many questions remain open (see the recent review F. Cakoni, H. Haddar, Transmission Eigenvalues in Inverse Scattering Theory, Inside Out II, 60, MSRI Publi., 527-578, 2012).

By the way, why such a detailed study

Certain reconstruction methods need to avoid transmission eigenvalues.

Many other interesting questions

- ▶ Recently, other topics have been considered:
 - existence of real and complex transmission eigenvalues;
 - localization of transmission eigenvalues in the complex plane;
 - Weyl laws for the transmission eigenvalues;
 - ...

but many questions remain open (see the recent review F. Cakoni, H. Haddar, Transmission Eigenvalues in Inverse Scattering Theory, Inside Out II, 60, MSRI Publi., 527-578, 2012).

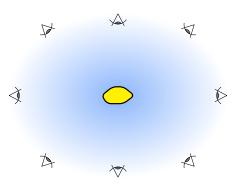
By the way, why such a detailed study

- Certain reconstruction methods need to avoid transmission eigenvalues.
- ▶ But transmission eigenvalues can also be determined from measurements and they carry information about the inclusion properties.
- \Rightarrow They can be used to find qualitative properties of the object.

- Introduction
- 2 The Interior Transmission Eigenvalue Problem (ITEP)
- 3 A discrete interior transmission eigenvalue problem
- 4 Invisible inclusions for a finite number of incident/scattered directions
- 6 Conclusion

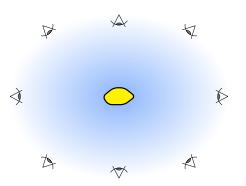
Problematic

- ▶ In the previous section, it was assumed that one can produce incident plane waves and measure the resulted scattered fields in all directions of \mathbb{S}^1 .
- ▶ In practice, one has always a finite number of emitters/receivers.



Problematic

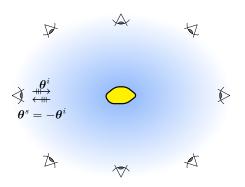
- ▶ In the previous section, it was assumed that one can produce incident plane waves and measure the resulted scattered fields in all directions of \mathbb{S}^1 .
- ▶ In practice, one has always a finite number of emitters/receivers.



We assume that we can send plane waves in the directions $\theta_1, \ldots, \theta_N$ of \mathbb{S}^1 and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.

Problematic

- ▶ In the previous section, it was assumed that one can produce incident plane waves and measure the resulted scattered fields in all directions of \mathbb{S}^1 .
- ▶ In practice, one has always a finite number of emitters/receivers.



We assume that we can send plane waves in the directions $\theta_1, \ldots, \theta_N$ of \mathbb{S}^1 and measure the resulted scattered fields in the directions $-\theta_1, \ldots, -\theta_N$.

 \Rightarrow Multistatic backscattering measurements: emitters & receivers coincide.

▶ For a given incident direction θ_i , the scattered field $u_s(\cdot, \theta_i)$ admits the asymptotic expansion

$$u_{\mathrm{s}}(\boldsymbol{x}, \boldsymbol{\theta}_{\mathrm{i}}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{s}}, \boldsymbol{\theta}_{\mathrm{i}}) + O(1/r) \right)$$

as $r = |\mathbf{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{s} \in \mathbb{S}^{1}$.

▶ For a given incident direction θ_i , the scattered field $u_s(\cdot, \theta_i)$ admits the asymptotic expansion

$$u_{\mathrm{s}}(\boldsymbol{x}, \boldsymbol{\theta}_{\mathrm{i}}) = \frac{e^{ikr}}{\sqrt{r}} \left(\underline{u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{s}}, \boldsymbol{\theta}_{\mathrm{i}})} + O(1/r) \right)$$

as $r = |\boldsymbol{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{\mathrm{s}} \in \mathbb{S}^1$.

▶ For a given incident direction θ_i , the scattered field $u_s(\cdot, \theta_i)$ admits the asymptotic expansion

$$u_{\rm s}(\boldsymbol{x},\boldsymbol{\theta}_{\rm i}) = \frac{e^{ikr}}{\sqrt{r}} \left(\boxed{u_{\rm s}^{\infty}(\boldsymbol{\theta}_{\rm s},\boldsymbol{\theta}_{\rm i})} + O(1/r) \right)$$

as $r = |\mathbf{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{s} \in \mathbb{S}^{1}$.

Definition: The map $u_s^{\infty}(\cdot,\cdot)$: $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{C}$ is called the far field pattern.

► Remark: in other words, the scattered field of an incident plane wave behaves in each direction like a cylindrical wave at infinity.

▶ For a given incident direction θ_i , the scattered field $u_s(\cdot, \theta_i)$ admits the asymptotic expansion

$$u_{\mathrm{s}}(\boldsymbol{x}, \boldsymbol{\theta}_{\mathrm{i}}) = \frac{e^{ikr}}{\sqrt{r}} \left(\underline{u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{s}}, \boldsymbol{\theta}_{\mathrm{i}})} + O(1/r) \right)$$

as $r = |\boldsymbol{x}| \to +\infty$, uniformly in $\boldsymbol{\theta}_{\mathrm{s}} \in \mathbb{S}^1$.

Definition: The map $u_s^{\infty}(\cdot,\cdot)$: $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{C}$ is called the far field pattern.

▶ Remark: in other words, the scattered field of an incident plane wave behaves in each direction like a cylindrical wave at infinity.

The far field pattern is the quantity one can measure at infinity (the other terms are too small).

▶ In practice, the goal of imaging techniques is to find features of the inclusion from the knowledge of $u_s^{\infty}(\cdot,\cdot)$ on a finite subset of $\mathbb{S}^1 \times \mathbb{S}^1$.

▶ Let $\theta_1, ..., \theta_N$ be given directions of \mathbb{S}^1 . We introduce the relative scattering matrix $\mathcal{S}(k) \in \mathbb{C}^{N \times N}$ defined via

$$\mathscr{S}_{mn}(k) = u_{\rm s}^{\infty}(-\boldsymbol{\theta}_m, \boldsymbol{\theta}_n)$$

▶ Let $\theta_1, ..., \theta_N$ be given directions of \mathbb{S}^1 . We introduce the relative scattering matrix $\mathcal{S}(k) \in \mathbb{C}^{N \times N}$ defined via

$$\mathscr{S}_{mn}(k) = u_{\rm s}^{\infty}(-\boldsymbol{\theta}_m, \boldsymbol{\theta}_n)$$

▶ Note that $\mathcal{S}(k) = 0$ when there is no obstacle (\Rightarrow "relative").

▶ Let $\theta_1, ..., \theta_N$ be given directions of \mathbb{S}^1 . We introduce the relative scattering matrix $\mathscr{S}(k) \in \mathbb{C}^{N \times N}$ defined via

$$\mathscr{S}_{mn}(k) = u_{\rm s}^{\infty}(-\boldsymbol{\theta}_m, \boldsymbol{\theta}_n)$$

Note that $\mathcal{S}(k) = 0$ when there is no obstacle (\Rightarrow "relative").

