# Playing with thin resonant ligaments in acoustic waveguides

#### Lucas Chesnel<sup>1</sup>

Coll. with J. Heleine<sup>2</sup> and S.A. Nazarov<sup>3</sup>.

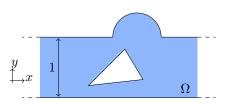
<sup>1</sup>Idefix team, Inria/Ensta Paris, France

<sup>2</sup>IMT, Univ. Paul Sabatier, France

<sup>3</sup>FMM, St. Petersburg State University, Russia







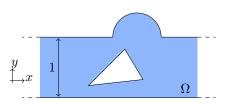
$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right.$$



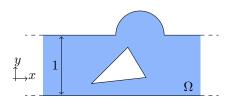
$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right|$$

► For this problem, the modes are

$$\begin{array}{ll} \text{Propagating} & \left| \begin{array}{ll} w_n^\pm(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N - 1 \rrbracket \\ \text{Evanescent} & \left| \begin{array}{ll} w_n^\pm(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \geq N. \end{array} \right. \end{array}$$

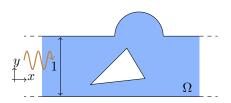


$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right.$$



$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right|$$

• We fix  $k \in (0, \pi)$  so that only the plane waves  $e^{\pm ikx}$  can propagate.



$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right.$$

- We fix  $k \in (0; \pi)$  so that only the plane waves  $e^{\pm ikx}$  can propagate.
- ▶ The scattering of the wave  $e^{ikx}$  leads us to consider the solutions of  $(\mathscr{P})$  with the decomposition

$$u = \begin{vmatrix} e^{ikx} + Re^{-ikx} + \dots & x \to -\infty \\ Te^{+ikx} + \dots & x \to +\infty \end{vmatrix}$$

 $R, T \in \mathbb{C}$  are the scattering coefficients, the ... are expon. decaying terms.

- We have the relation of conservation of energy  $|R|^2 + |T|^2 = 1$ .
- Without obstacle,  $u=e^{ikx}$  so that (R,T)=(0,1).

- With an obstacle, in general  $(R,T) \neq (0,1)$ .

# Introduction

- We have the relation of conservation of energy  $|R|^2 + |T|^2 = 1$ .
- Without obstacle,  $u = e^{ikx}$  so that (R, T) = (0, 1).

- With an obstacle, in general  $(R,T) \neq (0,1)$ .

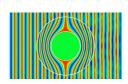
#### Initial goal

We wish to identify situations (geometries, k) where R = 0 (zero reflection) or T = 1 (perfect invisibility)  $\Rightarrow$  cloaking at "infinity".



**Difficulty:** the scattering coefficients have a non explicit and non linear dependence wrt the geometry and k.

 $\rightarrow$  Optimization techniques fail due to local minima.



Remark: different from the usual cloaking picture (Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09) because we wish to control only the scattering coef..

 $\rightarrow$  Less ambitious but doable without fancy materials (and relevant in practice).

#### Outline of the talk

1 Construction of small invisible perturbations

2 Cloaking of given large obstacles with resonant ligaments

3 Playing with resonant ligaments for other applications

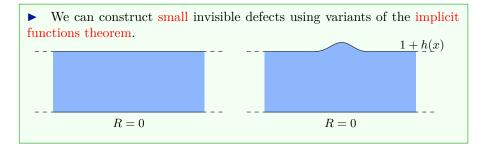
#### Outline of the talk

1 Construction of small invisible perturbations

2 Cloaking of given large obstacles with resonant ligaments

3 Playing with resonant ligaments for other applications

# Perturbative techniques: general picture



For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:



For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:

Note that R(0) = 0 (no obstacle leads to null measurements).



For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:

Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.



For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:

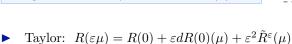
Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.



• We look for h of the form  $h = \varepsilon \mu$  with  $\varepsilon > 0$  small and  $\mu$  to determine.

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:

Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.



1 + h(x)

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:

Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.

1+h(x)

► Taylor:  $R(\varepsilon \mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:

Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.



► Taylor:  $R(\varepsilon \mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that  $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.

Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that  $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto

$$dR(0)(\mu_0) = 0$$
,

$$dR(0)(\mu_0) = 0,$$
  $dR(0)(\mu_1) = 1,$ 

$$\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$$

1 + h(x)

$$dR(0)(\mu_2) = i.$$

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:



Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.

► Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:



Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.

► Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \Leftrightarrow$$

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:



Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.

► Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 dR(0)(\mu_1) + \tau_2 dR(0)(\mu_2)) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:



Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.

► Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 + i\tau_2) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

- For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:
- Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.



► Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon (\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top}. \end{vmatrix}$$

- For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$  the reflection coef. in the geometry:
- Our goal: to find  $h \not\equiv 0$  such that R(h) = 0.



► Taylor:  $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$ .

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

Take  $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$  where the  $\tau_n$  are real parameters to set:

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon (\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top}. \end{vmatrix}$$

 $G^{\varepsilon}$  is a contraction  $\Rightarrow$  the fixed-point equation has a unique solution  $\vec{\tau}^{\mathrm{sol}}$ .

For  $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ , denote  $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find 
$$h \not\equiv 0$$
 such that  $R(h) = 0$ .

► Taylor: 
$$R(\varepsilon \mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$
.

We can show that 
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto  $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$ 

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

► Take 
$$\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$$
 where the  $\tau_n$  are real parameters to set:

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon (\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top}. \end{vmatrix}$$

 $G^{\varepsilon}$  is a contraction  $\Rightarrow$  the fixed-point equation has a unique solution  $\vec{\tau}^{\text{sol}}$ . Set  $h^{\text{sol}} := \varepsilon \mu^{\text{sol}}$ . We have  $R(h^{\text{sol}}) = 0$  (non reflecting perturbation).

1 + h(x)



▶ Using classical results of asymptotic analysis, we obtain

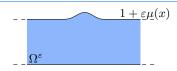
$$R(\varepsilon\mu) = 0 + \varepsilon \left( -\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} \, dx \right) + O(\varepsilon^2).$$



▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left( -\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto  $\Rightarrow$  we can get non trivial  $\Omega$  s.t. R = 0.

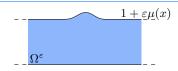


▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left( -\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto  $\Rightarrow$  we can get non trivial  $\Omega$  s.t. R = 0.

▶ Can we use the technique to construct  $\Omega$  such that T=1?



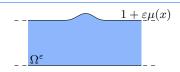
▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left( -\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto  $\Rightarrow$  we can get non trivial  $\Omega$  s.t. R = 0.

▶ Can we use the technique to construct  $\Omega$  such that T=1? We obtain

$$T(\varepsilon\mu) - 1 = 0 + \varepsilon \cdot 0 + O(\varepsilon^2).$$



▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left( -\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

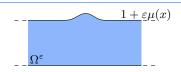
 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto  $\Rightarrow$  we can get non trivial  $\Omega$  s.t. R = 0.

▶ Can we use the technique to construct  $\Omega$  such that T=1? We obtain

$$T(\varepsilon\mu) - 1 = 0 + \varepsilon \frac{\mathbf{0}}{\mathbf{0}} + O(\varepsilon^2).$$



dT(0) is not onto  $\Rightarrow$  the approach fails to impose T=1.



▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left( -\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$  is onto  $\Rightarrow$  we can get non trivial  $\Omega$  s.t. R = 0.

▶ Can we use the technique to construct  $\Omega$  such that T=1? We obtain

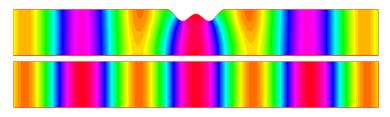
$$T(\varepsilon \mu) - 1 = 0 + \varepsilon \frac{0}{0} + O(\varepsilon^2).$$



dT(0) is not onto  $\Rightarrow$  the approach fails to impose T=1.

# Numerical results

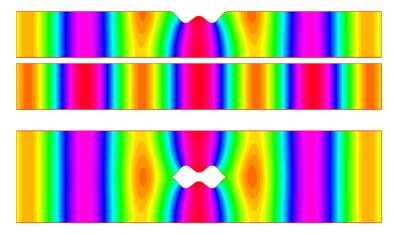
The fixed point problem can be solved iteratively:  $\vec{\tau}^{n+1} = G^{\varepsilon}(\vec{\tau}^n)$ .



Numerics done by a group of students of École Polytechnique with the Freefem++ library  $\rightarrow$  P2 FEM + Dirichlet-to-Neumann to truncate  $\Omega$ .

#### Numerical results

The fixed point problem can be solved iteratively:  $\vec{\tau}^{n+1} = G^{\varepsilon}(\vec{\tau}^n)$ .



Numerics done by a group of students of École Polytechnique with the Freefem++ library  $\to$  P2 FEM + Dirichlet-to-Neumann to truncate  $\Omega$ .

