Control of the propagation of acoustic

 waves using thin resonant ligaments
Lucas Chesnel

Coll. with J. Heleine ${ }^{1}$, S.A. Nazarov ${ }^{2}$.
${ }^{1}$ IDEFIX team, Inria/CMAP, École Polytechnique, France ${ }^{2}$ FMM, St. Petersburg State University, Russia

Introduction

- We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

$$
(\mathscr{P}) \left\lvert\, \begin{array}{rll}
\Delta u+k^{2} u & =0 & \text { in } \Omega, \\
\partial_{n} u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- We fix $k \in(0 ; \pi)$ so that only the plane waves $e^{ \pm i k x}$ can propagate.

Introduction

- We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } \Omega, \\
\partial_{n} u & =0 \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

- We fix $k \in(0 ; \pi)$ so that only the plane waves $e^{ \pm i k x}$ can propagate.
- The scattering of these waves leads us to consider the solutions of (\mathscr{P}) with the decomposition
$u_{+}=\left|\begin{array}{r}e^{i k x}+R_{+} e^{-i k x}+\ldots \\ T \\ e^{+i k x}+\ldots\end{array} \quad u_{-}=\right| \begin{aligned} T & e^{-i k x}+\ldots\end{aligned} \quad x \rightarrow-\infty, \begin{aligned} & \\ & e^{-i k x}+R_{-} e^{+i k x}+\ldots x \rightarrow+\infty\end{aligned}$
$R_{ \pm}, T \in \mathbb{C}$ are the scattering coefficients, the \ldots are expon. decaying terms.

Introduction

- We have the relations of conservation of energy $\left|R_{ \pm}\right|^{2}+|T|^{2}=1$.
- Without obstacle, $u_{+}=e^{i k x}$ so that $\left(R_{+}, T\right)=(0,1)$.
- With an obstacle, in general $\left(R_{+}, T\right) \neq(0,1)$.

Introduction

- We have the relations of conservation of energy $\left|R_{ \pm}\right|^{2}+|T|^{2}=1$.
- Without obstacle, $u_{+}=e^{i k x}$ so that $\left(R_{+}, T\right)=(0,1)$.

- With an obstacle, in general $\left(R_{+}, T\right) \neq(0,1)$.

Goal of the talk
We wish to slightly perturb the walls of the guide to obtain $R_{ \pm}=0, T=1$ in the new geometry (as if there were no obstacle) \Rightarrow cloaking at "infinity".

Introduction

Difficulty: the scattering coefficients have a non explicit and non linear dependence wrt the geometry.

Difficulty: the scattering coefficients have a non explicit and non linear dependence wrt the geometry.

Remark 1: Different from the usual cloaking picture (Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).
\rightarrow Less ambitious but doable without fancy materials (and relevant in practice).

Difficulty: the scattering coefficients have a non explicit and non linear dependence wrt the geometry.

Remark 1: Different from the usual cloaking picture (Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).
\rightarrow Less ambitious but doable without fancy materials (and relevant in practice).

Remark 2: Different from the perturbative techniques we have used in the past based on variants of the implicit functions theorem.

Here the (big) obstacle is given, we want to compensate its scattering.

Outline of the talk

(1) Asymptotic analysis in presence of thin resonators
(2) Almost zero reflection
(3) Cloaking
(1) Asymptotic analysis in presence of thin resonators

2 Almost zero reflection

Setting

-

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

$$
\left(\mathscr{P}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u+k^{2} u=0 & \text { in } \Omega^{\varepsilon}, \\
\partial_{n} u=0 & \text { on } \partial \Omega^{\varepsilon}
\end{aligned}\right.
$$

- In this geometry, we have the scattering solutions

Setting

-

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

$$
\left(\mathscr{P}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u+k^{2} u=0 & \text { in } \Omega^{\varepsilon}, \\
\partial_{n} u=0 & \text { on } \partial \Omega^{\varepsilon}
\end{aligned}\right.
$$

- In this geometry, we have the scattering solutions

$$
u_{+}^{\varepsilon}=\left|\begin{array}{rr}
e^{i k x}+R_{+}^{\varepsilon} e^{-i k x}+\ldots \\
T^{\varepsilon} e^{+i k x}+\ldots
\end{array} \quad u_{-}^{\varepsilon}=\right| \begin{aligned}
T^{\varepsilon} e^{-i k x}+\ldots & x \rightarrow-\infty \\
e^{-i k x}+R_{-}^{\varepsilon} e^{+i k x}+\ldots & x \rightarrow+\infty
\end{aligned}
$$

In general, the thin ligament has only a weak influence on the scattering coefficients: $R_{ \pm}^{\varepsilon} \approx R_{ \pm}, T^{\varepsilon} \approx T$. But not always ...