DEFINITION. Values of k > 0 for which $\mathscr{S}(k)$ has a non trivial kernel are called transmission eigenvalues.

▶ If k is a trans. eigen., there is some $(\alpha_1, \ldots, \alpha_N) \in \mathbb{C}^N \setminus \{0\}$ such that

$$\sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}}$$

does not scatter at infinity in the directions $-\theta_1, \ldots, -\theta_N$.

▶ Let $\theta_1, ..., \theta_N$ be given directions of \mathbb{S}^1 . We introduce the relative scattering matrix $\mathcal{S}(k) \in \mathbb{C}^{N \times N}$ defined via

$$\mathscr{S}_{mn}(k) = u_{\mathrm{s}}^{\infty}(-\boldsymbol{\theta}_{m}, \boldsymbol{\theta}_{n})$$

Note that $\mathcal{S}(k) = 0$ when there is no obstacle (\Rightarrow "relative").

DEFINITION. Values of k>0 for which $\mathscr{S}(k)$ has a non trivial kernel are called transmission eigenvalues.

▶ If k is a trans. eigen., there is some $(\alpha_1, \ldots, \alpha_N) \in \mathbb{C}^N \setminus \{0\}$ such that

$$\sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}}$$

does not scatter at infinity in the directions $-\boldsymbol{\theta}_1, \dots, -\boldsymbol{\theta}_N$.

- ▶ Unlike in the continuous setting:
 - these incident field can be constructed exactly (no density argument);
 - the scattered field does not vanish identically at infinity.

First, we want to prove that transmission eigenvalues form a discrete set.

▶ First, we want to prove that transmission eigenvalues form a discrete set.

IDEA OF THE APPROACH:

1 We show that $k \mapsto \mathcal{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.

▶ First, we want to prove that transmission eigenvalues form a discrete set.

IDEA OF THE APPROACH:

- **1** We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.
- **2** For $k \in \mathbb{R}^{i} \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c \, \overline{\alpha}^{\top} \mathscr{S}(k) \, \alpha = \int_{\mathbb{R}^2} A |\nabla u_{\rm s}|^2 + |k|^2 \rho \, |u_{\rm s}|^2 + \int_{\mathcal{D}} (1 - A) |\nabla u_{\rm i}|^2 + |k|^2 (1 - \rho) |u_{\rm i}|^2.$$

where
$$u_i = \sum_{i=1}^{N} \alpha_n e^{ik\theta_n \cdot x}$$
, $\alpha = (\alpha_1, \dots, \alpha_N)^{\top}$ and $c \neq 0$ is a constant.

ightharpoonup First, we want to prove that transmission eigenvalues form a discrete set.

IDEA OF THE APPROACH:

- **1** We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.
- **2** For $k \in \mathbb{R}^{i} \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c \, \overline{\alpha}^{\top} \mathscr{S}(k) \, \alpha = \int_{\mathbb{R}^2} A |\nabla u_{\rm s}|^2 + |k|^2 \rho \, |u_{\rm s}|^2 + \int_{\mathcal{D}} (1 - A) |\nabla u_{\rm i}|^2 + |k|^2 (1 - \rho) |u_{\rm i}|^2.$$

where
$$u_i = \sum_{n=1}^{N} \alpha_n e^{ik\boldsymbol{\theta}_n \cdot \boldsymbol{x}}$$
, $\alpha = (\alpha_1, \dots, \alpha_N)^{\top}$ and $c \neq 0$ is a constant.

3 For $k \in \mathbb{R}i \setminus \{0\}$, A < 1 and $\rho < 1$, we deduce that $\mathcal{S}(k)$ is invertible.

▶ First, we want to prove that transmission eigenvalues form a discrete set.

IDEA OF THE APPROACH:

- **1** We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.
- **2** For $k \in \mathbb{R}i \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c \,\overline{\alpha}^{\top} \mathscr{S}(k) \,\alpha = \int_{\mathbb{R}^2} A|\nabla u_{\rm s}|^2 + |k|^2 \rho \,|u_{\rm s}|^2 + \int_{\mathcal{D}} (1-A)|\nabla u_{\rm i}|^2 + |k|^2 (1-\rho)|u_{\rm i}|^2.$$

where
$$u_i = \sum_{n=1}^{N} \alpha_n e^{ik\theta_n \cdot x}$$
, $\alpha = (\alpha_1, \dots, \alpha_N)^{\top}$ and $c \neq 0$ is a constant.

- **3** For $k \in \mathbb{R}i \setminus \{0\}$, A < 1 and $\rho < 1$, we deduce that $\mathcal{S}(k)$ is invertible.
- 4 Using the principle of isolated zeros, we obtain the following result:

PROPOSITION. Suppose that A < 1 and $\rho < 1$. Then the set of transmission eigenvalues is discrete and countable.

▶ First, we want to prove that transmission eigenvalues form a discrete set.

IDEA OF THE APPROACH:

- **1** We show that $k \mapsto \mathscr{S}(k)$ can be meromorphically extended to $\mathbb{C} \setminus \{0\}$.
- **2** For $k \in \mathbb{R}^{i} \setminus \{0\}$, using integration by parts, we prove the energy identity

$$c\,\overline{\alpha}^{\top}\!\mathscr{S}(k)\,\alpha = -\int_{\mathbb{R}^2} |\nabla u_{\mathrm{s}}|^2 + |k|^2 |u_{\mathrm{s}}|^2 - \int_{\mathcal{D}} (A-1)|\nabla u|^2 + |k|^2 (\rho-1)|u|^2.$$

where
$$u_i = \sum_{i=1}^{N} \alpha_n e^{ik\theta_n \cdot x}$$
, $\alpha = (\alpha_1, \dots, \alpha_N)^{\top}$ and $c \neq 0$ is a constant.

- **3** For $k \in \mathbb{R}i \setminus \{0\}$, A > 1 and $\rho > 1$, we deduce that $\mathcal{S}(k)$ is invertible.
- 4 Using the principle of isolated zeros, we obtain the following result:

PROPOSITION. Suppose that A > 1 and $\rho > 1$. Then the set of transmission eigenvalues is discrete and countable.

Remarks and open questions

► Remarks:

- Unlike in the continuous setting, this problem does not reduce to a problem set on the (compact) support of the inclusion.
- Unlike in the continuous setting, the cases A=1 and $A\neq 1$ do not require different functional framework.

Remarks and open questions

► Remarks:

- Unlike in the continuous setting, this problem does not reduce to a problem set on the (compact) support of the inclusion.
- Unlike in the continuous setting, the cases A=1 and $A\neq 1$ do not require different functional framework.

► OPEN QUESTIONS:

- How to proceed to prove discreteness of transmission eigenvalues for situations other than multistatic backscattering measurements?
- Can we relax assumptions on A and ρ ?
- Can we prove existence of transmission eigenvalues in this setting?
- Do transmission eigenvalues in the discrete setting (if they exist) converge to the transmission eigenvalues of the continuous framework when the number of directions tends to $+\infty$?

- ...

