Journée Idefix

Perfect transmission in periodic waveguides with localized defects

Lucas Chesnel¹

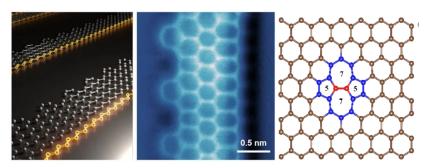
Collaboration with T. Creuset¹ and Z. Moitier¹

¹Idefix team, EDF/Ensta/Inria, France

Ensta, Palaiseau, 09/12/2025

Introduction

▶ We are interested in periodic materials (graphene, photonic cristal, ...).



- ► For certain bands of frequencies, waves can propagate in such media.
 - How to study scattering of waves by localized defects
 - How to design invisible defects

Outline of the talk

Wave propagation in periodic waveguides

2 Scattering by a defect

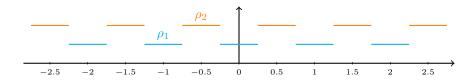
- 3 Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands

Outline of the talk

Wave propagation in periodic waveguides

2 Scattering by a defect

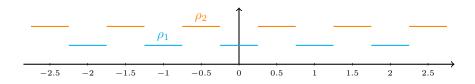
- Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands



▶ For $\omega > 0$, consider the 1D problem

$$u'' + \rho \omega^2 u = 0 \quad \text{in } \mathbb{R}, \tag{\mathscr{P}}$$

with a piecewise constant ρ which is 1-periodic.



• For $\omega > 0$, consider the 1D problem

$$u'' + \rho \omega^2 u = 0 \quad \text{in } \mathbb{R}, \tag{\mathscr{P}}$$

with a piecewise constant ρ which is 1-periodic.

▶ Denote by A the unbounded operator of L²(\mathbb{R}), endowed with the inner product $(u, v) \mapsto \int_{\mathbb{R}} \rho uv \, dx$, such that

$$Au = -\frac{1}{\rho}u''$$
 and $D(A) = H^2(\mathbb{R}).$



For $\omega > 0$, consider the 1D problem

$$u'' + \rho \omega^2 u = 0 \quad \text{in } \mathbb{R}, \tag{\mathscr{P}}$$

with a piecewise constant ρ which is 1-periodic.

▶ Denote by A the unbounded operator of L²(\mathbb{R}), endowed with the inner product $(u, v) \mapsto \int_{\mathbb{R}} \rho uv \, dx$, such that

$$Au = -\frac{1}{\rho}u''$$
 and $D(A) = H^2(\mathbb{R}).$

Proposition. A is selfadjoint and positive.

The Floquet-Bloch transform

DEFINITION. For $u \in \mathcal{D}(\mathbb{R})$, the Floquet-Bloch transform is defined by:

$$\forall x, \eta \in \mathbb{R}, \qquad U_{\eta}(x) \coloneqq \sum_{n \in \mathbb{Z}} u(x+n)e^{i\eta n}.$$

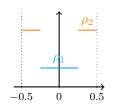
▶ It converts the initial problem set in \mathbb{R} into a family of spectral problems set in the bounded unit cell I := (-1/2; 1/2) with quasi-periodic BCs:

For
$$\eta \in (-\pi; \pi]$$
,

Find
$$U_{\eta} \in \mathrm{H}^1(I)$$
 such that
$$-U_{\eta}^{\prime\prime} = \lambda(\eta) \, \rho \, U_{\eta} \quad \text{in } I$$

$$U_{\eta}(-1/2) = e^{i\eta} U_{\eta}(1/2)$$

$$\partial_x U_{\eta}(-1/2) = e^{i\eta} \partial_x U_{\eta}(1/2).$$



The Floquet-Bloch transform

DEFINITION. For $u \in \mathcal{D}(\mathbb{R})$, the Floquet-Bloch transform is defined by:

$$\forall x, \eta \in \mathbb{R}, \qquad U_{\eta}(x) \coloneqq \sum_{x \in \mathbb{Z}} u(x+n)e^{i\eta n}.$$