Numerical experiment

- We vary the length of the ligament.

Numerical experiment

- For one particular length of the ligament, we get a standing mode (zero transmission).

Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion of $u_{+}^{\varepsilon}, R_{+}^{\varepsilon}, T^{\varepsilon}$ as $\varepsilon \rightarrow 0$.

$$
\left(\mathscr{P}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u_{+}^{\varepsilon}+k^{2} u_{+}^{\varepsilon}=0 & \text { in } \Omega^{\varepsilon}, \\
\partial_{n} u_{+}^{\varepsilon}=0 & \text { on } \partial \Omega^{\varepsilon}
\end{aligned}\right.
$$

$$
u_{+}^{\varepsilon}=\left\lvert\, \begin{array}{r}
e^{i k x}+R_{+}^{\varepsilon} e^{-i k x}+\ldots \\
T^{\varepsilon} e^{+i k x}+\ldots
\end{array}\right.
$$

- To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'yaet al. 00, Joly \& Tordeux 06, Lin \& Zhang 17, 18, ...).

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u_{+}^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \\
u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{y}^{2} v+k^{2} v=0 \quad \text { in }(1 ; 1+\ell) \\
& v(1)=\partial_{y} v(1+\ell)=0
\end{aligned}\right.
$$

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u_{+}^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \\
\text { in }^{\varepsilon} \Omega \\
u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{y}^{2} v+k^{2} v=0 \quad \text { in }(1 ; 1+\ell) \\
& v(1)=\partial_{y} v(1+\ell)=0
\end{aligned}\right.
$$

The features of $\left(\mathscr{P}_{1 \mathrm{D}}\right)$ play a key role in the physical phenomena and in the asymptotic analysis.

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u_{+}^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \\
\text { in }^{\varepsilon} \Omega \\
u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\begin{array}{l|l}
\left(\mathscr{P}_{1 \mathrm{D}}\right) & \begin{array}{l}
\partial_{y}^{2} v+k^{2} v=0 \quad \text { in }(1 ; 1+\ell) \\
v(1)=\partial_{y} v(1+\ell)=0
\end{array}
\end{array}\right.
$$

The features of $\left(\mathscr{P}_{1 \mathrm{D}}\right)$ play a key role in the physical phenomena and in the asymptotic analysis.

- We denote by $\ell_{\text {res }}$ (resonance lengths) the values of ℓ, given by

$$
\ell_{\mathrm{res}}:=\pi(m+1 / 2) / k, \quad m \in \mathbb{N},
$$

such that $\left(\mathscr{P}_{1 \mathrm{D}}\right)$ admits the non zero solution $v(y)=\sin (k(y-1))$.

Asymptotic analysis - Non resonant case

- Assume that $\ell \neq \ell_{\text {res }}$. Then we find $v^{-1}=0$ and when $\varepsilon \rightarrow 0$, we get

$$
\begin{array}{ll}
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}+o(1) & \text { in } \Omega \\
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}(A) v_{0}(y)+o(1) & \text { in the resonator } \\
R_{ \pm}^{\varepsilon}=R_{ \pm}+o(1), & T^{\varepsilon}=T+o(1)
\end{array}
$$

Here $v_{0}(y)=\cos (k(y-1)+\tan (k(y-\ell) \sin (k(y-1)$.