- 1 Introduction
- 2 The Interior Transmission Eigenvalue Problem (ITEP)
- 3 A discrete interior transmission eigenvalue problem
- Invisible inclusions for a finite number of incident/scattered directions
- 6 Conclusion

▶ We change the point of view. We assume that k > 0 and the directions of observation are given.

We explain how to construct non trivial inclusions such that $\mathcal{S}(k) = 0$. These inclusions cannot be detected from far field measurements.

▶ We change the point of view. We assume that k > 0 and the directions of observation are given.

We explain how to construct non trivial inclusions such that $\mathcal{S}(k) = 0$. These inclusions cannot be detected from far field measurements.

Take A = 1, and to simplify the presentation, assume that there is only one incident direction θ_i . Let $\theta_1, \ldots, \theta_N$ be given scattering directions.

▶ We change the point of view. We assume that k > 0 and the directions of observation are given.

We explain how to construct non trivial inclusions such that $\mathcal{S}(k) = 0$. These inclusions cannot be detected from far field measurements.

Take A = 1, and to simplify the presentation, assume that there is only one incident direction θ_i . Let $\theta_1, \ldots, \theta_N$ be given scattering directions.

FORMULATION OF THE PROBLEM:

Find a real valued function $\rho \not\equiv 1$, with $\rho - 1$ supported in \mathcal{D} , such that the solution of the problem

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$
 verifies $u_{\rm s}^{\infty}(\theta_1) = \dots = u_{\rm s}^{\infty}(\theta_N) = 0.$

▶ We change the point of view. We assume that k > 0 and the directions of observation are given.

We explain how to construct non trivial inclusions such that $\mathcal{S}(k) = 0$. These inclusions cannot be detected from far field measurements.

► Take A = 1, and to simplify the presentation, assume that there is only one incident direction θ_i . Let $\theta_1, \ldots, \theta_N$ be given scattering directions.

Origin of the method:

- The idea we will use has been introduced in Nazarov 11 to construct waveguides for which there are embedded eigenvalues in the continuous spectrum.
- It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
- 14 for an application to a water-waves problem).

General scheme: step 1

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu$$
, with μ compactly supported.

• We denote u^{ε} , $u_{\rm s}^{\varepsilon}$ the functions satisfying

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}^{\varepsilon}}{\partial r} - iku_{\rm s}^{\varepsilon} \right) = 0$$

General scheme: step 1

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu \quad ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\mathrm{s}}^{\varepsilon} + e^{ik\theta_{\mathrm{i}} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\mathrm{s}}^{\varepsilon}}{\partial r} - iku_{\mathrm{s}}^{\varepsilon} \right) = 0$$

• As
$$r \to +\infty$$
, we have $u_s^{\varepsilon}(\boldsymbol{x}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_s^{\varepsilon \infty}(\boldsymbol{\theta}_s) + O(1/r) \right)$

General scheme: step 1

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu \quad ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^2 \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}^{\varepsilon}}{\partial r} - iku_{\rm s}^{\varepsilon} \right) = 0$$

• As $r \to +\infty$, we have $u_{\rm s}^{\varepsilon}(\boldsymbol{x}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) + O(1/r) \right)$

with
$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) = c k^2 \int_{\mathcal{D}} (\rho^{\varepsilon} - 1) (u_{\rm i} + u_{\rm s}^{\varepsilon}) e^{-ik\boldsymbol{\theta}_{\rm s} \cdot \boldsymbol{x}} d\boldsymbol{x}$$

$$\left(c = \frac{e^{i\pi/4}}{\sqrt{2-k}}\right).$$

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\mathrm{s}}^{\varepsilon} + e^{ik\theta_{\mathrm{i}} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\mathrm{s}}^{\varepsilon}}{\partial r} - iku_{\mathrm{s}}^{\varepsilon} \right) = 0$$

• As
$$r \to +\infty$$
, we have $u_{\rm s}^{\varepsilon}(\boldsymbol{x}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) + O(1/r) \right)$

with
$$u_{s}^{\varepsilon \infty}(\boldsymbol{\theta}_{s}) = c k^{2} \int_{\mathcal{D}} (\rho^{\varepsilon} - 1) (u_{i} + u_{s}^{\varepsilon}) e^{-ik\boldsymbol{\theta}_{s} \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu \quad ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\mathrm{s}}^{\varepsilon} + e^{ik\theta_{\mathrm{i}} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\mathrm{s}}^{\varepsilon}}{\partial r} - iku_{\mathrm{s}}^{\varepsilon} \right) = 0$$

• As
$$r \to +\infty$$
, we have $u_{\rm s}^{\varepsilon}(\boldsymbol{x}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) + O(1/r) \right)$

with
$$u_{s}^{\varepsilon \infty}(\boldsymbol{\theta}_{s}) = \varepsilon c k^{2} \int_{\mathcal{D}} \mu \left(u_{i} + u_{s}^{\varepsilon}\right) e^{-ik\boldsymbol{\theta}_{s} \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu \quad ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\mathrm{s}}^{\varepsilon} + e^{ik\theta_{\mathrm{i}} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\mathrm{s}}^{\varepsilon}}{\partial r} - iku_{\mathrm{s}}^{\varepsilon} \right) = 0$$

• As
$$r \to +\infty$$
, we have $u_{\rm s}^{\varepsilon}(\boldsymbol{x}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) + O(1/r) \right)$

with
$$u_{s}^{\varepsilon \infty}(\boldsymbol{\theta}_{s}) = \varepsilon c k^{2} \int_{\mathcal{D}} \mu \left(u_{i} + u_{s}^{\varepsilon}\right) e^{-ik\boldsymbol{\theta}_{s} \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

• We can prove that $u_s^{\varepsilon} = O(\varepsilon)$.

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu \quad ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\mathrm{s}}^{\varepsilon} + e^{ik\theta_{\mathrm{i}} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\mathrm{s}}^{\varepsilon}}{\partial r} - iku_{\mathrm{s}}^{\varepsilon} \right) = 0$$

• As
$$r \to +\infty$$
, we have $u_{\rm s}^{\varepsilon}(\boldsymbol{x}) = \frac{e^{ikr}}{\sqrt{r}} \left(u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) + O(1/r) \right)$

with
$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) = \varepsilon \, c \, k^2 \int_{\mathcal{D}} \mu \, u_{\rm i} \, e^{-ik\boldsymbol{\theta}_{\rm s} \cdot \boldsymbol{x}} \, d\boldsymbol{x} + O(\varepsilon^2).$$

• We can prove that $u_s^{\varepsilon} = O(\varepsilon)$.

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\boldsymbol{\theta}_{\rm i}\cdot\boldsymbol{x}}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2}\rho^{\varepsilon}u^{\varepsilon} \text{ in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}^{\varepsilon}}{\partial r} - iku_{\rm s}^{\varepsilon} \right) = 0$$

With this choice, we obtain the expansion, for small ε

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) = 0 + \varepsilon \, c \, k^2 \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm i} - \boldsymbol{\theta}_{\rm s}) \cdot \boldsymbol{x}} \, d\boldsymbol{x} \, + O(\varepsilon^2).$$

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu \quad ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , u_{s}^{ε} the functions satisfying

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}^{\varepsilon}}{\partial r} - iku_{\rm s}^{\varepsilon} \right) = 0$$

With this choice, we obtain the expansion, for small ε

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) = 0 + \varepsilon \, c \, k^2 \left| \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm i} - \boldsymbol{\theta}_{\rm s}) \cdot \boldsymbol{x}} \, d\boldsymbol{x} \right| + O(\varepsilon^2).$$

It is easy to find functions μ such that there holds $u_s^{\varepsilon} \sim (\theta_n) = O(\varepsilon^2)$

for
$$n = 1, ..., N$$
.