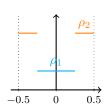
▶ It converts the initial problem set in \mathbb{R} into a family of spectral problems set in the bounded unit cell I := (-1/2; 1/2) with quasi-periodic BCs:

For
$$\eta \in (-\pi; \pi]$$
,

Find
$$U_{\eta} \in \mathcal{H}^1(I)$$
 such that
$$-U_{\eta}'' = \lambda(\eta) \rho U_{\eta} \quad \text{in } I$$

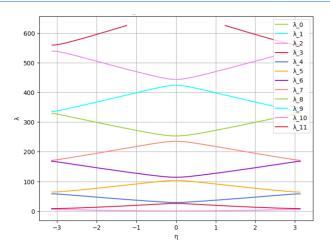
$$U_{\eta}(-1/2) = e^{i\eta}U_{\eta}(1/2)$$

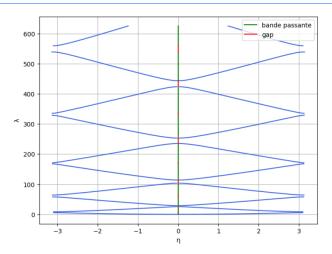
$$\partial_x U_{\eta}(-1/2) = e^{i\eta}\partial_x U_{\eta}(1/2).$$

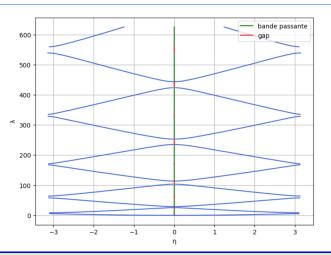


► For all $\eta \in (-\pi; \pi]$, the corresponding eigenvalue problem admits a sequence of real positive eigenvalues

$$0 \leq \lambda_1(\underline{\eta}) \leq \lambda_2(\underline{\eta}) \leq \dots$$

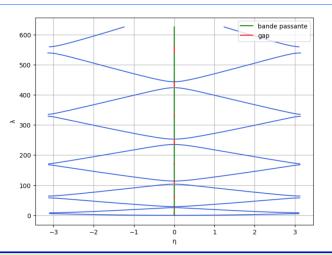






DEFINITION.

• For $p \ge 1$, $\eta \mapsto \lambda_p(\eta)$ is the p-th dispersion curves.



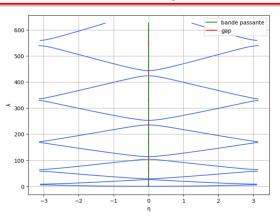
DEFINITION.

- For $p \ge 1$, $\eta \mapsto \lambda_p(\eta)$ is the p-th dispersion curves.
- For $p \ge 1$, set $I_p := \overline{\lambda_p(-\pi;\pi)}$. We call I_p the p-th spectral band.

The Floquet theorem

THEOREM. The spectrum of the operator A, denoted by $\sigma(A)$, is such that

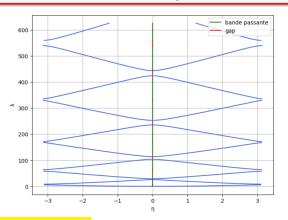
$$\sigma(A) = \sigma_{\text{ess}}(A) = \bigcup_{p \in \mathbb{N}^*} I_p.$$



The Floquet theorem

THEOREM. The spectrum of the operator A, denoted by $\sigma(A)$, is such that

$$\sigma(A) = \sigma_{\text{ess}}(A) = \bigcup_{p \in \mathbb{N}^*} I_p.$$



▶ This band/gap structure for $\sigma(A)$ is typical of periodic materials. It is used to create filters.