Asymptotic analysis - Non resonant case

- Assume that $\ell \neq \ell_{\text {res }}$. Then we find $v^{-1}=0$ and when $\varepsilon \rightarrow 0$, we get

$$
\begin{array}{ll}
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}+o(1) & \text { in } \Omega \\
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}(A) v_{0}(y)+o(1) & \text { in the resonator } \\
R_{ \pm}^{\varepsilon}=R_{ \pm}+o(1), & T^{\varepsilon}=T+o(1)
\end{array}
$$

Here $v_{0}(y)=\cos (k(y-1)+\tan (k(y-\ell) \sin (k(y-1)$.

$$
\text { The thin resonator has no influence at order } \varepsilon^{0} \text {. }
$$

\rightarrow Not interesting for our purpose because we want $\left\lvert\, \begin{gathered}R_{ \pm}^{\varepsilon}=0+\ldots \\ T^{\varepsilon}=1+\ldots\end{gathered}\right.$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{\text {res }}$. Then we find $v^{-1}(y)=a \sin (k(y-1))$ for some a to determine.

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{\text {res }}$. Then we find $v^{-1}(y)=a \sin (k(y-1))$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

$$
\left(\Delta_{\mathrm{x}}+k^{2}\right) u_{+}^{\varepsilon}\left(\varepsilon^{-1}(\mathrm{x}-A)\right)=\varepsilon^{-2} \Delta_{\xi} u^{\varepsilon}(\xi)+\ldots
$$

when $\varepsilon \rightarrow 0$, we are led to study the problem

$$
(\star) \left\lvert\, \begin{aligned}
-\Delta_{\xi} Y=0 & \text { in } \Xi \\
\partial_{\nu} Y=0 & \text { on } \partial \Xi .
\end{aligned}\right.
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{\text {res }}$. Then we find $v^{-1}(y)=a \sin (k(y-1))$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

$$
\left(\Delta_{\mathrm{x}}+k^{2}\right) u_{+}^{\varepsilon}\left(\varepsilon^{-1}(\mathrm{x}-A)\right)=\varepsilon^{-2} \Delta_{\xi} u^{\varepsilon}(\xi)+\ldots
$$

when $\varepsilon \rightarrow 0$, we are led to study the problem

$$
(\star) \left\lvert\, \begin{array}{rll}
-\Delta_{\xi} Y=0 & \text { in } \Xi \\
\partial_{\nu} Y=0 & \text { on } \partial \Xi .
\end{array}\right.
$$

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{y}+C \Xi+O\left(e^{-\pi \xi_{y}}\right) & \text { as } \xi_{y} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{\text {res }}$. Then we find $v^{-1}(y)=a \sin (k(y-1))$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

$$
\left(\Delta_{\mathrm{x}}+k^{2}\right) u_{+}^{\varepsilon}\left(\varepsilon^{-1}(\mathrm{x}-A)\right)=\varepsilon^{-2} \Delta_{\xi} u^{\varepsilon}(\xi)+\ldots,
$$

when $\varepsilon \rightarrow 0$, we are led to study the problem

$$
(\star) \left\lvert\, \begin{aligned}
-\Delta_{\xi} Y=0 & \text { in } \Xi \\
\partial_{\nu} Y=0 & \text { on } \partial \Xi .
\end{aligned}\right.
$$

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{y}+C \Xi+O\left(e^{-\pi \xi_{y}}\right) & \text { as } \xi_{y} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

- In a neighbourhood of A, we look for u_{+}^{ε} of the form

$$
u_{+}^{\varepsilon}(x)=C^{A} Y^{1}(\xi)+c^{A}+\ldots \quad\left(c^{A}, C^{A} \text { constants to determine }\right) .
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{\text {res }}$. Then we find $v^{-1}(y)=a \sin (k(y-1))$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since
'Since at A, the Taylor formula gives

$$
u_{+}^{\varepsilon}(x)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\cdots=0+\left(a k \xi_{y}+v^{0}(1)\right)+\ldots,
$$

we take $C^{A}=a k$.

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{y}+C \Xi+O\left(e^{-\pi \xi_{y}}\right) & \text { as } \xi_{y} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

- In a neighbourhood of A, we look for u_{+}^{ε} of the form

$$
u_{+}^{\varepsilon}(x)=C^{A} Y^{1}(\xi)+c^{A}+\ldots \quad\left(c^{A}, C^{A} \text { constants to determine }\right) .
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{\text {res }}$. Then we find $v^{-1}(y)=a \sin (k(y-1))$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since
'Since at A, the Taylor formula gives

$$
u_{+}^{\varepsilon}(x)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\cdots=0+\left(a k \xi_{y}+v^{0}(1)\right)+\ldots,
$$

we take $C^{A}=a k$.

