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Introduction: setting of the problem

Time-harmonic problem in electromagnetism (at a given frequency)
set in a heterogeneous bounded domain:

Negative metamaterial
=

Structure with negative permittivity
ε and permeability µ

Combination
Dielectric + Metamaterial

⇒ interesting applications
Example: the �superlens�

Unusual transmission problem because the sign of the coe�cients ε
and µ changes.
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Introduction: modelization of the problem

Di�culty of the scalar problem concentrated in the study of the problem:

(P)
Find u ∈ H1

0 (Ω) such that:

−div(σ∇u) = f in Ω.

H1
0 (Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

(P)⇔ (PV )
Find u ∈ H1

0 (Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
0 (Ω).

with a(u, v) =

∫
Ω

σ∇u · ∇v and l(v) = 〈f, v〉.

I To simplify the notations, σ1 and σ2 constant resp. in Ω1 and in Ω2.

Definition. Problem (P) well-posed if for all f ∈ H−1(Ω), it has one and
only one solution with continuous dependence.
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Outline of the talk: two steps

1) A presentation of the T-coercivity method to derive a criterion on σ and on the
geometry of the interface to ensure that problem (P) is well-posed.

2) An use of this T-coercivity method to study an a priori di�erent problem and
emphasizing the generality of this approach.

1 Mathematical di�culty

2 The T-coercivity method for the dielectric/metamaterial
transmission problem

3 The T-coercivity method for the Interior Transmission Eigenvalue
Problem
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Mathematical di�culty

Classical case σ > 0 everywhere :

a(u, u) =

∫
Ω
σ |∇u|2 ≥ min(σ) ‖u‖2H1

0 (Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case σ changes sign :

a(u, u) =

∫
Ω
σ |∇u|2 ≥ C ‖u‖2H1

0 (Ω)
loss of coercivity

I For a symmetric domain (w.r.t. Σ) with σ2 = −σ1, we can build a
kernel of in�nite dimension.
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV )
Find u ∈ H1

0 (Ω) such that:
a(u, v) = l(v), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)
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Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|σ||∇u|2 − 2

∫
Ω2

σ2∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when σ1 > ‖R1‖2 |σ2| .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when |σ2| > ‖R2‖2 σ1 .

5 Conclusion:

Theorem. If the contrast κσ = σ2/σ1 /∈ [−‖R2‖2;−1/‖R1‖2] (critical
interval) then div (σ∇·) is an isomorphism from H1

0 (Ω) to H−1(Ω).

9 / 15



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|σ||∇u|2 − 2

∫
Ω2

σ2∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when σ1 > ‖R1‖2 |σ2| .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when |σ2| > ‖R2‖2 σ1 .

5 Conclusion:

Theorem. If the contrast κσ = σ2/σ1 /∈ [−‖R2‖2;−1/‖R1‖2] (critical
interval) then div (σ∇·) is an isomorphism from H1

0 (Ω) to H−1(Ω).

9 / 15



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|σ||∇u|2 − 2

∫
Ω2

σ2∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when σ1 > ‖R1‖2 |σ2| .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when |σ2| > ‖R2‖2 σ1 .

5 Conclusion:

Theorem. If the contrast κσ = σ2/σ1 /∈ [−‖R2‖2;−1/‖R1‖2] (critical
interval) then div (σ∇·) is an isomorphism from H1

0 (Ω) to H−1(Ω).

9 / 15



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|σ||∇u|2 − 2

∫
Ω2

σ2∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when σ1 > ‖R1‖2 |σ2| .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when |σ2| > ‖R2‖2 σ1 .

5 Conclusion:

Theorem. If the contrast κσ = σ2/σ1 /∈ [−‖R2‖2;−1/‖R1‖2] (critical
interval) then div (σ∇·) is an isomorphism from H1

0 (Ω) to H−1(Ω).

9 / 15



Choice of R1,R2?

I Symmetric domain:

symmetry w.r.t. Σ
R1 = SΣ and R2 = SΣ

(P) well-posed ⇔ κσ 6= −1

I Right angle:

I Other particular geometries:

...