Characterization of spectral bands

► For this 1D problem, we can make explicit calculus. Set

$$D(\omega) := \cos\left(\frac{\sqrt{\rho_1 \omega}}{2}\right) \cos\left(\frac{\sqrt{\rho_2 \omega}}{2}\right) - \frac{1}{2} \left(\frac{\rho_1}{\rho_2} + \frac{\rho_2}{\rho_1}\right) \sin\left(\frac{\sqrt{\rho_1 \omega}}{2}\right) \sin\left(\frac{\sqrt{\rho_2 \omega}}{2}\right).$$

Theorem. Propagating modes exist $(\omega^2 \in \sigma_{\mathrm{ess}}(A)) \Leftrightarrow \exists \eta \in (-\pi; \pi]$ satisfying

$$D(\omega) = \cos(\eta).$$



$$D(\cdot)$$
 wrt $\lambda = \omega^2$ for $\sqrt{\rho_2}/\sqrt{\rho_1} = 2$.

Energy flux in the spectral band

DEFINITION. Let u be a solution of (\mathscr{P}) . Its energy flux is

$$\phi(u) \coloneqq \Im m \left(u'(x) \overline{u(x)} \right)$$

(independent of x).

- \rightarrow In the following, we shall always work with ω^2 in one of the I_p .
- ▶ Denote by w_+/w_- the wave propagating to the right/left $(\pm \phi(w_\pm) > 0)$.

Energy flux in the spectral band

DEFINITION. Let u be a solution of (\mathcal{P}) . Its energy flux is

$$\phi(u) \coloneqq \Im m\left(u'(x)\overline{u(x)}\right)$$

(independent of x).

- \rightarrow In the following, we shall always work with ω^2 in one of the I_p .
- ▶ Denote by w_{+}/w_{-} the wave propagating to the right/left $(\pm \phi(w_{\pm}) > 0)$.

REMARK. In 1D, one has only one propagating mode per spectral band.

Outline of the talk

1 Wave propagation in periodic waveguides

2 Scattering by a defect

- 3 Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands

▶ We study the scattering problem

Find
$$u \in H^2_{loc}(\mathbb{R})$$
 and $R, T \in \mathbb{C}^2$ such that
$$u'' + \omega^2 \rho u = 0 \qquad \text{in } \mathbb{R}$$
$$u(x) = w_+(x) + Rw_-(x) \qquad \text{after the defect}$$
$$u(x) = Tw_+(x) \qquad \text{before the defect}.$$

▶ We study the scattering problem

Find
$$u \in H^2_{loc}(\mathbb{R})$$
 and $R, T \in \mathbb{C}^2$ such that
$$u'' + \omega^2 \rho u = 0 \qquad \text{in } \mathbb{R}$$
$$u(x) = w_+(x) + Rw_-(x) \qquad \text{after the defect}$$
$$u(x) = Tw_+(x) \qquad \text{before the defect}.$$

▶ We study the scattering problem

Find
$$u \in H^2_{loc}(\mathbb{R})$$
 and $R, T \in \mathbb{C}^2$ such that
$$u'' + \omega^2 \rho u = 0 \qquad \text{in } \mathbb{R}$$
$$u(x) = w_+(x) + Rw_-(x) \qquad \text{after the defect}$$
$$u(x) = Tw_+(x) \qquad \text{before the defect}.$$

▶ R/T are the reflection/transmission coef.. For $\omega^2 \in \sigma_{\text{ess}}(A)$, one has

$$|R|^2 + |T|^2 = 1$$
 (conservation of energy).

▶ We study the scattering problem

Find
$$u \in \mathrm{H}^2_{\mathrm{loc}}(\mathbb{R})$$
 and $R, T \in \mathbb{C}^2$ such that
$$u'' + \omega^2 \rho u = 0 \qquad \text{in } \mathbb{R}$$
$$u(x) = w_+(x) + Rw_-(x) \qquad \text{after the defect}$$
$$u(x) = Tw_+(x) \qquad \text{before the defect}.$$

▶ R/T are the reflection/transmission coef.. For $\omega^2 \in \sigma_{\text{ess}}(A)$, one has

$$|R|^2 + |T|^2 = 1$$
 (conservation of energy).

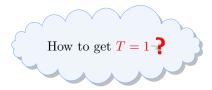
Definition. Defect is said
$$\mid$$
 non reflecting if $R = 0 \quad (|T| = 1)$ perfectly invisible if $T = 1 \quad (R = 0)$.

