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Introduction: general setting
I Scattering by a negative material in electromagnetism in time-harmonic
regime (at a given frequency):

Negative material
ε< 0

and/or µ< 0

Positive material
ε> 0

and µ> 0

Do such negative materials occur in practice?

I For metals at optical frequencies, ε < 0 and µ > 0.
I Recently, artificial metamaterials have been realized which can be
modelled (at some frequency of interest) by ε < 0 and µ < 0.

Zoom on a metamaterial: practical realizations of metamaterials are
achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)
Mathematical justification of the homogenized model (Bouchitté,
Bourel, Felbacq 09).
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Introduction: in this talk
I In this talk, we investigate a Dirichlet spectral problem for a small
inclusion of negative material in a bounded domain.
I Let Ω, ω be smooth domains of R3 such that O ∈ ω, ω ⊂ Ω. For
δ ∈ (0; 1], we consider the problem

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω, with, δ

Ωδ1

Ωδ2

• H1
0(Ω) := {u ∈ H1(Ω) | u = 0 on ∂Ω}

• σδ = σ1 > 0 in Ωδ1 := Ω \ δ ω
σ2 < 0 in Ωδ2 := δ ω.

This problem is not classical because σδ changes sign.

I We define the operator Aδ : D(Aδ)→ L2(Ω) such that
D(Aδ) = {u ∈ H1

0(Ω) |div(σδ∇u) ∈ L2(Ω)}
Aδu = −div(σδ∇u).
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Introduction: main question of the talk

I Using boundary integral equations (see Costabel and Stephan 85,
Dauge and Texier 97) or the T-coercivity approach (see Bonnet-Ben Dhia
et al. 99,10,12,13), we can prove the :

Proposition. Assume that σ2/σ1 6= −1. For δ > 0, the operator Aδ is
selfadjoint and has compact resolvent. Its spectrum S(Aδ) consists in two
sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λδ−n ≤ · · · ≤ λδ−1 < 0 ≤ λδ1 ≤ λδ2 ≤ · · · ≤ λδn . . . →
n→+∞

+∞.

I For all δ ∈ (0; 1], Aδ has negative spectrum. At the limit δ = 0, the
inclusion of negative material vanishes and σ0 is strictly positive.

What happens to the negative spectrum when δ tends to zero?
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Outline of the talk

1 Limit operators

We introduce the two natural limit operators which appear when δ → 0.

2 Results

We state the main results concerning the asymptotic behaviour of the
eigenvalues when δ → 0.

3 Numerical experiments

We illustrate the theoretical results with numerical experiments.
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1 Limit operators

2 Results

3 Numerical experiments
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Far field operator
I As δ → 0, the small inclusion of negative material disappears.

I We introduce the far field operator A0 such that

D(A0) = {v ∈ H1
0(Ω) |∆v ∈ L2(Ω)}

A0v = −σ1∆v.

Proposition. There holds S(A0) = {µn}n≥1 with 0 < µ1 < µ2 ≤ · · · ≤
µn . . . →n→+∞

+∞.
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Near field operator
I Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

I Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}

B∞w = −div (σ∞∇w).

Proposition. Assume that σ2/σ1 6= −1. The continuous spectrum of B∞
is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →n→+∞
−∞.
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Spectrum for a small inclusion: results
Assume that σ2/σ1 6= −1 and that B∞ is injective. For n ∈ N∗, we denote
λδ±n, µδn, µδ−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C , δ0 > 0 depending on n, ε but independent of δ, such that

|λδn − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C , γ, δ0 > 0, depending on n but independent of δ, such that

|λδ−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ−n be an
eigenfunction corresponding to the negative eigenvalue λδ−n. There exist
constants C , γ, δ0 > 0, depending on n but independent of δ, such that∫

Ω
(|uδ−n|2 + |∇uδ−n|2)eγx/δdx ≤ C ‖uδ−n‖Ω, ∀δ ∈ (0; δ0].

10 / 14



Spectrum for a small inclusion: results
Assume that σ2/σ1 6= −1 and that B∞ is injective. For n ∈ N∗, we denote
λδ±n, µδn, µδ−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C , δ0 > 0 depending on n, ε but independent of δ, such that

|λδn − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C , δ0 > 0 depending on n, ε but independent of δ, such that

|λδn − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Idea of the proof:
1 We prove the a priori estimate ‖uδ‖H1

0(Ω) ≤ c ‖Aδuδ‖Ω for δ small
enough (♠ hard part of the proof: weighted Sobolev spaces+overlapping
cut-off functions +Nazarov’s technique).
2 If (µn, vn) is an eigenpair of A0, we construct u such that

‖Aδu − µnu‖Ω ≤ c δβ‖u‖Ω, for some β > 0.

3 If (λδn, uδn) is an eigenpair of Aδ, we construct v such that

‖A0v − λδnv‖Ω ≤ c δβ‖v‖Ω, for some β > 0.

4 We conclude with a classical lemma on quasi eigenvalues.
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Why is it a δ−2?

• If (λδ−n, uδ−n) is an eigenpair of Aδ, there holds∫
Ω
σδ∇xuδ · ∇xv dx = λδ

∫
Ω

uδv dx, ∀v ∈ H1
0(Ω).

• x = δξ ⇒ ∇x = δ−1∇ξ. Denoting U δ(ξ) = uδ(δξ), we deduce∫
δ−1Ω

σ∞∇ξU δ · ∇ξV dξ = δ2λδ
∫
δ−1Ω

U δV dξ, ∀V ∈ H1
0(δ−1Ω).

Why the convergence is exponential?

• If (µ−n, v−n) is an eigenpair of B∞, v−n is exponentially decaying at ∞.
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∼
δ→0

0

λδ1 λδ2λδ−1λδ−2

0

µ1 µ2δ−2µ−1δ−2µ−2

S(A0)δ−2S(B∞) ∩ (−∞; 0)
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Numerical experiments for the small inclusion
I Using FreeFem++, we approximate numerically the spectrum of Aδ
using a usual P1 Finite Element Method. We solve the problem

Find (λδh, uδh) ∈ C× (Vh \ {0}) s.t.:∫
Ω
σδh∇uδh · ∇vh = λδh

∫
Ω

uδh vh, ∀vh ∈ Vh,

where Vh approximates H1
0(Ω) as h → 0 (h is the mesh size).

I We consider the following 2D geometry:

∂Ω

Ωδ
+ Ωδ

−

1

δ/2

δ

We display the spectrum as δ → 0 (h is more or less fixed).
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I The positive part of S(Aδ) converges to S(A0) when δ → 0.
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Linear regression for the 1st negative eigenvalue: a = −2.0056
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Localization effect

Eigenfunction associated to the
first negative eigenvalue

Eigenfunction associated to the
first positive eigenvalue

δ=0.5

δ=0.05

δ=0.5

δ=0.05

I The eigenfunctions corresponding to the negative eigenvalues are
localized around the small inclusion. Here, σ2/σ1 = −2.5. 13 / 14
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