I General geometries: partition of unity and local inversion using

particular cases.
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Presentation of the ITEP

I Scattering by an inhomogeneous (A and n) media: we look for an
incident wave that does not scatter.

I This leads to study the Interior Transmission Eigenvalue Problem.

Find (u,w) ∈ H1(Ω)×H1(Ω) s. t.:
div (A∇u) + k2nu = 0 in Ω
∆w + k2w = 0 in Ω
u− w = 0 on ∂Ω
ν ·A∇u− ν · ∇w = 0 on ∂Ω.

Definition. Values of k ∈ C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

I The goal is to prove that the set of transmission eigenvalues is discrete

and countable.

12 / 15



Presentation of the ITEP

I Scattering by an inhomogeneous (A and n) media: we look for an
incident wave that does not scatter.

I This leads to study the Interior Transmission Eigenvalue Problem.

Find (u,w) ∈ H1(Ω)×H1(Ω) s. t.:
div (A∇u) + k2nu = 0 in Ω
∆w + k2w = 0 in Ω
u− w = 0 on ∂Ω
ν ·A∇u− ν · ∇w = 0 on ∂Ω.

Definition. Values of k ∈ C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

I The goal is to prove that the set of transmission eigenvalues is discrete

and countable.

12 / 15



Presentation of the ITEP

I Scattering by an inhomogeneous (A and n) media: we look for an
incident wave that does not scatter.

I This leads to study the Interior Transmission Eigenvalue Problem.

Find (u,w) ∈ H1(Ω)×H1(Ω) s. t.:
div (A∇u) + k2nu = 0 in Ω
∆w + k2w = 0 in Ω
u− w = 0 on ∂Ω
ν ·A∇u− ν · ∇w = 0 on ∂Ω.

Definition. Values of k ∈ C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

I The goal is to prove that the set of transmission eigenvalues is discrete

and countable.

12 / 15



Presentation of the ITEP

I Scattering by an inhomogeneous (A and n) media: we look for an
incident wave that does not scatter.

I This leads to study the Interior Transmission Eigenvalue Problem.

Find (u,w) ∈ H1(Ω)×H1(Ω) s. t.:
div (A∇u) + k2nu = 0 in Ω
∆w + k2w = 0 in Ω
u− w = 0 on ∂Ω
ν ·A∇u− ν · ∇w = 0 on ∂Ω.

Definition. Values of k ∈ C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

I The goal is to prove that the set of transmission eigenvalues is discrete

and countable.
12 / 15



Study of the ITEP

I Equivalent formulation:

Find (u,w) ∈ X s. t., ∀(u′, w′) ∈ X,

a((u,w), (u′, w′)) =

∫
Ω

A∇u · ∇u′ - ∇w · ∇w′ − k2(nuu′ - ww′) dx = 0,

with X = {(u,w) ∈ H1(Ω)×H1(Ω) |u− w ∈ H1
0 (Ω)}.

I De�ne the isomorphism T(u,w) = (u− 2w,−w).

I For k ∈ Ri\{0}, A > 1 and n > 1, one �nds

<e a((u,w), T(u,w)) ≥ C (‖u‖2H1(Ω) + ‖w‖2H1(Ω)), ∀(u,w) ∈ X.

Using analytic Fredholm theory, one deduces the

Proposition. Suppose that A > 1 and n > 1. Then the set of transmission
eigenvalues is discrete and countable.

I This result can extended to situations where A− Id and n− 1 change

sign in Ω (joint work with H. Haddar).
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Generalizations

" T-coercivity approach can be used for non-constant σ (L∞) and other
problems (Maxwell's equations, bilaplacian form of the ITEP ...).

" One can justify convergence of standard �nite elements method for
simple meshes.

Ongoing work

♠ What happens in the critical interval ?
For κσ 6= −1, strong singularities appear at the corners of the interface
⇒ (P) is well-posed in a new functional framework (joint work with X.
Claeys).

♠ More generally, can we reconsider the homogenization process to take
into account interfacial phenomena?
⇒METAMATH project (ANR) directed by S. Fliss.
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Thank you for your attention.
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