When there is no inclusion, there is no scattered field. Let us look for ρ as a perturbation of the reference coefficient:

$$\rho^{\varepsilon} = 1 + \varepsilon \mu ,$$

 $\rho^{\varepsilon} = 1 + \varepsilon \mu$, with μ compactly supported.

We denote u^{ε} , $u_{\rm s}^{\varepsilon}$ the functions satisfying

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u^{\varepsilon} = k^{2} \rho^{\varepsilon} u^{\varepsilon} \quad \text{in } \mathbb{R}^{2},$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}^{\varepsilon}}{\partial r} - iku_{\rm s}^{\varepsilon} \right) = 0$$

With this choice, we obtain the expansion, for small ε

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_{\rm s}) = 0 + \varepsilon \, c \, k^2 \left| \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm i} - \boldsymbol{\theta}_{\rm s}) \cdot \boldsymbol{x}} \, d\boldsymbol{x} \right| + O(\varepsilon^2).$$

It is easy to find functions μ such that there holds $u_s^{\varepsilon \infty}(\boldsymbol{\theta}_n) = O(\varepsilon^2)$

for
$$n = 1, ..., N$$
. But we want $u_s^{\varepsilon \infty}(\theta_n) = 0$...

In the expression $\rho^{\varepsilon} = 1 + \varepsilon \mu$, we redecompose μ as

$$\mu = \mu_0 + \sum_{m=1}^{N} \tau_{1,m} \,\mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m} \,\mu_{2,m}$$

where $\tau_{1,m}$, $\tau_{2,m}$ are real parameters that we will tune $\mu_0 \not\equiv 0, \, \mu_{1,m}, \, \mu_{2,m}$ are given real valued functions supp. on $\overline{\mathcal{D}}$ s.t.

In the expression $\rho^{\varepsilon} = 1 + \varepsilon \mu$, we redecompose μ as

$$\mu = \mu_0 + \sum_{m=1}^{N} \tau_{1,m} \,\mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m} \,\mu_{2,m}$$

where $\tau_{1,m}$, $\tau_{2,m}$ are real parameters that we will tune $\mu_0 \not\equiv 0$, $\mu_{1,m}$, $\mu_{2,m}$ are given real valued functions supp. on $\overline{\mathcal{D}}$ s.t.

$$\begin{split} &\int_{\mathcal{D}} \mu_0 \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0, \qquad \int_{\mathcal{D}} \mu_0 \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0 \\ &\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}, \qquad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0 \\ &\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) \, d\boldsymbol{x} = \delta^{mn}. \end{split}$$

In the expression $\rho^{\varepsilon} = 1 + \varepsilon \mu$, we redecompose μ as

$$\mu = \mu_0 + \sum_{m=1}^{N} \tau_{1,m} \,\mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m} \,\mu_{2,m}$$

e
$$||\tau_{1,m}, \tau_{2,m}|$$
 are real parameters that we will tune

where
$$\tau_{1,m}$$
, $\tau_{2,m}$ are real parameters that we will tune $\mu_0 \not\equiv 0, \, \mu_{1,m}, \, \mu_{2,m}$ are given real valued functions supp. on $\overline{\mathcal{D}}$ s.t.

$$\begin{split} &\int_{\mathcal{D}} \mu_0 \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0, \qquad \int_{\mathcal{D}} \mu_0 \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0 \\ &\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= \delta^{mn}, \quad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0 \\ &\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= \delta^{mn}. \end{split}$$

We introduce 2N real parameters because we want to cancel N complex coefficients.

In the expression $\rho^{\varepsilon} = 1 + \varepsilon \mu$, we redecompose μ as

$$\mu = \mu_0 + \sum_{m=1}^{N} \tau_{1,m} \,\mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m} \,\mu_{2,m}$$

e
$$||\tau_{1,m}, \tau_{2,m}|$$
 are real parameters that we will tune

where $\tau_{1,m}$, $\tau_{2,m}$ are real parameters that we will tune $\mu_0 \not\equiv 0, \, \mu_{1,m}, \, \mu_{2,m}$ are given real valued functions supp. on $\overline{\mathcal{D}}$ s.t.

$$\begin{split} &\int_{\mathcal{D}} \mu_0 \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0, \qquad \int_{\mathcal{D}} \mu_0 \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0 \\ &\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= \delta^{mn}, \qquad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0 \\ &\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) \, d\boldsymbol{x} &= \delta^{mn}. \end{split}$$

Why this choice ?

... because then we find

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = \varepsilon c k^2 (\tau_{1,n} + i\tau_{2,n}) + \varepsilon^2 c k^2 (F_{1,n}^{\varepsilon}(\vec{\tau}) + iF_{2,n}^{\varepsilon}(\vec{\tau})),$$

where $F_{1,n}^{\varepsilon}$, $F_{2,n}^{\varepsilon}$ are real-valued functions depending (non linearly) on ε , $\vec{\tau} := (\tau_{1,1}, \dots, \tau_{1,N}, \tau_{2,1}, \dots, \tau_{2,N})^{\top}$.

... because then we find

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = \left[\varepsilon \, c \, k^2 \left(\tau_{1,n} + i\tau_{2,n}\right)\right] + \varepsilon^2 \, c \, k^2 \left(F_{1,n}^{\varepsilon}(\vec{\tau}) + iF_{2,n}^{\varepsilon}(\vec{\tau})\right),\,$$

where $F_{1,n}^{\varepsilon}$, $F_{2,n}^{\varepsilon}$ are real-valued functions depending (non linearly) on ε , $\vec{\tau} := (\tau_{1,1}, \dots, \tau_{1,N}, \tau_{2,1}, \dots, \tau_{2,N})^{\top}$.

Use the term at order ε whose dependence with respect to ρ is simple to control and cancel the whole expansion.

... because then we find

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = \boxed{\varepsilon \, c \, k^2 \, (\tau_{1,n} + i \tau_{2,n})} + \varepsilon^2 \, c \, k^2 \, (F_{1,n}^{\varepsilon}(\vec{\tau}) + i F_{2,n}^{\varepsilon}(\vec{\tau})),$$

where $F_{1,n}^{\varepsilon}$, $F_{2,n}^{\varepsilon}$ are real-valued functions depending (non linearly) on ε , $\vec{\tau} := (\tau_{1,1}, \dots, \tau_{1,N}, \tau_{2,1}, \dots, \tau_{2,N})^{\top}$.

Use the term at order ε whose dependence with respect to ρ is simple to control and cancel the whole expansion.