Numerical illustration

▶ $t \mapsto \Re e\left(u(x)e^{-i\omega t}\right)$ in a generic case \to Here $\left|\begin{array}{c} R=0.90+0.16i\\ T=0.07-0.40i. \end{array}\right|$

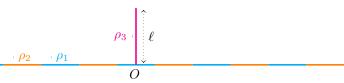
Outline of the talk

- Wave propagation in periodic waveguides
- 2 Scattering by a defect



- 3 Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands

▶ A ligament of length $\ell > 0$ is added at O. We denote by Γ the new geometry.



▶ We study the scattering problem

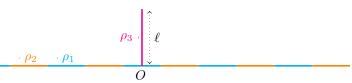
Find
$$u \in \mathrm{H}^2_{\mathrm{loc}}(\mathbb{R})$$
 and $R, T \in \mathbb{C}^2$ such that
$$u'' + \omega^2 \rho u = 0 \qquad \qquad \text{in } \Gamma \setminus \{O\}$$

$$u(x) = w_+(x) + Rw_-(x) \qquad \qquad \text{after the defect}$$

$$u(x) = Tw_+(x) \qquad \qquad \text{before the defect}$$

$$u'(\ell) = 0 \qquad \qquad \text{at the end of the ligament}$$

▶ A ligament of length $\ell > 0$ is added at O. We denote by Γ the new geometry.



► We study the scattering problem

Find
$$u \in \mathrm{H}^2_{\mathrm{loc}}(\mathbb{R})$$
 and $R, T \in \mathbb{C}^2$ such that
$$u'' + \omega^2 \rho u = 0 \qquad \qquad \text{in } \Gamma \setminus \{O\}$$

$$u(x) = w_+(x) + Rw_-(x) \qquad \text{after the defect}$$

$$u(x) = Tw_+(x) \qquad \qquad \text{before the defect}$$

$$u'(\ell) = 0 \qquad \qquad \text{at the end of the ligament}$$

$$| u(0^-, 0) = u(0^+, 0) = u(0, 0^+)$$

$$| \partial_x u(0^-, 0) = \partial_x u(0^+, 0) + \partial_y u(0, 0^+).$$

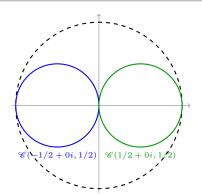
Remark

▶ Due to the **Kirchhoff** transmissions conditions, one has the constraint

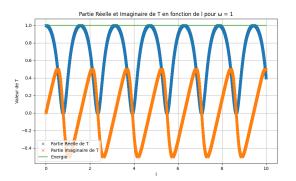
$$1 + R = T$$

▶ With the energy conservation $(|R|^2 + |T|^2 = 1)$, this implies:

THEOREM. R, T belong to the **circles** $\mathscr{C}(-1/2+0i,1/2)$, $\mathscr{C}(1/2+0i,1/2)$ of the complex plane.

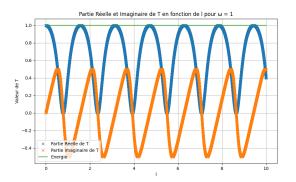


Behavior of $\ell \mapsto R(\ell)$ and $\ell \mapsto T(\ell)$



Theorem. The maps $\ell\mapsto R(\ell), \ell\mapsto T(\ell)$ are periodic and onto in $\mathscr{C}(-1/2+0i,1/2),\,\mathscr{C}(1/2+0i,1/2).$

Behavior of $\ell \mapsto R(\ell)$ and $\ell \mapsto T(\ell)$



Theorem. The maps $\ell\mapsto R(\ell), \ell\mapsto T(\ell)$ are periodic and onto in $\mathscr{C}(-1/2+0i,1/2),\,\mathscr{C}(1/2+0i,1/2).$

One has T=1 (perfect trans.) for a periodic sequence of values of ℓ .

Numerical illustration

• $t \mapsto \Re e(u(x)e^{-i\omega t})$ in a case where T=1.

