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Introduction 1/3

▶ We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u + k2u = 0 in Ω,
∂nu = 0 on ∂Ω

▶ We fix k ∈ (0; π) so that only the plane waves e±ikx can propagate.

▶ The scattering of these waves leads us to consider the solutions of (P)
with the decomposition

u+ = eikx + R+ e−ikx + . . .
T e+ikx + . . .

u− = T e−ikx + . . . x → −∞
e−ikx + R− e+ikx + . . . x → +∞

R±, T ∈ C are the scattering coefficients , the . . . are expon. decaying terms.
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Introduction 2/3
▶ We have the relations of conservation of energy |R±|2 + |T |2 = 1.

- Without obstacle, u+ = eikx so that (R+, T ) = (0, 1).

- With an obstacle, in general (R+, T ) ̸= (0, 1).

Goal of the talk

We wish to identify situations (geometries, k) where R± = 0 and/or T = 1
(as if there were no obstacle) ⇒ cloaking at “infinity”.

3 / 35



Introduction 2/3
▶ We have the relations of conservation of energy |R±|2 + |T |2 = 1.

- Without obstacle, u+ = eikx so that (R+, T ) = (0, 1).

- With an obstacle, in general (R+, T ) ̸= (0, 1).

Goal of the talk

We wish to identify situations (geometries, k) where R± = 0 and/or T = 1
(as if there were no obstacle) ⇒ cloaking at “infinity”.

3 / 35



Introduction 3/3

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry and k.

Remark: different from the usual cloaking picture
(Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09)
because we wish to control only the scattering coef..

→ Less ambitious but doable without fancy materials
(and relevant in practice).
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Outline of the talk

We present two different points of view on these questions of invisibility:

1 Cloaking of obstacles

Asymptotic analysis:
k and Ω are given, we explain how to perturb the geometry using
thin resonant ligaments to get T ≈ 1.

2 A spectral approach to determine non reflecting wavenumbers

Spectral theory:
Ω is given, we explain how to find non reflecting k by solving an
unusual spectral problem.

5 / 35



Outline of the talk

We present two different points of view on these questions of invisibility:

1 Cloaking of obstacles

Asymptotic analysis:
k and Ω are given, we explain how to perturb the geometry using
thin resonant ligaments to get T ≈ 1.

2 A spectral approach to determine non reflecting wavenumbers

Spectral theory:
Ω is given, we explain how to find non reflecting k by solving an
unusual spectral problem.

6 / 35



Setting

Main ingredient of our approach: outer resonators of width ε ≪ 1.
ε

ℓ

A

Ωε

(Pε) ∆u + k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

▶ In this geometry, we have the scattering solutions

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

uε
− = T ε e−ikx + . . . x → −∞

e−ikx + Rε
− e+ikx + . . . x → +∞

In general, the thin ligament has only a weak influence on the scattering
coefficients: Rε

± ≈ R±, T ε ≈ T . But not always ...
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Numerical experiment

▶ We vary the length of the ligament:
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Numerical experiment

▶ For one particular length of the ligament, we get a standing mode (zero
transmission):
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Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion
of uε

+, Rε
+, T ε as ε → 0.

ε

ℓ

A

Ωε

(Pε) ∆uε
+ + k2uε

+ = 0 in Ωε,
∂nuε

+ = 0 on ∂Ωε

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

▶ To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin & Zhang 17, 18, Brandao, Holley, Schnitzer 20,...).
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Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).
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Asymptotic analysis – Non resonant case

▶ Assume that ℓ ̸= ℓres . Then we find v−1 = 0 and when ε → 0, we get

uε
±(x, y) = u± + o(1) in Ω,

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator,

Rε
± = R± + o(1), T ε = T + o(1).

Here v0(y) = cos(k(y − 1) + tan(k(y − ℓ) sin(k(y − 1).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
± = 0 + . . .

T ε = 1 + . . .
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Asymptotic analysis – Resonant case

▶ For ℓ = ℓres , when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + akγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + iau+(A)/2 + o(1), T ε = T + iau−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ
.

