WORSHOP ASYMPTOTIC ANALYSIS AND SPECTRAL THEORY

A curious spectral behavior for a problem of rounded corner in presence of negative material

Lucas Chesnel¹

Joint work with X. Claeys² and S.A. Nazarov³

Collaboration also with A.-S. Bonnet-Ben Dhia⁴, C. Carvalho⁴ and P. Ciarlet⁴

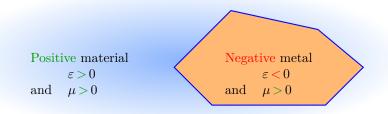
¹Defi team, Inria, CMAP, École Polytechnique, France
 ²LJLL, Paris VI, France
 ³FMM, St. Petersburg State University, Russia
 ⁴POems team, Ensta ParisTech, France

UNIVERSITÉ PARIS-SUD, ORSAY, 06/10/2015

Introduction: general framework

► Scattering by a metal in electromagnetism in time-harmonic regime at optical frequency.

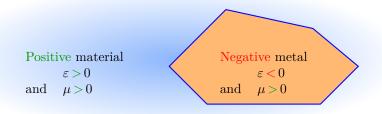
► For metals at optical frequency, $\Re e \varepsilon(\omega) < 0$ and $\Im m \varepsilon(\omega) << |\Re e \varepsilon(\omega)|$. ⇒ We neglect losses and study the ideal case $\varepsilon(\omega) \in (-\infty; 0)$.



Introduction: general framework

► Scattering by a metal in electromagnetism in time-harmonic regime at optical frequency.

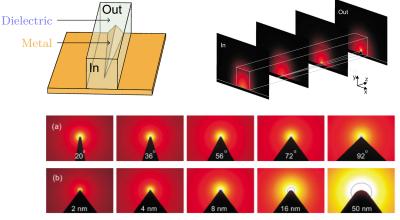
► For metals at optical frequency, $\Re e \varepsilon(\omega) < 0$ and $\Im m \varepsilon(\omega) << |\Re e \varepsilon(\omega)|$. ⇒ We neglect losses and study the ideal case $\varepsilon(\omega) \in (-\infty; 0)$.



▶ Waves called Surface Plasmon Polaritons can propagate at the interface between a dielectric and a negative metal.

Introduction: applications

▶ Surface Plasmons Polaritons can propagate information. Physicists hope to exploit them to reduce the size of computer chips.



Figures from O'Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

▶ In this context, physicists use singular geometries to focus energy. It allows to stock information.

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$$

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

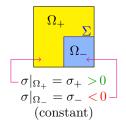
 $(\mathscr{P}) \mid \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ s.t.:} \\ -\operatorname{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array}$

- $\mathrm{H}_{0}^{1}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \, | \, \nabla v \in \mathrm{L}^{2}(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

 $(\mathscr{P}) \mid \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array}$

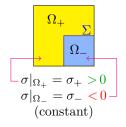
- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$



• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

 $(\mathscr{P}) \mid \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array}$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$



We slightly round the interface Σ :

 $\begin{array}{c} \Omega^{\delta}_{+} & \Sigma^{\delta} \\ & & \Omega^{\delta}_{-} \\ \sigma^{\delta}|_{\Omega_{+}} = \sigma_{+} > 0 \\ \sigma^{\delta}|_{\Omega_{-}} = \sigma_{-} < 0 \end{array}$

$$\left(\mathscr{P}^{\delta}\right) \mid \begin{array}{l} \text{Find } u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \text{ in } \Omega. \end{array}$$

 δ denotes the radius of curvature of the rounded interface at the origin.