Now, we can impose $u_s^{\varepsilon \infty}(\theta_n) = 0$ solving the fixed point problem:

Find
$$\vec{\tau} \in \mathbb{R}^{2N}$$
 such that $\vec{\tau} = F^{\varepsilon}(\vec{\tau})$, (2)

with
$$F^{\varepsilon}(\vec{\tau}) := -\varepsilon \left(F_{1,1}^{\varepsilon}(\vec{\tau}), \dots, F_{1,N}^{\varepsilon}(\vec{\tau}), F_{2,1}^{\varepsilon}(\vec{\tau}), \dots, F_{2,N}^{\varepsilon}(\vec{\tau}) \right)^{\top}$$
.

• ... because then we find

$$u_{\rm s}^{\varepsilon\,\infty}(\boldsymbol{\theta}_n) = \boxed{\varepsilon\,c\,k^2\,(\tau_{1,n}+i\tau_{2,n})} + \varepsilon^2\,c\,k^2\,(F_{1,n}^\varepsilon(\vec{\tau})+iF_{2,n}^\varepsilon(\vec{\tau})),$$

where $F_{1,n}^{\varepsilon}$, $F_{2,n}^{\varepsilon}$ are real-valued functions depending (non linearly) on ε , $\vec{\tau} := (\tau_{1,1}, \dots, \tau_{1,N}, \tau_{2,1}, \dots, \tau_{2,N})^{\top}$.

Use the term at order ε whose dependence with respect to ρ is simple to control and cancel the whole expansion.

Now, we can impose $u_s^{\varepsilon \infty}(\theta_n) = 0$ solving the fixed point problem:

Find
$$\vec{\tau} \in \mathbb{R}^{2N}$$
 such that $\vec{\tau} = F^{\varepsilon}(\vec{\tau})$, (2)

with $F^{\varepsilon}(\vec{\tau}) := -\varepsilon \left(F_{1,1}^{\varepsilon}(\vec{\tau}), \dots, F_{1,N}^{\varepsilon}(\vec{\tau}), F_{2,1}^{\varepsilon}(\vec{\tau}), \dots, F_{2,N}^{\varepsilon}(\vec{\tau}) \right)^{\top}$.

• We can prove that the map $F^{\varepsilon}: \mathbb{R}^{2N} \to \mathbb{R}^{2N}$ verifies the estimate $|F^{\varepsilon}(\vec{\tau}) - F^{\varepsilon}(\vec{\tau}')| \leq C \varepsilon |\vec{\tau} - \vec{\tau}'|$. Therefore F^{ε} is a contraction for ε small enough and (2) has a unique solution $\vec{\tau}^{\text{sol}}$.

... because then we find

PROPOSITION: For ε small enough, define $\rho^{\text{sol}} = 1 + \varepsilon \mu^{\text{sol}}$ with

$$\mu^{\text{sol}} = \mu_0 + \sum_{m=1}^{N} \tau_{1,m}^{\text{sol}} \, \mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m}^{\text{sol}} \, \mu_{2,m}.$$

Then the solution of the scattering problem

Find
$$u^{\varepsilon} = u_{\rm s}^{\varepsilon} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho^{\rm sol} u \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

verifies $u_s^{\infty}(\boldsymbol{\theta}_1) = \cdots = u_s^{\infty}(\boldsymbol{\theta}_N) = 0.$

with $r_{(1)} = -\varepsilon (r_{1,1}(r), \dots, r_{1,N}(r), r_{2,1}(r), \dots, r_{2,N}(r))$

We can prove that the map $F^{\varepsilon}: \mathbb{R}^{2N} \to \mathbb{R}^{2N}$ verifies the estimate $|F^{\varepsilon}(\vec{\tau}) - F^{\varepsilon}(\vec{\tau}')| \leq C \varepsilon |\vec{\tau} - \vec{\tau}'|$. Therefore F^{ε} is a contraction for ε small enough and (2) has a unique solution $\vec{\tau}^{\text{sol}}$.

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$.

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. We want

$$\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = \delta^{mn}, \quad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0$$

$$\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0, \quad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = \delta^{mn}.$$

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$.

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\boldsymbol{\theta}_{\mathbf{i}} \neq \boldsymbol{\theta}_{n}$. Set $e_{n}(\boldsymbol{x}) = \cos(k(\boldsymbol{\theta}_{\mathbf{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x})$ and $e_{N+n}(\boldsymbol{x}) = \sin(k(\boldsymbol{\theta}_{\mathbf{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x})$.

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\boldsymbol{\theta}_{\mathbf{i}} \neq \boldsymbol{\theta}_{n}$. Set $e_{n}(\boldsymbol{x}) = \cos(k(\boldsymbol{\theta}_{\mathbf{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x})$ and $e_{N+n}(\boldsymbol{x}) = \sin(k(\boldsymbol{\theta}_{\mathbf{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x})$.

On \mathcal{D} , $\{e_n\}_{n=1}^{2N}$ is linearly independent

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\boldsymbol{\theta}_i \neq \boldsymbol{\theta}_n$. Set $e_n(\boldsymbol{x}) = \cos(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})$ and $e_{N+n}(\boldsymbol{x}) = \sin(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})$.

On \mathcal{D} , $\{e_n\}_{n=1}^{2N}$ is linearly independent \Rightarrow the matrix $\mathbb{B} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbb{B}_{mn} = \int_{\mathcal{D}} e_m(\boldsymbol{x}) e_n(\boldsymbol{x}) d\boldsymbol{x}$$

is invertible. We denote $\mathbb{D} = \mathbb{B}^{-1}$.

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\theta_i \neq \theta_n$. Set $e_n(\mathbf{x}) = \cos(k(\mathbf{\theta}_i - \mathbf{\theta}_n) \cdot \mathbf{x})$ and $e_{N+n}(\mathbf{x}) = \sin(k(\mathbf{\theta}_i - \mathbf{\theta}_n) \cdot \mathbf{x}).$

On \mathcal{D} , $\{e_n\}_{n=1}^{2N}$ is linearly independent \Rightarrow the matrix $\mathbb{B} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbb{B}_{mn} = \int_{\mathcal{D}} e_m(\boldsymbol{x}) e_n(\boldsymbol{x}) d\boldsymbol{x}$$

is invertible. We denote $\mathbb{D} = \mathbb{B}^{-1}$. Finally, we take

$$\mu_{1,m} = \sum_{n=1}^{2N} \mathbb{D}_{mn} e_n$$

$$\mu_{1,m} = \sum_{n=1}^{2N} \mathbb{D}_{mn} e_n$$
 and $\mu_{2,m} = \sum_{n=1}^{2N} \mathbb{D}_{(N+m)n} e_n$

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\theta_i \neq \theta_n$. Set $e_n(\mathbf{x}) = \cos(k(\mathbf{\theta}_i - \mathbf{\theta}_n) \cdot \mathbf{x})$ and $e_{N+n}(\mathbf{x}) = \sin(k(\mathbf{\theta}_i - \mathbf{\theta}_n) \cdot \mathbf{x}).$