Can one hide a small Dirichlet obstacle centered at  $M_1$ 





Find 
$$u = u_i + u_s$$
 s. t.  

$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^{\varepsilon} := \Omega \setminus \overline{\mathcal{O}_1^{\varepsilon}},$$

$$u = 0 \quad \text{on } \partial \Omega^{\varepsilon},$$

$$u_s \text{ is outgoing.}$$

With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by  $w^{\pm}$  the first propagating modes.

Can one hide a small Dirichlet obstacle centered at  $M_1$ 





Find 
$$u = u_i + u_s$$
 s. t.  

$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^{\varepsilon} := \Omega \setminus \overline{\mathcal{O}_1^{\varepsilon}},$$

$$u = 0 \quad \text{on } \partial \Omega^{\varepsilon},$$

$$u_s \text{ is outgoing.}$$

- With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by  $w^{\pm}$  the first propagating modes.
- In 3D, we obtain

$$R = 0 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})w^{+}(M_{1})^{2}\right) + O(\varepsilon^{2})$$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2}\right) + O(\varepsilon^{2}).$$

Can one hide a small Dirichlet obstacle centered at  $M_1$ 





Find 
$$u = u_i + u_s$$
 s. t.  
 $\Delta u + k^2 u = 0$  in  $\Omega^{\varepsilon} := \Omega \setminus \overline{\mathcal{O}_1^{\varepsilon}}$ ,  
 $u = 0$  on  $\partial \Omega^{\varepsilon}$ ,  
 $u_s$  is outgoing.

- ▶ With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by  $w^{\pm}$  the first propagating modes.
- ► In 3D, we obtain

$$R = 0 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})w^{+}(M_{1})^{2})}{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})} + O(\varepsilon^{2})$$
 Non zero terms! 
$$T = 1 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})}{(6\pi \operatorname{cap}(\mathcal{O}))} + O(\varepsilon^{2})$$

Can one hide a small Dirichlet obstacle centered at  $M_1$ 



Find 
$$u = u_i + u_s$$
 s. t.  

$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^{\varepsilon} := \Omega \setminus \overline{\mathcal{O}_1^{\varepsilon}},$$

$$u = 0 \quad \text{on } \partial \Omega^{\varepsilon},$$

$$u_s \text{ is outgoing.}$$

- With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by  $w^{\pm}$  the first propagating modes.
- In 3D, we obtain

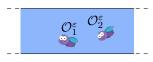
$$R = 0 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})w^{+}(M_{1})^{2})}{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})} + O(\varepsilon^{2})$$
 Non zero terms! 
$$T = 1 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})}{(2i\pi \operatorname{cap}(\mathcal{O}))} + O(\varepsilon^{2})$$

One single small obstacle cannot even be non reflecting.



- Let us try with **TWO** small Dirichlet obstacles at  $M_1$ ,  $M_2$ .
- We obtain  $R = 0 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2\right) + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$



- Let us try with **TWO** small Dirichlet obstacles at  $M_1$ ,  $M_2$ .
- We obtain  $R = 0 + \varepsilon \left| (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right| + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$



- Let us try with **TWO** small Dirichlet obstacles at  $M_1$ ,  $M_2$ .
- We obtain  $R = 0 + \varepsilon \left| (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right| + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{\infty} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

We can find  $M_1$ ,  $M_2$  such that  $R = O(\varepsilon^2)$ .



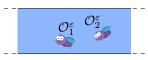
- ▶ Let us try with **TWO** small Dirichlet obstacles at  $M_1$ ,  $M_2$ .
- We obtain  $R = 0 + \varepsilon \left| (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right| + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$



We can find  $M_1$ ,  $M_2$  such that  $R = O(\varepsilon^2)$ . Then moving  $\mathcal{O}_1^{\varepsilon}$  from  $M_1$  to  $M_1 + \varepsilon \tau$ , and choosing a good  $\tau \in \mathbb{R}^3$  (fixed point), we can get R = 0.

### Non reflecting clouds of small obstacles



- Let us try with **TWO** small Dirichlet obstacles at  $M_1$ ,  $M_2$ .
- We obtain  $R = 0 + \varepsilon \left| (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) \right| + O(\varepsilon^{2})$

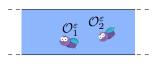
$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$



We can find  $M_1$ ,  $M_2$  such that  $R = O(\varepsilon^2)$ . Then moving  $\mathcal{O}_1^{\varepsilon}$  from  $M_1$  to  $M_1 + \varepsilon \tau$ , and choosing a good  $\tau \in \mathbb{R}^3$  (fixed point), we can get R = 0.