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

 $(\mathscr{P}) \mid \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array}$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v|_{\partial\Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$

$$\begin{array}{c}
\Omega_{+} \\
\Sigma \\
\Omega_{-} \\
 \\
\sigma|_{\Omega_{+}} = \sigma_{+} > 0 \\
\sigma|_{\Omega_{-}} = \sigma_{-} < 0 \\
 (constant)
\end{array}$$

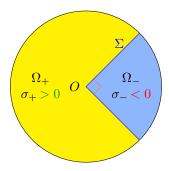
We slightly round the interface Σ :

 $\sigma^{\delta}|_{\Omega_{+}} = \sigma_{+} > 0$ $\sigma^{\delta}|_{\Omega_{-}} = \sigma_{-} < 0$ $\left(\mathscr{P}^{\delta} \right) \ \left| \begin{array}{l} \operatorname{Find} \, u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega) \, \operatorname{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \, \operatorname{in} \, \Omega. \end{array} \right.$

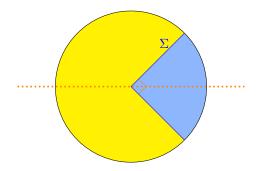
• δ denotes the radius of curvature of the rounded interface at the origin.

What is the behaviour of the sequence $(u^{\delta})_{\delta}$ when δ tends to zero?

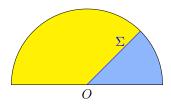
► For the numerical experiments, we round the corner in a particular way



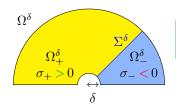
► For the numerical experiments, we round the corner in a particular way



▶ For the numerical experiments, we round the corner in a particular way

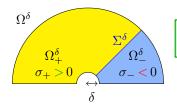


► For the numerical experiments, we round the corner in a particular way



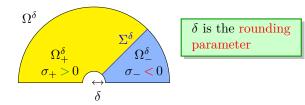
 δ is the rounding parameter

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



 δ is the rounding parameter

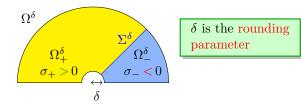
► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



• Our goal is to study the behaviour of the solution, *if it is well-defined*, of

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{c} \operatorname{Find} u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\operatorname{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{ in } \Omega^{\delta}. \end{array} \right.$$

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



Our goal is to study the behaviour of the solution, if it is well-defined, of

$$\left(\mathscr{P}^{\delta} \right) \left| \begin{array}{c} \operatorname{Find} u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{ in } \Omega^{\delta}. \end{array} \right.$$

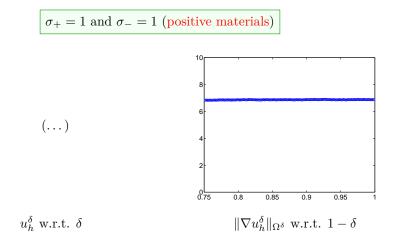
• We approximate u^{δ} , assuming it is well-defined, by a usual P1 Finite Element Method. We compute the solution u_h^{δ} of the discretized problem with *FreeFem++*.

We display the behaviour of u_h^{δ} as $\delta \to 0$.

Numerical experiments: results 1/2

 $\sigma_+ = 1$ and $\sigma_- = 1$ (positive materials)

Numerical experiments: results 1/2



• For positive materials, it is well-known that $(u^{\delta})_{\delta}$ converges to u, the solution in the limit geometry.

- The rate of convergence depends on the regularity of u.
- To avoid to mesh Ω^{δ} , we can approximate u^{δ} by u_h .

Numerical experiments: results 2/2

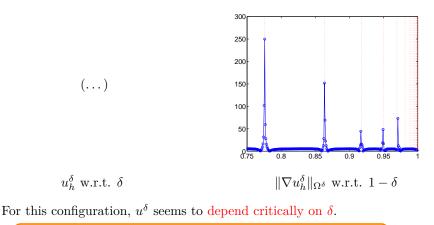
... and what about for a sign-changing σ ???

$$\sigma_+ = 1$$
 and $\sigma_- = -0.9999$

Numerical experiments: results 2/2

... and what about for a sign-changing σ ???

$$\sigma_{+} = 1$$
 and $\sigma_{-} = -0.9999$



In this talk, our goal is to explain the presence of these peaks.

Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

Numerical experiments for the spectral problem

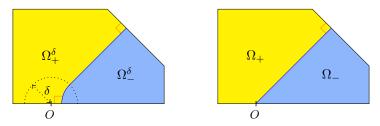
① Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

3 Numerical experiments for the spectral problem

Setting

For ease of exposition, we consider a half rounded corner



We are interested in the spectral problem

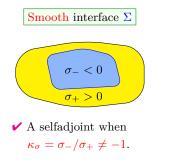
$$\left| \begin{array}{l} \mathrm{Find} \ (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \mathrm{in} \ \Omega. \end{array} \right|$$

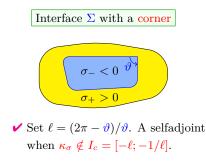
• We define the operator $\mathbf{A}^{\delta} : D(\mathbf{A}^{\delta}) \to \mathbf{L}^{2}(\Omega)$ such that $\begin{vmatrix} D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}^{1}_{0}(\Omega) \mid \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \} \\ \mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u). \end{vmatrix}$

Known results

• We define the operator $A : D(A) \to L^2(\Omega)$ such that $\begin{aligned}
D(A) &= \{ u \in H^1_0(\Omega) \mid \operatorname{div}(\sigma \nabla u) \in L^2(\Omega) \} \\
Au &= \operatorname{div}(\sigma \nabla u).
\end{aligned}$

We have the following properties (see Costabel & Stephan 85, Dauge & Texier 97, Hussein 13, Bonnet-Ben Dhia *et al.* 99,10,12,13):

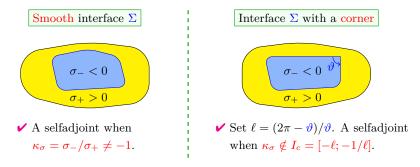




Known results

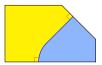
• We define the operator $\mathbf{A} : D(\mathbf{A}) \to \mathbf{L}^2(\Omega)$ such that $\begin{aligned} D(\mathbf{A}) &= \{ u \in \mathrm{H}^1_0(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathrm{L}^2(\Omega) \} \\ \mathbf{A}u &= \mathrm{div}(\sigma \nabla u). \end{aligned}$

We have the following properties (see Costabel & Stephan 85, Dauge & Texier 97, Hussein 13, Bonnet-Ben Dhia *et al.* 99,10,12,13):



Results depend on the smoothness of Σ and on σ .

$$\begin{split} D(\mathbf{A}^{\delta}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}^{\delta} u &= \mathrm{div}(\sigma^{\delta} \nabla u). \end{split}$$

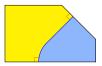


• For $\delta > 0$, the interface is smooth $\Rightarrow A^{\delta}$ selfadjoint iff $\kappa_{\sigma} \neq -1$.

PROPOSITION. If $\kappa_{\sigma} \neq -1$, $\delta > 0$, A^{δ} is selfadjoint with compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \dots \leq \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

$$\begin{split} D(\mathbf{A}^{\delta}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}^{\delta} u &= \mathrm{div}(\sigma^{\delta} \nabla u). \end{split}$$



• For $\delta > 0$, the interface is smooth $\Rightarrow A^{\delta}$ selfadjoint iff $\kappa_{\sigma} \neq -1$.