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{y}+C \Xi+O\left(e^{-\pi \xi_{y}}\right) & \text { as } \xi_{y} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

- In a neighbourhood of A, we look for u_{+}^{ε} of the form

$$
u_{+}^{\varepsilon}(x)=a k Y^{1}(\xi)+c^{A}+\ldots \quad\left(c^{A}, C^{A} \text { constants to determine }\right) .
$$

Asymptotic analysis - Resonant case

- In the ansatz $u_{+}^{\varepsilon}=u^{0}+\ldots$ in Ω, we deduce that we must take

$$
u^{0}=u_{+}+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$

Asymptotic analysis - Resonant case

- In the ansatz $u_{+}^{\varepsilon}=u^{0}+\ldots$ in Ω, we deduce that we must take

$$
u^{0}=u_{+}+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega .\end{aligned}\right.$

- Then in the inner field expansion $u_{+}^{\varepsilon}(x)=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right) .
$$

Asymptotic analysis - Resonant case

- In the ansatz $u_{+}^{\varepsilon}=u^{0}+\ldots$ in Ω, we deduce that we must take

$$
u^{0}=u_{+}+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$

- Then in the inner field expansion $u_{+}^{\varepsilon}(x)=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right) .
$$

- Matching the constant behaviour in the resonator, we obtain

$$
v^{0}(1)=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}\right) .
$$

Asymptotic analysis - Resonant case

- In the ansatz $u_{+}^{\varepsilon}=u^{0}+\ldots$ in Ω, we deduce that we must take

$$
u^{0}=u_{+}+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$

- Then in the inner field expansion $u_{+}^{\varepsilon}(x)=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right)
$$

- Thus for v^{0}, we get the problem

$$
\left\lvert\, \begin{aligned}
& \partial_{y}^{2} v^{0}+k^{2} v^{0}=0 \quad \text { in }(1 ; 1+\ell) \\
& v^{0}(1)=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}\right), \quad \partial_{y} v^{0}(1+\ell)=0
\end{aligned}\right.
$$

Asymptotic analysis - Resonant case

- In the ansatz $u_{+}^{\varepsilon}=u^{0}+\ldots$ in Ω, we deduce that we must take

$$
u^{0}=u_{+}+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega .\end{aligned}\right.$

- Then in the inner field expansion $u_{+}^{\varepsilon}(x)=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right) .
$$

- Thus for v^{0}, we get the problem

$$
\left\lvert\, \begin{aligned}
& \partial_{y}^{2} v^{0}+k^{2} v^{0}=0 \quad \text { in }(1 ; 1+\ell) \\
& v^{0}(1)=u_{+}(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}\right), \quad \partial_{y} v^{0}(1+\ell)=0 .
\end{aligned}\right.
$$

- This is a Fredholm problem with a non zero kernel. A solution exists iff the compatibility condition is satisfied. This sets

$$
a k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}}
$$

and ends the calculus of the first terms.

Asymptotic analysis - Resonant case

- Finally for $\ell=\ell_{\text {res }}$, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a k \gamma(x, y)+o(1) \quad \text { in } \Omega, \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a u_{-}(A) / 2+o(1) .
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}} .
$$

Asymptotic analysis - Resonant case

- Finally for $\ell=\ell_{\text {res }}$, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a u_{-}(A) / 2+o(1)
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}}
$$

This time the thin resonator has an influence at order ε^{0}

Asymptotic analysis - Resonant case

- Similarly for $\ell=\ell_{\text {res }}+\varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a(\eta) k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a(\eta) \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a(\eta) u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a(\eta) u_{-}(A) / 2+o(1) .
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a(\eta) k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta} .
$$

Asymptotic analysis - Resonant case

- Similarly for $\ell=\ell_{\text {res }}+\varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a(\eta) k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a(\eta) \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a(\eta) u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a(\eta) u_{-}(A) / 2+o(1) .
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a(\eta) k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta} .
$$

This time the thin resonator has an influence at order ε^{0} and it depends on the choice of η !

