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Introduction: setting of the problem

Time-harmonic problem in electromagnetism (at a given frequency)
set in a heterogeneous bounded domain:
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e<0
w<0

Negative metamaterial Combination

Dielectric + Metamaterial
= interesting applications
Example: the “superlens”

Structure with negative permittivity
¢ and permeability 1

Unusual transmission problem because the sign of the coefficients e
and p changes.
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Introduction: modelization of the problem

Difficulty of the scalar problem concentrated in the study of the problem:

Find u € H}(Q) such that:
—div(cVu) = f in Q.
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Introduction: modelization of the problem

Difficulty of the scalar problem concentrated in the study of the problem:

(2) Find u € H}(Q) such that:
—div(cVu) = f in Q.
o H}(Q) ={veL?(Q)| Vv e L*(Q); v|sq = 0}

@ f is the source term in H~1(()

Find u € H}(Q) such that:

()& P ) = 1(w), vo € HA(Q).

with a(u,v) = / o Vu - Vv and l(v) = (f,v).
Q

» To simplify the notations, oy and o5 constant resp. in €7 and in Q5.

DEFINITION. Problem (£2) well-posed if for all f € H=1(Q), it has one and
only one solution with continuous dependence.
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Outline of the talk: two steps

1) A presentation of the T-coercivity method to derive a criterion on o and on the
geometry of the interface to ensure that problem (22) is well-posed.

2) An use of this T-coercivity method to study an a priori different problem and
emphasizing the generality of this approach.

@ Mathematical difficulty

© The T-coercivity method for the dielectric/metamaterial
transmission problem

© The T-coercivity method for the Interior Transmission Eigenvalue
Problem
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Mathematical difficulty
o Classical case a > 0 everywhere :
a(u,u) = / o |Vu|?> > min(o) ||u||12qé(9) coercivity
Q

Lax-Milgram theorem = (%) well-posed.

C HUH%I&(Q) loss of coercivity

» For a symmetric domain (w.r.t. ¥) with 0o = —07, we can build a
kernel of infinite dimension.
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Idea of the T-coercivity 2/2

e One has a(u, Tiu) = / o] [ Vul? — 2/ o2 Vu - V(R up)
Q Q2

Young’s inequality = | @ is T-coercive when o1 > ||R; || |o2| -

uy — 2R2u2 in Ql

. where Rs : Q3 — Q4, one
—us in QQ ) 2 2 15

e Working with Tou =

proves that a is T-coercive when |oa| > ||Rz||® o1 .

e Conclusion:

THEOREM. If the contrast r, = o3/o1 & [—||R2|?*; —1/||R1|*] (critical
interval) then div (o V+) is an isomorphism from Hg () to H~1(Q).
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Choice of R{,R,?

» Symmetric domain:

» Right angle:

)

Qy

0

» Other particular geometries:

symmetry w.r.t. 3
R1 = SZ and RZ = SE
(2) well-posed & Kk, # —1

R; and R built from
the symmetries S, and S,
(2) well-posed < k, ¢ [-3;—1/3]

ol § Pery

» General geometries: partition of unity and local inversion using

particular cases.
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© The T-coercivity method for the Interior Transmission Eigenvalue
Problem
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Presentation of the ITEP

» Scattering by an inhomogeneous (A and n) media: we look for an
incident wave that does not scatter.
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incident wave that does not scatter.

» This leads to study the Interior Transmission Eigenvalue Problem.

Find (u,w) € HY(Q) x HY(Q) s. t.:
div (AVu) + k?>nu = 0 in Q
Aw + K*w = 0 inQ

U —w = 0 onodf
v-AVu—v-Vw = 0 on 99.

14

DEFINITION. Values of k € C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

» The goal is to prove that the set of transmission eigenvalues is discrete

and countable.
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Study of the ITEP

» Equivalent formulation:

Find (u,w) € X s. t., V(v/,w') € X,
a((u, w), (v, w")) = / AVu - V! - Vw - V' — k?(nud/ - ww') de = 0,
Q

with X = {(u,w) € HY(Q) x H'(Q) |u —w € H}(Q)}.
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Using analytic Fredholm theory, one deduces the

PROPOSITION. Suppose that A > 1 and n > 1. Then the set of transmission
eigenvalues is discrete and countable.

» This result can extended to situations where A — Id and n — 1 change
sign in Q (joint work with H. Haddar).
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Generalizations

v T-coercivity approach can be used for non-constant o (L°°) and other
problems (Maxwell’s equations, bilaplacian form of the ITEP ...).

¢ One can justify convergence of standard finite elements method for
simple meshes.
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problems (Maxwell’s equations, bilaplacian form of the ITEP ...).

¢ One can justify convergence of standard finite elements method for
simple meshes.

Ongoing work

#® What happens in the critical interval ?
For k, # —1, strong singularities appear at the corners of the interface

= (&) is well-posed in a new functional framework (joint work with X.
Claeys).

# More generally, can we reconsider the homogenization process to take
into account interfacial phenomena?
=METAMATH project (ANR) directed by S. Fliss.
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Thank you for your attention.

@ A -S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., Optimality of
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