#### Comments:

- $\rightarrow$  Hard part is to justify the asymptotics for the fixed point problem.
- $\rightarrow$  We cannot impose T = 1 with this strategy.
- → When there are more propagative waves, we need more obstacles.



- Let us try with **TWO** small Dirichlet obstacles at  $M_1$ ,  $M_2$ .
- We obtain  $R = 0 + \varepsilon \left[ (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right] + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$



We can find  $M_1$ ,  $M_2$  such that  $R = O(\varepsilon^2)$ . Then moving  $\mathcal{O}_1^{\varepsilon}$  from  $M_1$  to  $M_1 + \varepsilon \tau$ , and choosing a good  $\tau \in \mathbb{R}^3$  (fixed point), we can get R = 0.

#### Comments:

- → Hard part is to justify the asymptotics for the fixed point problem.
- $\rightarrow$  We cannot impose T = 1 with this strategy.
- $\rightarrow$  When there are more propagative waves, we need more obstacles.

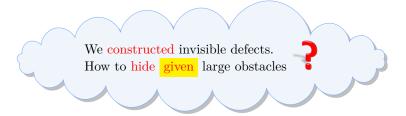


Acting as a team, flies can become invisible!

### Outline of the talk

Construction of small invisible perturbations

2 Cloaking of given large obstacles with resonant ligaments

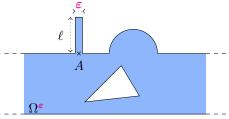


3 Playing with resonant ligaments for other applications

### Setting



Main ingredient of our approach: outer resonators of width  $\varepsilon \ll 1$ .



$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{c} \Delta u + k^2 u = 0 & \text{in } \Omega^{\varepsilon}, \\ \partial_n u = 0 & \text{on } \partial \Omega^{\varepsilon} \end{array} \right.$$

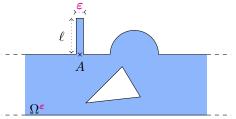
▶ In this geometry, we have the scattering solutions

$$u_{+}^{\varepsilon} = \left| \begin{array}{c} e^{ikx} + R_{+}^{\varepsilon} \, e^{-ikx} + \dots \\ T^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad u_{-}^{\varepsilon} = \left| \begin{array}{c} T^{\varepsilon} \, e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad x \to -\infty \\ x \to +\infty$$

### Setting



Main ingredient of our approach: outer resonators of width  $\varepsilon \ll 1$ .



$$(\mathscr{P}^{\boldsymbol{\varepsilon}}) \left| \begin{array}{c} \Delta u + k^2 u = 0 & \text{in } \Omega^{\boldsymbol{\varepsilon}}, \\ \partial_n u = 0 & \text{on } \partial \Omega^{\boldsymbol{\varepsilon}} \end{array} \right|$$

▶ In this geometry, we have the scattering solutions

$$u_{+}^{\varepsilon} = \left| \begin{array}{c} e^{ikx} + R_{+}^{\varepsilon} \, e^{-ikx} + \dots \\ T^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad u_{-}^{\varepsilon} = \left| \begin{array}{c} T^{\varepsilon} \, e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad x \to -\infty \\ x \to +\infty$$

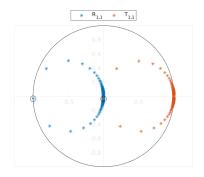
In general, the thin ligament has only a weak influence on the scattering coefficients:  $R_{\pm}^{\varepsilon} \approx R_{\pm}$ ,  $T^{\varepsilon} \approx T$ . But not always ...

### Numerical experiment

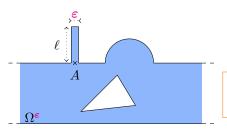
▶ We vary the length of the ligament:

### Numerical experiment

▶ For one particular length of the ligament, we get a standing mode (zero transmission):



To understand the phenomenon, we compute an asymptotic expansion of  $u_+^{\varepsilon}$ ,  $R_+^{\varepsilon}$ ,  $T^{\varepsilon}$  as  $\varepsilon \to 0$ .



$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{c} \Delta u_{+}^{\varepsilon} + k^{2} u_{+}^{\varepsilon} = 0 & \text{in } \Omega^{\varepsilon}, \\ \partial_{n} u_{+}^{\varepsilon} = 0 & \text{on } \partial \Omega^{\varepsilon} \end{array} \right|$$

$$u_{+}^{\varepsilon} = \begin{vmatrix} e^{ikx} + R_{+}^{\varepsilon} e^{-ikx} + \dots \\ T^{\varepsilon} e^{+ikx} + \dots \end{vmatrix}$$

To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'ya et al. 00, Joly & Tordeux 06, Lin, Shipman & Zhang 17, 18, Brandao, Holley, Schnitzer 20,...).