Asymptotic analysis - Resonant case

- Below, for several $\eta \in \mathbb{R}$, we display the paths

$$
\left\{\left(\varepsilon, \ell_{\mathrm{res}}+\varepsilon\left(\eta-\pi^{-1}|\ln \varepsilon|\right)\right), \varepsilon>0\right\} \subset \mathbb{R}^{2} .
$$

According to η, the limit of the scattering coefficients along the path as $\varepsilon \rightarrow 0^{+}$is different.

Asymptotic analysis - Resonant case

- Below, for several $\eta \in \mathbb{R}$, we display the paths

$$
\left\{\left(\varepsilon, \ell_{\mathrm{res}}+\varepsilon\left(\eta-\pi^{-1}|\ln \varepsilon|\right)\right), \varepsilon>0\right\} \subset \mathbb{R}^{2}
$$

According to η, the limit of the scattering coefficients along the path as $\varepsilon \rightarrow 0^{+}$is different.

- For a fixed small ε_{0}, the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.

Asymptotic analysis - Resonant case

- Below, for several $\eta \in \mathbb{R}$, we display the paths

$$
\left\{\left(\varepsilon, \ell_{\mathrm{res}}+\varepsilon\left(\eta-\pi^{-1}|\ln \varepsilon|\right)\right), \varepsilon>0\right\} \subset \mathbb{R}^{2}
$$

According to η, the limit of the scattering coefficients along the path as $\varepsilon \rightarrow 0^{+}$is different.

- For a fixed small ε_{0}, the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.
\rightarrow This is exactly what we observed in the numerics.

(1) Asymptotic analysis in presence of thin resonators

(2) Almost zero reflection

Almost zero reflection

- We have found $R_{+}^{\varepsilon}=R_{+}^{0}(\eta)+o(1), \quad T^{\varepsilon}=T^{0}(\eta)+o(1) \quad$ with $R_{+}^{0}(\eta)=R_{+}+\frac{(2 i k)^{-1} u_{+}(A)^{2}}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}, \quad T^{0}(\eta)=T+\frac{(2 i k)^{-1} u_{+}(A) u_{-}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}$.
- Results on Möbius transform $\left(z \mapsto \frac{a z+b}{c z+d}\right)$ guarantee that $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\},\left\{T^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ are circles in \mathbb{C}.

Almost zero reflection

- We have found $R_{+}^{\varepsilon}=R_{+}^{0}(\eta)+o(1), \quad T^{\varepsilon}=T^{0}(\eta)+o(1) \quad$ with $R_{+}^{0}(\eta)=R_{+}+\frac{(2 i k)^{-1} u_{+}(A)^{2}}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}, \quad T^{0}(\eta)=T+\frac{(2 i k)^{-1} u_{+}(A) u_{-}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}$.
- Results on Möbius transform $\left(z \mapsto \frac{a z+b}{c z+d}\right)$ guarantee that $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\},\left\{T^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ are circles in \mathbb{C}.

Asymptotically, when the length of the resonator is perturbed around the resonance length, $R_{+}^{\varepsilon}, T^{\varepsilon}$ run on circles.

Almost zero reflection

- We have found $R_{+}^{\varepsilon}=R_{+}^{0}(\eta)+o(1), \quad T^{\varepsilon}=T^{0}(\eta)+o(1) \quad$ with

$$
R_{+}^{0}(\eta)=R_{+}+\frac{(2 i k)^{-1} u_{+}(A)^{2}}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}, \quad T^{0}(\eta)=T+\frac{(2 i k)^{-1} u_{+}(A) u_{-}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta} .
$$

- Results on Möbius transform $\left(z \mapsto \frac{a z+b}{c z+d}\right)$ guarantee that $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\},\left\{T^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ are circles in \mathbb{C}.

Asymptotically, when the length of the resonator is perturbed around the resonance length, $R_{+}^{\varepsilon}, T^{\varepsilon}$ run on circles.

- Interestingly, the features of the circles depend on the position A of the ligament.

Almost zero reflection

Almost zero reflection

- Using the expansions of $u_{ \pm}(A)$ far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ passes through zero.

Almost zero reflection

- Using the expansions of $u_{ \pm}(A)$ far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ passes through zero. $\Rightarrow \exists$ situations s.t. $R_{+}^{\varepsilon}=0+o(1)$.

Almost zero reflection

- Example of situation where we have almost zero reflection $(\varepsilon=0.3)$.

Simulations realized with the Freefem++ library.