This time the thin resonator has an influence at order ε0
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Asymptotic analysis – Resonant case

▶ For ℓ = ℓres + εη with η ∈ R fixed, when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + ia(η)u+(A)/2 + o(1), T ε = T + ia(η)u−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

a(η)k = −
u+(A)

Γ + π−1 ln |ε| + CΞ + η
.

This time the thin resonator has an influence at order ε0

and it depends on the choice of η!
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Almost zero reflection
From this expansion, we find that asymptotically, when the length
of the resonator is perturbed around ℓres, Rε

+, T ε run on circles
whose features depend on the choice for A.

▶ Using the expansions of u±(A) far from the obstacle, one shows:
Proposition: There are positions of the resonator A such that the circle
{R0

+(η) | η ∈ R} passes through zero. ⇒ ∃ situations s.t. Rε
+ = 0 + o(1).
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.3).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when Rε
+ = 0, |T ε| = 1.

→ To cloak the object, it remains to compensate the phase shift!
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.01).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when Rε
+ = 0, |T ε| = 1.
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Phase shifter

▶ Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

ℜe uε

ℜe eikx

▶ Here the device is designed to obtain a phase shift approx. equal to π/4.
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Cloaking with three resonators
▶ Now working in two steps, we can approximately cloak any object with
three resonators:
1) With one resonant ligament, first we get almost zero reflection;
2) With two additional resonant ligaments, we compensate the phase shift.

ℜe u+

ℜe uε
+

ℜe (uε
+ − eikx)
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Cloaking with two resonators
▶ Working a bit more, one can show that two resonators are enough to
cloak any object.

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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Outline of the talk

We present two different points of view on these questions of invisibility:

1 Cloaking of obstacles

Asymptotic analysis:
k and Ω are given, we explain how to perturb the geometry using
thin resonant ligaments to get T ≈ 1.

2 A spectral approach to determine non reflecting wavenumbers

Spectral theory:
Ω is given, we explain how to find non reflecting k by solving an
unusual spectral problem.
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Scattering problem
▶ Consider the scattering problem with k ∈ ((N − 1)π; Nπ), N ∈ N∗

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

▶ For this problem, the modes are

Propagating
Evanescent

w±
n (x, y) = e±iβnx cos(nπy), βn =

√
k2 − n2π2, n ∈ J0, N − 1K

w±
n (x, y) = e∓βnx cos(nπy), βn =

√
n2π2 − k2, n ≥ N.

▶ Set vi =
N−1∑
n=0

αnw+
n for some given (αn)N−1

n=0 ∈ CN .

▶ vs is outgoing ⇔ vs =
+∞∑
n=0

γ±
n w±

n for ±x ≥ L, with (γ±
n ) ∈ CN.
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Goal of the section

Definition: v is a non reflecting mode if vs is expo. decaying for x ≤ −L
⇔ γ−

n = 0, n ∈ J0, N − 1K ⇔ energy is completely transmitted.

GOAL
For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

→ Note that non reflection occurs for particular vi to be computed.
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Classical complex scaling to compute vs 1/2

Reminder: vs =
N−1∑
n=0

γ±
n e±iβnx cos(nπy) +

+∞∑
n=N

γ±
n e∓βnx cos(nπy), ±x ≥ L.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

θ
−iβ̃1

−iβ̃0

β̃2

β̃3

Modal exponents for vs (x ≤ −L)

Modal exponents for vθ (x ≤ −L)

▶ For θ ∈ (0; π/2), consider the complex change of variables

Iθ(x) =
−L + (x + L) eiθ for x ≤ −L

x for |x| < L
+L + (x − L) eiθ for x ≥ L.

▶ Set vθ := vs ◦ (Iθ(x), y) .
1) vθ = vs for |x| < L.
2) vθ is exp. decaying at infinity.

vθ =
N−1∑
n=0

γ̃±
n e±iβ̃nx cos(nπy) +

+∞∑
n=N

γ̃±
n e∓β̃nx cos(nπy), ±x ≥ L β̃n = βneiθ
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Classical complex scaling to compute vs 1/2

Reminder: vs =
N−1∑
n=0

γ±
n e±iβnx cos(nπy) +

+∞∑
n=N

γ±
n e∓βnx cos(nπy), ±x ≥ L.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

θ
−iβ̃1

−iβ̃0

β̃2

β̃3

Modal exponents for vs (x ≤ −L) Modal exponents for vθ (x ≤ −L)

▶ For θ ∈ (0; π/2), consider the complex change of variables

Iθ(x) =
−L + (x + L) eiθ for x ≤ −L

x for |x| < L
+L + (x − L) eiθ for x ≥ L.