We work with the outer expansions

$$\begin{split} u_+^\varepsilon(x,y) &= u^0(x,y) + \dots & \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \varepsilon^{-1} v^{-1}(y) + v^0(y) + \dots & \text{in the resonator.} \end{split}$$

ightharpoonup Considering the restriction of  $(\mathscr{P}^{\varepsilon})$  to the thin resonator, when  $\varepsilon$  tends to zero, we find that  $v^{-1}$  must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \left| \begin{array}{l} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1 + \ell) \\ v(1) = \partial_y v(1 + \ell) = 0. \end{array} \right.$$

▶ We work with the outer expansions

$$\begin{split} u_+^\varepsilon(x,y) &= u^0(x,y) + \dots & \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \frac{\varepsilon^{-1}}{\varepsilon^{-1}} v^{-1}(y) + v^0(y) + \dots & \text{in the resonator.} \end{split}$$

ightharpoonup Considering the restriction of  $(\mathscr{P}^{\varepsilon})$  to the thin resonator, when  $\varepsilon$  tends to zero, we find that  $v^{-1}$  must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \left| \begin{array}{l} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1 + \ell) \\ v(1) = \partial_y v(1 + \ell) = 0. \end{array} \right.$$



The features of  $(\mathcal{P}_{1D})$  play a key role in the physical phenomena and in the asymptotic analysis.

▶ We work with the outer expansions

$$u_+^{\varepsilon}(x,y) = u^0(x,y) + \dots$$
 in  $\Omega$ ,  
 $u_+^{\varepsilon}(x,y) = \frac{\varepsilon^{-1}}{v^{-1}}(y) + v^0(y) + \dots$  in the resonator.

ightharpoonup Considering the restriction of  $(\mathscr{P}^{\varepsilon})$  to the thin resonator, when  $\varepsilon$  tends to zero, we find that  $v^{-1}$  must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \left| \begin{array}{l} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1 + \ell) \\ v(1) = \partial_y v(1 + \ell) = 0. \end{array} \right.$$



The features of  $(\mathcal{P}_{1D})$  play a key role in the physical phenomena and in the asymptotic analysis.

▶ We denote by  $\ell_{res}$  (resonance lengths) the values of  $\ell$ , given by

$$\ell_{\rm res} := \pi (m + 1/2)/k, \qquad m \in \mathbb{N},$$

such that  $(\mathscr{P}_{1D})$  admits the non zero solution  $v(y) = \sin(k(y-1))$ .

Assume that  $\ell \neq \ell_{\rm res}$ . Then we find  $v^{-1} = 0$  and when  $\varepsilon \to 0$ , we get

$$u_{\pm}^{\varepsilon}(x,y) = u_{\pm} + o(1) \qquad \text{in } \Omega,$$
 
$$u_{\pm}^{\varepsilon}(x,y) = u_{\pm}(A) v_0(y) + o(1) \qquad \text{in the resonator,}$$
 
$$R_{\pm}^{\varepsilon} = R_{\pm} + o(1), \qquad T^{\varepsilon} = T + o(1).$$

Here  $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell)\sin(k(y-1)))$ .

Assume that  $\ell \neq \ell_{\rm res}$ . Then we find  $v^{-1} = 0$  and when  $\varepsilon \to 0$ , we get

$$u_{\pm}^{\varepsilon}(x,y) = \mathbf{u}_{\pm} + o(1) \qquad \text{in } \Omega,$$

$$u_{\pm}^{\varepsilon}(x,y) = u_{\pm}(A) v_0(y) + o(1) \qquad \text{in the resonator,}$$

$$R_{\pm}^{\varepsilon} = \mathbf{R}_{\pm} + o(1), \qquad T^{\varepsilon} = \mathbf{T} + o(1).$$

Here  $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell)\sin(k(y-1)))$ .



The thin resonator has no influence at order  $\varepsilon^0$ .