Outline of the talk

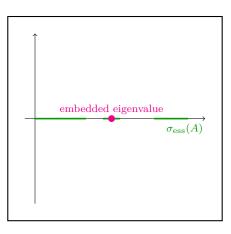
- 1 Wave propagation in periodic waveguides
- 2 Scattering by a defect



- 3 Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands

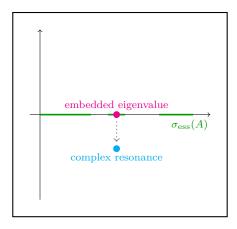
General idea:

► Start with a setting with an eigenvalue embedded in $\sigma_{ess}(A)$;



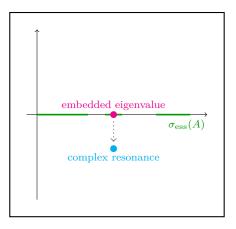
General idea:

- Start with a setting with an eigenvalue embedded in $\sigma_{ess}(A)$;
- ▶ Perturb slightly the geometry so that the eigenvalue becomes a complex resonance;



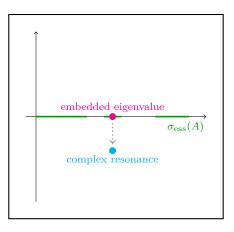
General idea:

- Start with a setting with an eigenvalue embedded in $\sigma_{ess}(A)$;
- ▶ Perturb slightly the geometry so that the eigenvalue becomes a complex resonance;
- For real ω in a neighborhood of this resonance, $\omega \mapsto R(\omega)$ and $\omega \mapsto T(\omega)$ have a rapid variation;



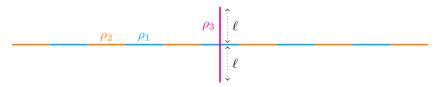
General idea:

- ► Start with a setting with an eigenvalue embedded in $\sigma_{ess}(A)$;
- ▶ Perturb slightly the geometry so that the eigenvalue becomes a complex resonance;
- ▶ For real ω in a neighborhood of this resonance, $\omega \mapsto R(\omega)$ and $\omega \mapsto T(\omega)$ have a rapid variation;
- ▶ With a constraint for R, T as before, one obtains $T(\omega_{\star}) = 1$ for a certain ω_{\star} .



Embedded eigenvalue

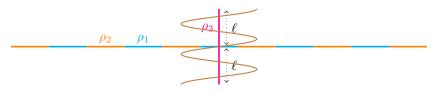
For $ρ_3 > 0$ given, we add a **second ligament** of length $\ell > 0$ at O. Denote by Ω this new waveguide.



 \blacktriangleright We consider the same model as before with Kirchhoff transmissions conditions at O.

Embedded eigenvalue

▶ For $\rho_3 > 0$ given, we add a **second ligament** of length $\ell > 0$ at O. Denote by Ω this new waveguide.

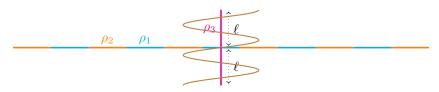


 \blacktriangleright We consider the same model as before with Kirchhoff transmissions conditions at O.

PROPOSITION. In this geometry, trapped modes exist for $\omega \in \frac{\pi}{2\sqrt{\rho_3}\ell} + \frac{\pi}{\sqrt{\rho_3}\ell}\mathbb{Z}$.

Embedded eigenvalue

For $ρ_3 > 0$ given, we add a **second ligament** of length l > 0 at O. Denote by Ω this new waveguide.



 \blacktriangleright We consider the same model as before with Kirchhoff transmissions conditions at O.

PROPOSITION. In this geometry, trapped modes exist for $\omega \in \frac{\pi}{2\sqrt{\rho_3}\ell} + \frac{\pi}{\sqrt{\rho_3}\ell}\mathbb{Z}$.

Varying ℓ , one can have an eigenvalue anywhere in $\sigma_{\rm ess}(A)$, say for $\omega = \omega_0$.