▶ Set vθ := vs ◦ (Iθ(x), y) .
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Classical complex scaling to compute vs 2/2

▶ vθ solves (∗) αθ
∂

∂x

(
αθ

∂vθ

∂x

)
+ ∂2vθ

∂y2 + k2vθ = 0 in Ω
∂nvθ = −∂nvi on ∂Ω.

αθ(x) = 1 for |x| < L αθ(x) = e−iθ for |x| ≥ L

• Numerically we solve (∗) in the truncated domain

αθ = e−iθ αθ = e−iθαθ = 1

+L−L +R−R

Dirichlet/
Neumann

Dirichlet/
Neumann

⇒ We obtain a good approximation of vs for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).
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Spectral analysis
▶ Define the operators A, Aθ of L2(Ω) such that

Av = −∆v, Aθv = −
(

αθ
∂

∂x

(
αθ

∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

■ A is selfadjoint and positive.
■ σ(A) = σess(A) = [0; +∞).
■ σ(A) may contain embedded eigenvalues in the essential spectrum.

0 ℜe λ
ℑm λess. spectrum

embedded eig.

■ Aθ is not selfadjoint. σ(Aθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 0]}.
■ σess(Aθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0}.
■ real eigenvalues of Aθ = real eigenvalues of A.

2θ0 ℜe λ
ℑm λ

ess. spectrum
embedded eig.
complex res.

25 / 35



Numerical results

▶ We work in the geometry
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Numerical results

▶ Discretized spectrum of Aθ in k (not in k2). We take θ = π/4.
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A new complex spectrum for non reflecting v

▶ Usual complex scaling selects scattered fields which are

outgoing at −∞ and outgoing at +∞.

Important remark: general v decompose as

v = vi +
N−1∑
n=0

γ−
n w−

n +
+∞∑

n=N

γ−
n w−

n x ≤ −L, v =
+∞∑
n=0

γ+
n w+

n x ≥ L.

▶ In other words, non reflecting v are

ingoing at −∞ and outgoing at +∞.

Let us change the sign of the complex scaling at −∞!
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A new complex spectrum for non reflecting v

▶ For θ ∈ (0; π/2), consider the complex change of variables

Jθ(x) =
−L + (x + L) e−iθ for x ≤ −L

x for |x| < L

+L + (x − L) e+iθ for x ≥ L.

▶ Set uθ := v ◦ (Jθ(x), y) . 1) uθ = v for |x| < L.
2) uθ is exp. decaying at infinity.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

−θ
−iβ̂1

−iβ̂0

β̂2

β̂3

Modal exponents for v (x ≤ −L) Modal exponents for uθ (x ≤ −L)

▶ uθ solves (∗) βθ
∂

∂x

(
βθ

∂uθ

∂x

)
+ ∂2uθ

∂y2 + k2uθ = 0 in Ω
∂nuθ = 0 on ∂Ω.

βθ(x) = 1 for |x| < L, βθ(x) = eiθ for x ≤ −L, βθ(x) = e−iθ for x ≥ L
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Spectral analysis

▶ Define the operator Bθ of L2(Ω) such that

Bθv = −
(

βθ
∂

∂x

(
βθ

∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

■ Bθ is not selfadjoint. σ(Bθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 2θ]}.
■ σess(Bθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0} ∪ {n2π2 + t e2iθ, t ≥ 0}.
■ real eigenvalues of Bθ = real eigenvalues of A+non reflecting k2.

2θ

2θ

0 ℜe λ

ℑm λ
essential spectrum
embedded eig.
non reflecting eig.
? eig.
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Remarks

2θ

2θ

0 ℜe λ

ℑm λ
essential spectrum
embedded eig.
non reflecting eig.
? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are
exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp.
growing both at ±∞ ...