 $\rightarrow$  Not interesting for our purpose because we want  $\begin{vmatrix} R_{\pm}^{\varepsilon} = 0 + \dots \\ T^{\varepsilon} = 1 + \dots \end{vmatrix}$ 

For  $\ell = \ell_{\rm res}$ , when  $\varepsilon \to 0$ , we obtain

$$\begin{split} u_+^\varepsilon(x,y) &= u_+(x,y) + \frac{ak\gamma(x,y)}{} + o(1) &\quad \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \varepsilon^{-1} a \sin(k(y-1)) + O(1) &\quad \text{in the resonator}, \\ R_+^\varepsilon &= R_+ + \frac{iau_+(A)}{2} + o(1), \qquad T^\varepsilon &= T + \frac{iau_-(A)}{2} + o(1). \end{split}$$

Here  $\gamma$  is the outgoing Green function such that  $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$  and

$$ak = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}.$$

▶ For  $\ell = \ell_{res}$ , when  $\varepsilon \to 0$ , we obtain

$$u_+^{\varepsilon}(x,y) = u_+(x,y) + \frac{ak\gamma(x,y)}{ak\gamma(x,y)} + o(1) \quad \text{in } \Omega,$$

$$u_+^{\varepsilon}(x,y) = \varepsilon^{-1} \frac{a}{a} \sin(k(y-1)) + O(1) \quad \text{in the resonator},$$

$$R_+^{\varepsilon} = R_+ + \frac{iau_+(A)/2}{ak\gamma(x,y)} + o(1), \qquad T^{\varepsilon} = T + \frac{iau_-(A)/2}{ak\gamma(x,y)} + o(1).$$

Here  $\gamma$  is the outgoing Green function such that  $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$  and

$$ak = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}.$$



This time the thin resonator has an influence at order  $\varepsilon^0$ 

▶ For  $\ell = \ell_{res} + \varepsilon \eta$  with  $\eta \in \mathbb{R}$  fixed, when  $\varepsilon \to 0$ , we obtain

$$\begin{split} u_+^\varepsilon(x,y) &= u_+(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) & \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) & \text{in the resonator,} \\ R_+^\varepsilon &= R_+ + \frac{ia(\eta)u_+(A)/2}{a(\eta)u_+(A)/2} + o(1), \qquad T^\varepsilon &= T + \frac{ia(\eta)u_-(A)/2}{a(\eta)u_-(A)/2} + o(1). \end{split}$$

Here  $\gamma$  is the outgoing Green function such that  $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$  and

$$a(\eta)k = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln|\varepsilon| + C_{\Xi} + \eta}.$$

For  $\ell = \ell_{res} + \varepsilon \eta$  with  $\eta \in \mathbb{R}$  fixed, when  $\varepsilon \to 0$ , we obtain

$$u_+^{\varepsilon}(x,y) = u_+(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) \quad \text{in } \Omega,$$

$$u_+^{\varepsilon}(x,y) = \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) \quad \text{in the resonator},$$

$$R_+^{\varepsilon} = R_+ + \frac{ia(\eta)u_+(A)/2}{a(\eta)u_+(A)/2} + o(1), \qquad T^{\varepsilon} = T + \frac{ia(\eta)u_-(A)/2}{a(\eta)u_-(A)/2} + o(1).$$

Here  $\gamma$  is the outgoing Green function such that  $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$  and

$$a(\eta)k = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln|\varepsilon| + C_{\Xi} + \eta}.$$



This time the thin resonator has an influence at order  $\varepsilon^0$  and it depends on the choice of  $\eta$ !



From this expansion, we find that asymptotically, when the length of the resonator is perturbed **around**  $\ell_{res}$ ,  $R_+^{\varepsilon}$ ,  $T^{\varepsilon}$  run on circles whose features depend on the choice for A.



From this expansion, we find that asymptotically, when the length of the resonator is perturbed around  $\ell_{res}$ ,  $R_+^{\varepsilon}$ ,  $T^{\varepsilon}$  run on circles whose features depend on the choice for A.

• Using the expansions of  $u_{\pm}(A)$  far from the obstacle, one shows:

PROPOSITION: There are positions of the resonator A such that the circle  $\{R_+^0(\eta) \mid \eta \in \mathbb{R}\}$  passes through zero.

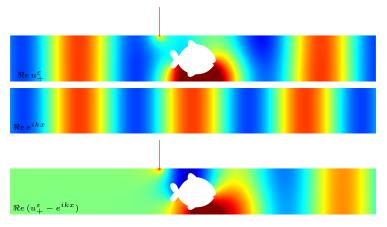


From this expansion, we find that asymptotically, when the length of the resonator is perturbed around  $\ell_{res}$ ,  $R_+^{\varepsilon}$ ,  $T^{\varepsilon}$  run on circles whose features depend on the choice for A.