On \mathcal{D} , $\{e_n\}_{n=1}^{2N}$ is linearly independent \Rightarrow the matrix $\mathbb{B} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbb{B}_{mn} = \int_{\mathcal{D}} e_m(oldsymbol{x}) e_n(oldsymbol{x}) doldsymbol{x}$$

is invertible. We denote $\mathbb{D} = \mathbb{B}^{-1}$. Finally, we take

$$\mu_{1,m} = \sum_{n=1}^{2N} \mathbb{D}_{mn} e_n$$
 and $\mu_{2,m} = \sum_{n=1}^{2N} \mathbb{D}_{(N+m)n} e_n$

$$\mu_{2,m} = \sum_{i=1}^{2N} \mathbb{D}_{(N+m)n} e_n$$

For μ_0 , we want

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\theta_i \neq \theta_n$. Set $e_n(\mathbf{x}) = \cos(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \mathbf{x})$ and $e_{N+n}(\mathbf{x}) = \sin(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \mathbf{x}).$

On \mathcal{D} , $\{e_n\}_{n=1}^{2N}$ is linearly independent \Rightarrow the matrix $\mathbb{B} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbb{B}_{mn} = \int_{\mathcal{D}} e_m(oldsymbol{x}) e_n(oldsymbol{x}) doldsymbol{x}$$

is invertible. We denote $\mathbb{D} = \mathbb{B}^{-1}$. Finally, we take

$$\mu_{1,m} = \sum_{n=1}^{2N} \mathbb{D}_{mn} \ e_n$$

$$\left| \mu_{1,m} = \sum_{n=1}^{2N} \mathbb{D}_{mn} e_n \right| \quad \text{and} \quad \left| \mu_{2,m} = \sum_{n=1}^{2N} \mathbb{D}_{(N+m)n} e_n \right|$$

For μ_0 , we want

$$\int_{\mathcal{D}} \mu_0 \cos(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0, \quad \int_{\mathcal{D}} \mu_0 \sin(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0.$$

1 First, we build the $\mu_{1,m}$, $\mu_{2,m}$. For $n=1,\ldots,N$, assume $\boldsymbol{\theta}_i \neq \boldsymbol{\theta}_n$. Set $e_n(\boldsymbol{x}) = \cos(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})$ and $e_{N+n}(\boldsymbol{x}) = \sin(k(\boldsymbol{\theta}_i - \boldsymbol{\theta}_n) \cdot \boldsymbol{x})$.

On \mathcal{D} , $\{e_n\}_{n=1}^{2N}$ is linearly independent \Rightarrow the matrix $\mathbb{B} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbb{B}_{mn} = \int_{\mathcal{D}} e_m(\boldsymbol{x}) e_n(\boldsymbol{x}) d\boldsymbol{x}$$

is invertible. We denote $\mathbb{D} = \mathbb{B}^{-1}$. Finally, we take

$$\mu_{1,m} = \sum_{n=1}^{2N} \mathbb{D}_{mn} e_n$$
 and $\mu_{2,m} = \sum_{n=1}^{2N} \mathbb{D}_{(N+m)n} e_n$

2 For μ_0 , we take

$$\mu_0 = \mu_0^\# - \sum_{m=1}^N \left(\int_{\mathcal{D}} \mu_{1,m} \, \mu_0^\# \, d\mathbf{x} \right) \, \mu_{1,m} - \sum_{m=1}^N \left(\int_{\mathcal{D}} \mu_{2,m} \, \mu_0^\# \, d\mathbf{x} \right) \, \mu_{2,m}$$

where $\mu_0^{\#} \notin \text{span}\{\mu_{1,1}, \dots, \mu_{1,N}, \mu_{2,1}, \dots, \mu_{2,N}\}$.

$$\mu^{\text{sol}} = \mu_0 + \sum_{m=1}^{N} \tau_{1,m}^{\text{sol}} \mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m}^{\text{sol}} \mu_{2,m}$$

► There holds $\mu^{\text{sol}} \not\equiv 0$ (we have indeed constructed a non trivial invisible inclusion).

$$\mu^{\,\mathrm{sol}} = \underline{\mu_0} + \sum_{m=1}^N \tau_{1,m}^{\,\mathrm{sol}} \, \underline{\mu_{1,m}} + \sum_{m=1}^N \tau_{2,m}^{\,\mathrm{sol}} \, \underline{\mu_{2,m}}$$

► There holds $\mu^{\text{sol}} \not\equiv 0$ (we have indeed constructed a non trivial invisible inclusion).

$$\int_{\mathcal{D}} \mu_0 \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0, \qquad \int_{\mathcal{D}} \mu_0 \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0$$

$$\int_{\mathcal{D}} \mu_{1,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = \delta^{mn}, \qquad \int_{\mathcal{D}} \mu_{1,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0$$

$$\int_{\mathcal{D}} \mu_{2,m} \cos(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = 0, \qquad \int_{\mathcal{D}} \mu_{2,m} \sin(k(\boldsymbol{\theta}_{\mathrm{i}} - \boldsymbol{\theta}_{n}) \cdot \boldsymbol{x}) d\boldsymbol{x} = \delta^{mn}.$$

$$\mu^{\text{sol}} = \mu_0 + \sum_{m=1}^{N} \tau_{1,m}^{\text{sol}} \mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m}^{\text{sol}} \mu_{2,m}$$

► There holds $\mu^{\text{sol}} \not\equiv 0$ (we have indeed constructed a non trivial invisible inclusion).

$$\mu^{\text{sol}} = \mu_0 + \sum_{m=1}^{N} \tau_{1,m}^{\text{sol}} \, \mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m}^{\text{sol}} \, \mu_{2,m}$$

- ► There holds $\mu^{\text{sol}} \not\equiv 0$ (we have indeed constructed a non trivial invisible inclusion).
- ▶ The method is interesting for several reasons:
 - The inclusion can be built and does not involve singular materials (\neq cloaking techniques). Moreover, μ^{sol} is just a small perturbation of μ_0 :

$$\mu^{\text{sol}} = \mu_0 + O(\varepsilon).$$

- The method provides a numerical algorithm.
- It is a proof of existence of invisible inclusions. This may appear not so surprising since measurements belong to a space of finite dimension and $\rho \in L^{\infty}(\mathcal{D})$.

$$\mu^{\text{sol}} = \mu_0 + \sum_{m=1}^{N} \tau_{1,m}^{\text{sol}} \mu_{1,m} + \sum_{m=1}^{N} \tau_{2,m}^{\text{sol}} \mu_{2,m}$$

- ► There holds $\mu^{\text{sol}} \not\equiv 0$ (we have indeed constructed a non trivial invisible inclusion).
- ▶ The method is interesting for several reasons:
 - The inclusion can be built and does not involve singular materials (\neq cloaking techniques). Moreover, $\mu^{\rm sol}$ is just a small perturbation of μ_0 :

$$\mu^{\text{sol}} = \mu_0 + O(\varepsilon).$$

- The method provides a numerical algorithm.
- It is a proof of existence of invisible inclusions. This may appear not so surprising since measurements belong to a space of finite dimension and $\rho \in L^{\infty}(\mathcal{D})$. The case $\theta_i = \theta_s$ shows that nothing is obvious...

▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N.

$$u_{\rm s}^{\varepsilon \infty}(\boldsymbol{\theta}_n) = 0 + \varepsilon c k^2 \left| \int_{\mathcal{D}} \mu \, e^{ik(\boldsymbol{\theta}_{\rm i} - \boldsymbol{\theta}_n) \cdot \boldsymbol{x}} \, d\boldsymbol{x} \right| + O(\varepsilon^2).$$

In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N.

What if
$$\boldsymbol{\theta}_{i} = \boldsymbol{\theta}_{n}$$
?

▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N.

What if $\theta_i = \theta_n$?

- ▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N. What if $\theta_i = \theta_n$?
- ► We know that the solution of

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

verifies
$$u_{\rm s}^{\infty}(\boldsymbol{\theta}_{\rm s}) = c k^2 \int_{\mathcal{D}} (\rho - 1) (u_{\rm i} + u_{\rm s}) e^{-ik\boldsymbol{\theta}_{\rm s} \cdot \boldsymbol{x}} d\boldsymbol{x}.$$

- ▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N. What if $\theta_i = \theta_n$?
- ► We know that the solution of

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

verifies
$$u_{\rm s}^{\infty}(\boldsymbol{\theta}_{\rm i}) = c k^2 \int_{\mathcal{D}} (\rho - 1) (u_{\rm i} + u_{\rm s}) \, \overline{u_{\rm i}} \, d\boldsymbol{x}.$$

The case $\theta_i = \theta_s$

▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N. What if $\theta_i = \theta_n$?

▶ We know that the solution of

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

$$u_{\rm s}^{\infty}(\boldsymbol{\theta}_{\rm i}) = c k^2 \int_{\Omega} (\rho - 1) (u_{\rm i} + u_{\rm s}) \, \overline{u_{\rm i}} \, d\boldsymbol{x}.$$

► This allows to prove the formula

$$\Im m \left(c^{-1} u_{\mathbf{s}}^{\infty}(\boldsymbol{\theta}_{\mathbf{i}}) \right) = k \int_{\mathbb{S}^{1}} |u_{\mathbf{s}}^{\infty}(\boldsymbol{\theta})|^{2} d\boldsymbol{\theta}.$$

The case $\theta_i = \theta_s$

- ▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N. What if $\theta_i = \theta_n$?
- ▶ We know that the solution of

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

$$u_{\rm s}^{\infty}(\boldsymbol{\theta}_{\rm i}) = c k^2 \int_{\mathcal{D}} (\rho - 1) (u_{\rm i} + u_{\rm s}) \, \overline{u_{\rm i}} \, d\boldsymbol{x}.$$

► This allows to prove the formula

$$\Im m \left(c^{-1} \, u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta}_{\mathrm{i}}) \right) = k \int_{\mathbb{S}^{1}} |u_{\mathrm{s}}^{\infty}(\boldsymbol{\theta})|^{2} \, d\boldsymbol{\theta}.$$

Imposing invisibility in the direction θ_i requires to impose invisibility in all directions $\theta \in \mathbb{S}^1$!

The case $\theta_{\rm i} = \theta_{\rm s}$

In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N.

What if $\theta_i = \theta_n$?

▶ We know that the solution of

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$

$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

verifies

$$u_{\rm s}^{\infty}(\boldsymbol{\theta}_{\rm i}) = c k^2 \int_{\mathcal{D}} (\rho - 1) (u_{\rm i} + u_{\rm s}) \, \overline{u_{\rm i}} \, d\boldsymbol{x}.$$

► This allows to prove the formula

$$\Im m \left(c^{-1} u_{\mathbf{s}}^{\infty}(\boldsymbol{\theta}_{\mathbf{i}}) \right) = k \int_{\Omega} |u_{\mathbf{s}}^{\infty}(\boldsymbol{\theta})|^2 d\boldsymbol{\theta}.$$

Imposing invisibility in the direction θ_i requires to impose invisibility in all directions $\theta \in \mathbb{S}^1$!

By Rellich's lemma, this implies $u_s \equiv 0$ in $\mathbb{R}^2 \setminus \overline{\mathcal{D}} \Rightarrow$ we are back to the continuous ITEP (with a strong assumption on the incident field).

The case $\theta_i = \theta_s$

- ▶ In the previous approach, we needed to assume $\theta_i \neq \theta_n$, n = 1, ..., N. What if $\theta_i = \theta_n$?
- ▶ We know that the solution of

Find
$$u = u_{\rm s} + e^{ik\theta_{\rm i} \cdot x}$$
 such that
$$-\Delta u = k^2 \rho u \quad \text{in } \mathbb{R}^2,$$
$$\lim_{r \to +\infty} \sqrt{r} \left(\frac{\partial u_{\rm s}}{\partial r} - iku_{\rm s} \right) = 0$$

- No solution if \mathcal{D} has corners and under certain assumptions on ρ .
- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014
- Corners and edges always scatter, J. Elschner, G. Hu, 2015
- And if \mathcal{D} is smooth? \Rightarrow The problem seems open.

Imposing invisibility in the direction θ_i requires to impose invisibility in all directions $\theta \in \mathbb{S}^1$!

By Rellich's lemma, this implies $u_s \equiv 0$ in $\mathbb{R}^2 \setminus \overline{\mathcal{D}} \Rightarrow$ we are back to the continuous ITEP (with a strong assumption on the incident field).

Data and algorithm

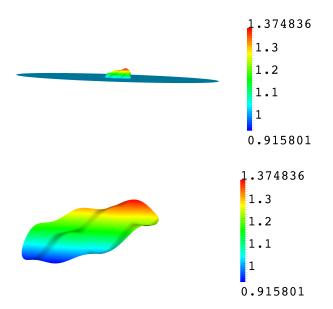
▶ We can solve the fixed point problem using an iterative procedure: we set $\vec{\tau}^0 = (0, \dots, 0)^{\top}$ then define

$$\vec{\tau}^{\,n+1} = F^{\varepsilon}(\vec{\tau}^{\,n}).$$

- ▶ At each step, we solve a scattering problem. We use a P2 finite element method set on the ball B_8 . On ∂B_8 , a truncated Dirichlet-to-Neumann map with 13 harmonics serves as a transparent boundary condition.
- ▶ For the numerical experiments, we take $\mathcal{D} = B_1$, M = 3 (3 directions of observation) and

$$\begin{vmatrix} \boldsymbol{\theta}_{i} &= (\cos(\psi_{i}), \sin(\psi_{i})), & \psi_{i} &= 0^{\circ} \\ \boldsymbol{\theta}_{s}^{1} &= (\cos(\psi_{s}^{1}), \sin(\psi_{s}^{1})), & \psi_{s}^{1} &= 90^{\circ} \\ \boldsymbol{\theta}_{s}^{2} &= (\cos(\psi_{s}^{2}), \sin(\psi_{s}^{2})), & \psi_{s}^{2} &= 180^{\circ} \\ \boldsymbol{\theta}_{s}^{1} &= (\cos(\psi_{s}^{3}), \sin(\psi_{s}^{3})), & \psi_{s}^{3} &= 225^{\circ} \end{aligned}$$

Results: coefficient ρ at the end of the process



Results: scattered field

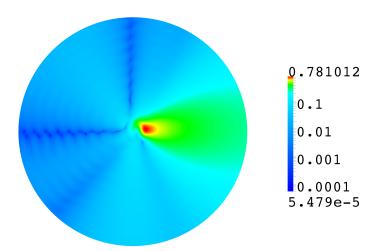


Figure: $|u_s|$ at the end of the fixed point procedure in logarithmic scale. As desired, we see it is very small far from \mathcal{D} in the directions corresponding to the angles 90°, 180° and 225°. The domain is equal to B₈.