2) It is not simple to prove that σ(Bθ) \ σess(Bθ) is discrete.

→ Not true in general!

eikx ◦ Jθ is an eigenfunction for all k ∈ R.

→ C \ σess(Bθ) is not connected ⇒ we cannot apply simply the analytic Fredholm thm.

→ A compact perturbation can change drastically the spectrum ( Bθ is not selfadjoint ).
Numerical consequences?

Aθ − zId invertible

Usual PMLs

Bθ − zId invertible

Conjugated PMLs
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Numerical results

▶ Again we work in the geometry

▶ Define the operators P (Parity), T (Time reversal) such that

Pv(x, y) = v(−x, y) and T v(x, y) = v(x, y).

Prop.: For symmetric Ω = {(−x, y) | (x, y) ∈ Ω}, Bθ is PT symmetric:

PT BθPT = Bθ.

As a consequence, σ(Bθ) = σ(Bθ).

⇒ If λ is an “isolated” eigenvalue located close to the real axis, then λ ∈ R !
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Numerical results
▶ Discretized spectrum in k (not in k2). We take θ = π/4.
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σess(Bθ) (in k)

• The spectrum is indeed stable by conjugation.
• Much more eigenvalues on the real axis than before.

• PMLs with different signs Classical PMLs
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Numerical results

▶ We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).
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Numerical results
▶ Let us focus on the eigenmodes such that 0 < k < π.

First trapped mode Second trapped mode
k = 1.2355... k = 2.3897...

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...

0 0.5 1 1.5 2 2.5 3
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0.6

0.7

0.8

0.9

1

There is perfect agreement!
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Numerical results
▶ To check our results, we compute k 7→ |R(k)| for 0 < k < π.
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Numerical results

▶ Now the geometry is not symmetric in x nor in y:

▶ The operator Bθ is no longer PT -symmetric and we expect:

■ No trapped modes
■ No invariance of the spectrum by complex conjugation.
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Numerical results
▶ Discretized spectrum of Bθ in k (not in k2). We take θ = π/4.
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• Indeed, the spectrum is not symmetric w.r.t. the real axis.
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Numerical results
▶ We compute k 7→ |R(k)| for 0 < k < π.
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k = 1.28 + 0.0003i k = 2.3866 + 0.0005i k = 2.8647 + 0.0243i

Complex eigenvalues also contain information on almost no reflection.
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Outline of the talk

We present two different points of view on these questions of invisibility:

1 Cloaking of obstacles

Asymptotic analysis:
k and Ω are given, we explain how to perturb the geometry using
thin resonant ligaments to get T ≈ 1.

2 A spectral approach to determine non reflecting wavenumbers

Spectral theory:
Ω is given, we explain how to find non reflecting k by solving an
unusual spectral problem.
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Conclusion

Part I

♠ Method to cloak any object in monomode regime using thin
resonators. Two main ingredients:

- Around resonant lengths, effects of order ε0 with perturb. of width ε.
- Explicit dependence wrt to the geometry in the 1D limit resonator.

1) We can similarly hide penetrable obstacles or work in 3D.
2) We can do cloaking at a finite number of wavenumbers (thin

structures are resonant at one wavenumber otherwise act at order ε).
3) With Dirichlet BCs, other ideas must be found.

Part II
♠ Spectral approach to compute non reflecting k (R = 0) for a given Ω.

1) Can we find a spectral approach to compute completely reflecting or
completely invisible k?

2) Can we prove existence of non reflecting k for the PT -symmetric pb?
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Thank you for your attention!
L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer
resonators. ZAMP, vol. 73, 98, 2022.
A.-S. Bonnet-Ben Dhia, L. Chesnel, V. Pagneux. Trapped modes and reflectionless
modes as eigenfunctions of the same spectral problem. PRSA, vol. 474, 2018.
H. Hernandez-Coronado, D. Krejčiřík, P. Siegl. Perfect transmission scattering as a
PT-symmetric spectral problem. Phys. Lett. A, 375(22):2149-2152, 2011.
W.R. Sweeney, C.W. Hsu, A.D. Stone. Theory of reflectionless scattering modes.
Phys. Rev. A, vol. 102, 6:063511, 2020.
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