Using the expansions of  $u_{\pm}(A)$  far from the obstacle, one shows:

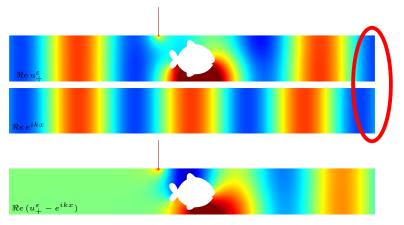
PROPOSITION: There are **positions of the resonator** A such that the circle  $\{R_+^0(\eta) \mid \eta \in \mathbb{R}\}$  passes **through zero**.  $\Rightarrow \exists$  situations s.t.  $R_+^{\varepsilon} = 0 + o(1)$ .

Example of situation where we have almost zero reflection ( $\varepsilon = 0.01$ ).



Simulations realized with the Freefem++ library.

**Example of situation where we have almost zero reflection** ( $\varepsilon = 0.01$ ).



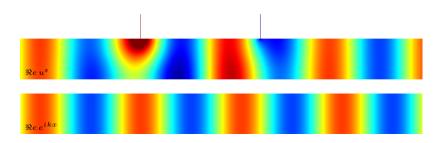
Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when  $R_+^{\varepsilon} = 0$ ,  $|T^{\varepsilon}| = 1$ .

 $\rightarrow$  To cloak the object, it remains to compensate the phase shift!

### Phase shifter

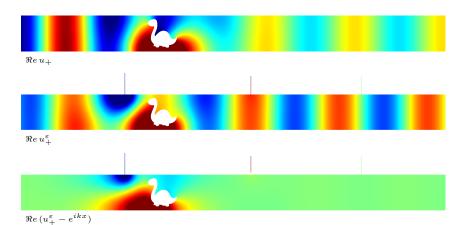
▶ Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.



• Here the device is designed to obtain a phase shift approx. equal to  $\pi/4$ .

### Cloaking with three resonators

- ▶ Now working in two steps, we can approximately cloak any object with three resonators:
- 1) With one resonant ligament, first we get almost zero reflection;
- 2) With two additional resonant ligaments, we compensate the phase shift.



### Cloaking with two resonators

▶ Working a bit more, one can show that two resonators are enough to cloak any object.

$$t \mapsto \Re e \left( u_+(x,y) e^{-ikt} \right)$$

$$t\mapsto \Re e\,(u_+^\varepsilon(x,y)e^{-ikt})$$

$$t\mapsto \Re e\,(e^{i\,k\,(x\,-\,t\,)})$$

#### Outline of the talk

1 Construction of small invisible perturbations

2 Cloaking of given large obstacles with resonant ligaments

3 Playing with resonant ligaments for other applications

➤ We work at higher wavenumber so that two modes can propagate.

#### Goal: find a geometry such that:

- 1) energy is completely transmitted;
- 2) mode 1 is transformed into mode 2.
- ▶ We decided to work in a geometry with thin ligaments:

```
t \mapsto \Re e \left( v_1 e^{-i\omega t} \right)
```

```
t \mapsto \Re e \left( v_2 e^{-i\omega t} \right)
```

▶ Tuning precisely the positions and lengths of the ligaments, we can ensure absence of reflection and mode conversion.

$$t\mapsto \Re e\,(v_1e^{-i\omega t})$$

$$t\mapsto \Re e\,(v_2e^{-i\,\omega\,t})$$

# Acoustic energy distributor

• We display  $t \mapsto \Re e(v(x,y)e^{-i\omega t})$ .

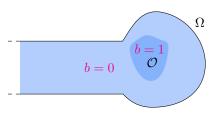
Tuning precisely the length of the two ligaments, we can:



1) ensure absence of reflection;

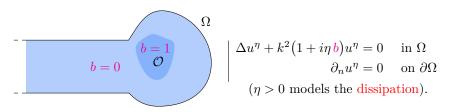
&~2) control the ratio of energy transmitted in the output channels.

 $\triangleright$  Consider the scattering of the incident plane wave in a half-waveguide containing a dissipative inclusion  $\mathcal{O}$ :



$$\begin{vmatrix} \Delta u^{\eta} + k^{2} (1 + i\eta \, b) u^{\eta} = 0 & \text{in } \Omega \\ \partial_{n} u^{\eta} = 0 & \text{on } \partial \Omega \\ (\eta > 0 \text{ models the dissipation}). \end{vmatrix}$$

 $\triangleright$  Consider the scattering of the incident plane wave in a half-waveguide containing a dissipative inclusion  $\mathcal{O}$ :

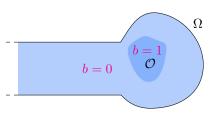


▶ This problems admits the solution

$$u^{\eta} = e^{ikx} + R^{\eta} e^{-ikx} + \dots$$

where  $R^{\eta} \in \mathbb{C}$  and the ... are expon. decaying terms.