Symmetry breaking

We break the symmetry by changing the length of **one** ligament.

$$\ell^{arepsilon} = \ell + \epsilon$$

▶ We denote by Ω^{ε} this new geometry and by R^{ε} , T^{ε} the corresponding scattering coefficients.

Symmetry breaking

We break the symmetry by changing the length of **one** ligament.

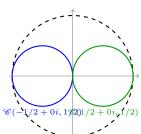
$$\ell^{\varepsilon} = \ell + \varepsilon$$

- ▶ We denote by Ω^{ε} this new geometry and by R^{ε} , T^{ε} the corresponding scattering coefficients.
- ► As before:

Kirchhoff transmission conditions

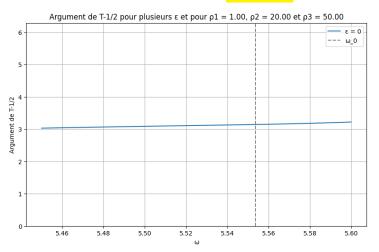
$$\Rightarrow 1 + R^{\varepsilon} = T^{\varepsilon}$$

$$\Rightarrow R,\,T\in \mathscr{C}(-1/2+0i,1/2),\,\mathscr{C}(1/2+0i,1/2)$$
 .



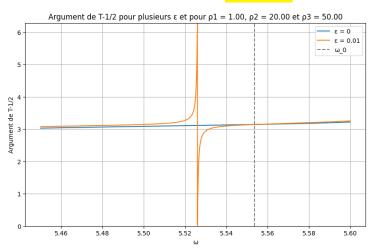
Behavior of $\omega \mapsto T^{\varepsilon}(\omega)$

▶ Below we display $\omega \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$ around ω_0 for various ε .



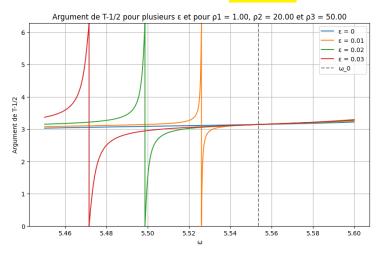
Behavior of $\omega \mapsto T^{\varepsilon}(\omega)$

▶ Below we display $\omega \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$ around ω_0 for various ε .



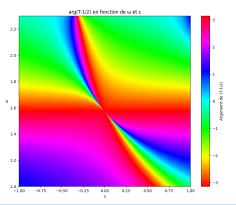
Behavior of $\omega \mapsto T^{\varepsilon}(\omega)$

▶ Below we display $\omega \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$ around ω_0 for various ε .



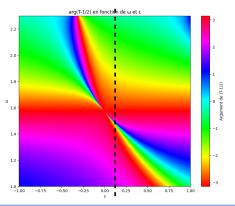
For $\varepsilon > 0$, $\omega \mapsto T^{\varepsilon}(\omega)$ has a rapid variation in a neighborhood of ω_0 (even faster as $\varepsilon > 0$ is small).

▶ Below we display $(\varepsilon, \omega) \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$.



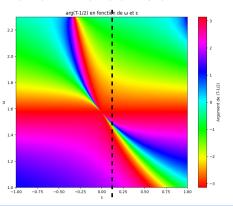
PROPOSITION. The map $(\varepsilon, \omega) \mapsto T^{\varepsilon}(\omega)$ is not continuous at $(0, \omega_0)$.

▶ Below we display $(\varepsilon, \omega) \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$.



PROPOSITION. The map $(\varepsilon, \omega) \mapsto T^{\varepsilon}(\omega)$ is not continuous at $(0, \omega_0)$.

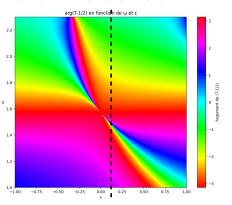
▶ Below we display $(\varepsilon, \omega) \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$.



PROPOSITION. The map $(\varepsilon, \omega) \mapsto T^{\varepsilon}(\omega)$ is not continuous at $(0, \omega_0)$.

THEOREM. For all $\varepsilon > 0$, there exists ω_{\star} close to ω_0 such that $T^{\varepsilon}(\omega_{\star}) = 1$.