Almost zero reflection

- Example of situation where we have almost zero reflection $(\varepsilon=\mathbf{0 . 0 1})$.

Simulations realized with the Freefem++ library.

Almost zero reflection

- Example of situation where we have almost zero reflection $(\varepsilon=\mathbf{0 . 0 1})$.

Simulations realized with the Freefem++ library.
Conservation of energy guarantees that when $R_{+}^{\varepsilon}=0,\left|T^{\varepsilon}\right|=1$. \rightarrow To cloak the object, it remains to compensate the phase shift!
(1) Asymptotic analysis in presence of thin resonators

(2) Almost zero reflection

(3) Cloaking

Phase shifter

- Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

Scheme of the method:

Step 1: with one ligament, we get some R_{1}, T_{1} as above.

Phase shifter

- Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

Scheme of the method:

Step 1: with one ligament, we get some R_{1}, T_{1} as above.

Step 2: adding a second ligament, we can get R_{2}, T_{2} as above.

Phase shifter

- Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

- Here the device is designed to obtain a phase shift approx. equal to $\pi / 4$.

Cloaking with three resonators

- Now working in two steps, we can approximately cloak any object with three resonators:

1) With one resonant ligament, first we get almost zero reflection;
2) With two additional resonant ligaments, we compensate the phase shift.

$\Re e u_{+}$

$\Re e u_{+}^{\varepsilon}$

$\Re e\left(u_{+}^{\varepsilon}-e^{i k x}\right)$

Cloaking with two resonators

- Working a bit more, one can show that two resonators are enough to cloak any object.

Step 1: add one ligament so that the corresponding transmission circle, which passes through zero and T_{0}, crosses $\mathscr{C}(1 / 2,1 / 2) \backslash\{0\}$.

Cloaking with two resonators

- Working a bit more, one can show that two resonators are enough to cloak any object.

Step 1: add one ligament so that the corresponding transmission circle, which passes through zero and T_{0}, crosses $\mathscr{C}(1 / 2,1 / 2) \backslash\{0\}$.

Cloaking with two resonators

- Working a bit more, one can show that two resonators are enough to cloak any object.

Step 1: add one ligament so that the corresponding transmission circle, which passes through zero and T_{0}, crosses $\mathscr{C}(1 / 2,1 / 2) \backslash\{0\}$.
Step 2: fix the length of the first ligament so that $T_{1} \in \mathscr{C}(1 / 2,1 / 2) \backslash\{0\}$.

Cloaking with two resonators

- Working a bit more, one can show that two resonators are enough to cloak any object.

Step 1: add one ligament so that the corresponding transmission circle, which passes through zero and T_{0}, crosses $\mathscr{C}(1 / 2,1 / 2) \backslash\{0\}$.
Step 2: fix the length of the first ligament so that $T_{1} \in \mathscr{C}(1 / 2,1 / 2) \backslash\{0\}$.
Step 3: add a second ligament and tune its position as well as its length to get $T_{2}=1\left(\right.$ this is doable because of the value of $\left.T_{1}\right)$.

Cloaking with two resonators

- Working a bit more, one can show that two resonators are enough to cloak any object.

(1) Asymptotic analysis in presence of thin resonators
(2) Almost zero reflection

3 Cloaking

Conclusion

What we did

A We explained how to approximately cloak any object in monomode regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε^{0} with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Conclusion

What we did

© We explained how to approximately cloak any object in monomode regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε^{0} with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Possible extensions and open questions

1) We can similarly hide penetrable obstacles or work in 3D.
2) We can do cloaking at a finite number of wavenumbers (thin structures are resonant at one wavenumber otherwise act at order ε).
3) With Dirichlet BCs, other ideas must be found.
4) Can we realize exact cloaking ($T=1$ exactly)? This question is also related to robustness of the device.

Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer resonators. submitted, arXiv:2105.00922, 2021.

Mode converter

- We work at higher wavenumber so that two modes can propagate.

Goal: find a geometry such that:

1) energy is completely transmitted;
2) mode 1 is transformed into mode 2 .

- We decided to work in a geometry with thin ligaments:

Paradoxical because in general in this Ω, energy is mostly backscattered...

Mode converter

- Tuning precisely the positions and lengths of the ligaments, we can ensure absence of reflection and mode conversion.