 $\triangleright$  Consider the scattering of the incident plane wave in a half-waveguide containing a dissipative inclusion  $\mathcal{O}$ :

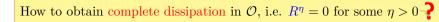


$$\begin{vmatrix} \Delta u^{\eta} + k^{2} (1 + i\eta b) u^{\eta} = 0 & \text{in } \Omega \\ \partial_{n} u^{\eta} = 0 & \text{on } \partial \Omega \\ (\eta > 0 \text{ models the dissipation}). \end{vmatrix}$$

▶ This problems admits the solution

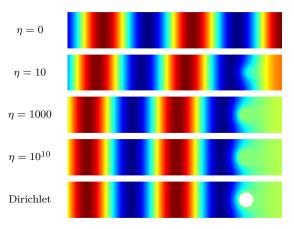
$$u^{\eta} = e^{ikx} + R^{\eta} e^{-ikx} + \dots$$

where  $R^{\eta} \in \mathbb{C}$  and the ... are expon. decaying terms.

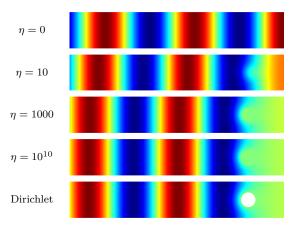


For  $\eta = 0$ , conservation of energy implies  $|R^0| = 1$ .

- For  $\eta = 0$ , conservation of energy implies  $|R^0| = 1$ .
- ▶ For  $\eta \to +\infty$ , the inclusion behaves as a Dirichlet obstacle and  $|R^{\eta}| \to 1$ .



- For  $\eta = 0$ , conservation of energy implies  $|R^0| = 1$ .
- ▶ For  $\eta \to +\infty$ , the inclusion behaves as a Dirichlet obstacle and  $|R^{\eta}| \to 1$ .



The curve  $\eta \mapsto |R^{\eta}|$  has a minimum but the latter in general is not zero!

For any  $\Omega$ ,  $\mathcal{O}$  and  $\eta > 0$ , we have shown that we can add a well-designed resonant ligament so that  $R^{\eta} \approx 0$  in the new geometry

$$t \mapsto \Re e \left( u^{\eta} e^{-i\omega t} \right)$$

(see also Merkel, Theocharis, Richoux, Romero-Garcia, Pagneux 15).

### Outline of the talk

1 Construction of small invisible perturbations

2 Cloaking of given large obstacles with resonant ligaments

3 Playing with resonant ligaments for other applications

### Conclusion

#### What we did

1) We constructed small smooth non reflecting perturbations of the reference strip.

We explained how clouds of small obstacles can be non reflecting.

- 2) We showed how to hide approximately  $(T \approx 1)$  given large obstacles using thin resonant ligaments.
- 3) We also used thin resonant ligaments to create mode converters, energy distributors and perfect absorbers.

#### Future work

- ♠ Can one hide given large obstacles at higher frequency?
- ♠ Can one hide exactly given large obstacles?
- ♠ Can we get for example small reflection for an interval of frequencies?
- ♦ What can be done for water-waves, electromagnetism,...?

#### A few references



L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer resonators. ZAMP, vol. 73, 98, 2022.

L. Chesnel, J. Heleine, S.A. Nazarov. Design of a mode converter using thin resonant ligaments, Comm. Math. Sci., vol. 20, 2:25-445, 2022.

L. Chesnel, J. Heleine, S.A. Nazarov, J. Taskinen. Acoustic waveguide with a dissipative inclusion, Math. Mod. Num. Anal., to appear, 2023.

L. Chesnel, S.A. Nazarov. Design of an acoustic energy distributor using thin resonant slits, Proc. R. Soc. A., vol. 477, 2247:20200896, 2021.

L. Chesnel, S.A. Nazarov. Team organization may help swarms of flies to become invisible, Inverse Problems and Imaging, vol. 10, 4:977-1006, 2016.

N. Jimenez, V. Romero-Garcia, V. Pagneux, J.-P. Groby. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems, Sci. Rep., 7:1, 1-12, 2017.

A. Merkel, G. Theocharis, O. Richoux, V. Romero-Garcia, V. Pagneux. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Inverse Problems and Imaging, vol. 10, 4:977-1006, 2016.

Thank you for your attention!