▶ Below we display $(\varepsilon, \omega) \mapsto \arg(T^{\varepsilon}(\omega) - 1/2)$.



PROPOSITION. The map $(\varepsilon, \omega) \mapsto T^{\varepsilon}(\omega)$ is not continuous at $(0, \omega_0)$.

THEOREM. For all $\varepsilon > 0$, there exists ω_{\star} close to ω_0 such that $T^{\varepsilon}(\omega_{\star}) = 1$.

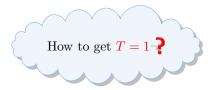
Note. When $\varepsilon > 0$ is very small, it becomes delicate to adjust ω ...

Numerical illustration

▶ $t \mapsto \Re e(u(x)e^{-i\omega t})$ in a case where T = 1.

Outline of the talk

- 1 Wave propagation in periodic waveguides
- 2 Scattering by a defect



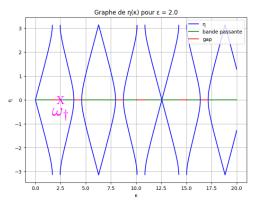
- 3 Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands

Behavior at the edges of the spectral bands

▶ Consider a defect of index $(\rho_3 > 0)$.

$$\rho_2$$
 ρ_1 ρ_3

▶ Let $\omega_{\uparrow} > 0$ be an edge of one of the spectral bands.

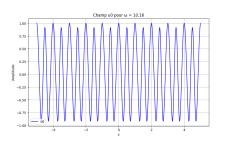


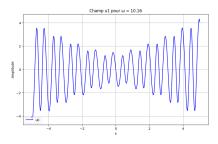
▶ For ω tending to ω_{\dagger} , the two propagating modes degenerate and their flux of energy vanishes.

27 / 33

Waves packets

▶ At ω_{\dagger} , there is a Jordan chain of length one with corresponding generalized eigenfunctions u_0 , u_1 .

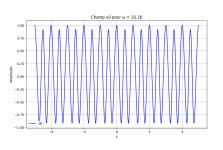


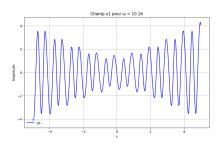


Define the waves packets $W_{\pm} := u_1 \pm i u_0$. We have $\pm \phi(W_{\pm}) > 0$.

Waves packets

▶ At ω_{\dagger} , there is a Jordan chain of length one with corresponding generalized eigenfunctions u_0 , u_1 .





Define the waves packets $W_{\pm} := u_1 \pm i u_0$. We have $\pm \phi(W_{\pm}) > 0$.

• At ω_{\dagger} , we have the new scattering solutions U_{\dagger}^{\pm} such that

$$U_{\dagger}^{+} = \begin{vmatrix} W_{+} + \mathscr{R}^{+} W_{-} \\ \mathscr{T} W_{+} \end{vmatrix} \qquad U_{\dagger}^{-} = \begin{vmatrix} \mathscr{T} W_{-} & x \to -\infty \\ W_{-} + \mathscr{R}^{-} W_{+} & x \to +\infty. \end{vmatrix}$$

Scattering matrices

▶ For $\omega = \omega_{\dagger} + \delta$ with $\delta > 0$, we denote by

$$\mathbb{S} = \begin{pmatrix} R^+ & T \\ T & R^- \end{pmatrix}$$

the usual scattering matrix, R^{\pm} , T being the scattering coef of (\mathcal{P}) .

▶ For $\omega = \omega_{\dagger}$, we denote by

$$\mathscr{S}_{\dagger} = \begin{pmatrix} \mathscr{R}^{+} & \mathscr{T} \\ \mathscr{T} & \mathscr{R}^{-} \end{pmatrix}$$

the threshold scattering matrix.

Scattering matrices

• For $\omega = \omega_{\dagger} + \delta$ with $\delta > 0$, we denote by

$$\mathbb{S} = \begin{pmatrix} R^+ & T \\ T & R^- \end{pmatrix}$$

the usual scattering matrix, R^{\pm} , T being the scattering coef of (\mathcal{P}) .