Results: far field pattern

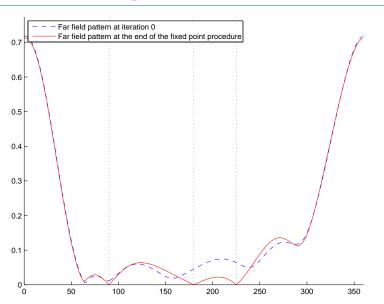
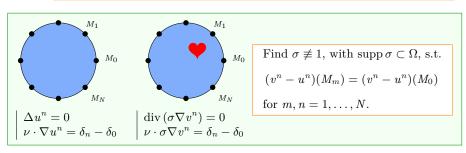


Figure: The dotted lines show the directions where we want $u_{\rm s}^{\infty}$ to vanish.

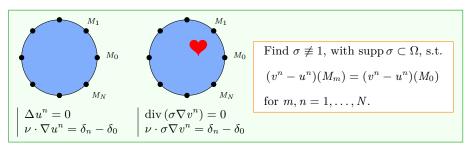
▶ In Chesnel, Hyvönen & Staboulis 14, we adapted the approach to build invisible conductivities in Electrical Impedance Tomography.

▶ In Chesnel, Hyvönen & Staboulis 14, we adapted the approach to build invisible conductivities in Electrical Impedance Tomography.



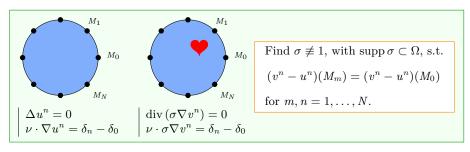
▶ In Chesnel, Hyvönen & Staboulis 14, we adapted the approach to build invisible conductivities in Electrical Impedance Tomography.

Goal of EIT: find perturbations of the reference conductivity from boundary measurements of current and potential.



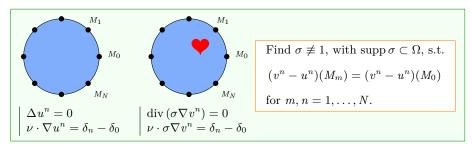
▶ To implement the method, we need to prove that on the support of the perturbation, the family $\{\nabla u^m \cdot \nabla u^n\}_{1 \leq m \leq n \leq N}$ is linearly independent.

▶ In Chesnel, Hyvönen & Staboulis 14, we adapted the approach to build invisible conductivities in Electrical Impedance Tomography.



- ▶ To implement the method, we need to prove that on the support of the perturbation, the family $\{\nabla u^m \cdot \nabla u^n\}_{1 \le m \le n \le N}$ is linearly independent.
 - Ok in 2D: explicit expression in the disk + conformal map.

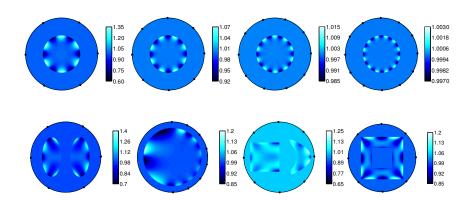
▶ In Chesnel, Hyvönen & Staboulis 14, we adapted the approach to build invisible conductivities in Electrical Impedance Tomography.



- ▶ To implement the method, we need to prove that on the support of the perturbation, the family $\{\nabla u^m \cdot \nabla u^n\}_{1 \leq m \leq n \leq N}$ is linearly independent.
 - Ok in 2D: explicit expression in the disk + conformal map.
 - Open problem in 3D.

Numerical results

Examples of conductivities which provide the same measurements as the reference conductivity $\sigma = 1$.



➤ The dots corresponds to the positions of the electrodes.

- 1 Introduction
- 2 The Interior Transmission Eigenvalue Problem (ITEP)
- 3 A discrete interior transmission eigenvalue problem
- Invisible inclusions for a finite number of incident/scattered directions
- **6** Conclusion

Conclusion

Interior transmission eigenvalue problem

For a given obstacle, is there an incident field that does not scatter?

- ♠ Continuous setting: non classical spectral problem.
 ⇒ Abundant literature but still many open questions.
- ♠ In practice, finite number of emitters/receivers.
 - \Rightarrow Many new questions in this context.

Conclusion

Interior transmission eigenvalue problem

For a given obstacle, is there an incident field that does not scatter?

- ♠ Continuous setting: non classical spectral problem.
 ⇒ Abundant literature but still many open questions.
- ♠ In practice, finite number of emitters/receivers.
 - \Rightarrow Many new questions in this context.

Invisibility

For a given frequency, how to build an invisible obstacle?

- \spadesuit Continuous setting: impossible! The knowledge of the far field operator on $\mathbb{S}^1 \times \mathbb{S}^1$ uniquely determine the parameter of the inclusion (Sylvester & Uhlmann 87, Bukhgeim 08).
- ♠ Finite number of emitters/receivers: we presented a method.
 ⇒ An important issue: can we reiterate the process to construct larger defects in the reference medium? Work in progress...

Thank you for your attention.

- E. Blåsten, L. Päivärinta, J. Sylvester, *Corners always scatter*, Commun. Math. Phys., 331(2):725-753, 2014.
- A.-S. Bonnet-Ben Dhia, L. Chesnel, S.A. Nazarov, Transmission eigenvalues and far field invisibility for a finite number of incident/scattering directions, arXiv preprint arXiv:1410.8382v1, 2014.
- A.-S. Bonnet-Ben Dhia, S.A. Nazarov, Obstacles in acoustic waveguides becoming "invisible" at given frequencies, Acoust. Phys., 59(6):633-639, 2013.
- A.-S. Bonnet-Ben Dhia, L. Chesnel, H. Haddar, On the use of T-coercivity to study the interior transmission eigenvalue problem, C. R. Acad. Sci. Paris, Ser. I, 349:647–651, 2011.
- F. Cakoni, H. Haddar, Transmission eigenvalues in inverse scattering theory, Inside Out II, 60, MSRI Publi., 527–578, 2012.
- L. Chesnel, N. Hyvönen, S. Staboulis, Construction of invisible conductivity perturbations for the point electrode model in electrical impedance tomography, arXiv preprint arXiv:1412.6768v1, 2014.
- J. Elschner, G. Hu, Corners and edges always scatter, Inverse Problems, 31(1):015003, 2015.
 - L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29(10):104001, 2013.