▶ For $\omega = \omega_{\dagger}$, we denote by

$$\mathscr{S}_{\dagger} = \begin{pmatrix} \mathscr{R}^{+} & \mathscr{T} \\ \mathscr{T} & \mathscr{R}^{-} \end{pmatrix}$$

the threshold scattering matrix.

PROPOSITION. Both $\mathbb S$ and $\mathscr S_\dagger$ are symmetric unitary matrices.

 \Rightarrow the eigenvalues of \mathbb{S} , \mathscr{S}_{\dagger} are located on the **unit circle**.

Limit of $\omega \mapsto \mathbb{S}(\omega)$ at ω_{\dagger}

Theorem. If -1 is

• not an eigenvalue of \mathcal{S}_{\dagger} (generic case), then

$$\lim_{\delta \to 0^+} \mathbb{S}(\omega_\dagger + \delta) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{(zero transmission)};$$

• an eigenvalue of multiplicity one of \mathcal{S}_{\dagger} then

$$\lim_{\delta \to 0^+} \mathbb{S}(\omega_\dagger + \delta) = \frac{1}{1 + \alpha^2} \begin{pmatrix} \alpha^2 - 1 & 2\alpha \\ 2\alpha & \alpha^2 - 1 \end{pmatrix} \qquad (T = 1 \text{ can occur});$$

• an eigenvalue of multiplicity two of \mathcal{S}_{\dagger} then

$$\lim_{\delta \to 0^+} \mathbb{S}(\omega_{\dagger} + \delta) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{(zero transmission)}.$$

Limit of $\omega \mapsto \mathbb{S}(\omega)$ at ω_{\dagger}

Theorem. If -1 is

• not an eigenvalue of \mathcal{S}_{\dagger} (generic case), then

$$\lim_{\delta \to 0^+} \mathbb{S}(\omega_{\dagger} + \delta) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{(zero transmission)};$$

 \bullet an eigenvalue of multiplicity one of \mathcal{S}_{\dagger} then

$$\lim_{\delta \to 0^+} \mathbb{S}(\omega_{\dagger} + \delta) = \frac{1}{1 + \alpha^2} \begin{pmatrix} \alpha^2 - 1 & 2\alpha \\ 2\alpha & \alpha^2 - 1 \end{pmatrix} \qquad (T = 1 \text{ can occur});$$

• an eigenvalue of multiplicity two of \mathcal{S}_{\dagger} then

$$\lim_{\delta \to 0^+} \mathbb{S}(\omega_{\dagger} + \delta) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \text{(zero transmission)}.$$

In general, at the edge of the spectral bands, T tends to 0. However for certain defects, one can have T = 1.

 $an nave \mathbf{1} - \mathbf{1}.$

Numerical illustration

▶ $t \mapsto \Re e(u(x)e^{-i\omega t})$, $\omega = \omega_{\dagger} + \delta$, in a case where $\dim \ker(\mathscr{S} + \mathrm{Id}) = 1$.

Outline of the talk

1 Wave propagation in periodic waveguides

2 Scattering by a defect

- 3 Perfect transmission
 - A first mechanism
 - Perfect transmission via the use of the Fano resonance
 - Study at the edges of the spectral bands

Conclusion

What we did

- ▶ We considered the scattering of waves in 1D periodic waveguides by local defects.
- We presented three mechanisms to get T = 1.
 - Tunning the length of long ligaments;
 - Playing with the Fano resonance;
 - Working at the edges of the spectral bands.

Conclusion

What we did

- ▶ We considered the scattering of waves in 1D periodic waveguides by local defects.
- We presented three mechanisms to get T = 1.
 - Tunning the length of long ligaments;
 - Playing with the Fano resonance;
 - Working at the edges of the spectral bands.

Future work

- ♠ How to hide given obstacles?
- \spadesuit How to adapt these ideas in dimension d > 2?
- \spadesuit For a given defect, can we identify the frequencies such that R=0 as the spectrum of some operator?

Thank you for your attention!