PROPOSITION. If $\kappa_{\sigma} \neq -1$, $\delta > 0$, A^{δ} is selfadjoint with compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

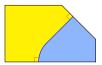
$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \dots \leq \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

Proof: We can construct (u_n^{\pm}) supported in Ω_{\pm}^{δ} such that $\|u_n^{\pm}\|_{L^2(\Omega)} = 1$ and

$$\left(\mathcal{A}^{\delta}u_{n}^{\pm}, u_{n}^{\pm}\right)_{\Omega} = \int_{\Omega_{\pm}} \sigma_{\pm} |\nabla u_{n}^{\pm}|^{2} \, dx \xrightarrow[n \to +\infty]{} \pm \infty$$

We deduce $\inf \mathfrak{S}(A^{\delta}) = -\infty$ and $\sup \mathfrak{S}(A^{\delta}) = +\infty$.

$$\begin{split} D(\mathbf{A}^{\delta}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}^{\delta} u &= \mathrm{div}(\sigma^{\delta} \nabla u). \end{split}$$



• For $\delta > 0$, the interface is smooth $\Rightarrow A^{\delta}$ selfadjoint iff $\kappa_{\sigma} \neq -1$.

PROPOSITION. If $\kappa_{\sigma} \neq -1$, $\delta > 0$, A^{δ} is selfadjoint with compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \dots \leq \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

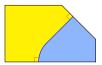
Proof: We can construct (u_n^{\pm}) supported in Ω_{\pm}^{δ} such that $\|u_n^{\pm}\|_{L^2(\Omega)} = 1$ and

$$\left(\mathbf{A}^{\delta}u_{n}^{\pm}, u_{n}^{\pm}\right)_{\Omega} = \int_{\Omega_{\pm}} \sigma_{\pm} |\nabla u_{n}^{\pm}|^{2} \, dx \xrightarrow[n \to +\infty]{} \pm \infty$$

We deduce $\inf \mathfrak{S}(A^{\delta}) = -\infty$ and $\sup \mathfrak{S}(A^{\delta}) = +\infty$.

For $n \in \mathbb{Z}^*$, what is the behaviour of λ_n^{δ} when δ tends to zero?

$$\begin{split} D(\mathbf{A}^{\delta}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}^{\delta} u &= \mathrm{div}(\sigma^{\delta} \nabla u). \end{split}$$



• For $\delta > 0$, the interface is smooth $\Rightarrow A^{\delta}$ selfadjoint iff $\kappa_{\sigma} \neq -1$.

PROPOSITION. If $\kappa_{\sigma} \neq -1$, $\delta > 0$, A^{δ} is selfadjoint with compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \dots \leq \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

Proof: We can construct (u_n^{\pm}) supported in Ω_{\pm}^{δ} such that $\|u_n^{\pm}\|_{L^2(\Omega)} = 1$ and

$$\left(\mathbf{A}^{\delta}u_{n}^{\pm}, u_{n}^{\pm}\right)_{\Omega} = \int_{\Omega_{\pm}} \sigma_{\pm} |\nabla u_{n}^{\pm}|^{2} \, dx \xrightarrow[n \to +\infty]{} \pm \infty$$

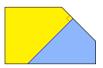
We deduce $\inf \mathfrak{S}(A^{\delta}) = -\infty$ and $\sup \mathfrak{S}(A^{\delta}) = +\infty$.

For $n \in \mathbb{Z}^*$, what is the behaviour of λ_n^{δ} when δ tends to zero?

 \rightarrow This depends on the features of the limit operator...

• Let A denote the limit operator $(\delta = 0)$ such that

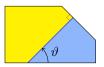
$$\begin{split} D(\mathbf{A}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}u &= \mathrm{div}(\sigma \nabla u). \end{split}$$



• For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} .

• Let A denote the limit operator $(\delta = 0)$ such that

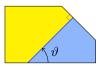
$$\begin{split} D(\mathbf{A}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}u &= \mathrm{div}(\sigma \nabla u). \end{split}$$



For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} . Here, $I_c = [-1; -1/\ell]$ with $\ell = (\pi - \vartheta)/\vartheta$.

• Let A denote the limit operator $(\delta = 0)$ such that

$$\begin{split} D(\mathbf{A}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}u &= \mathrm{div}(\sigma \nabla u). \end{split}$$



► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} . Here, $I_c = [-1; -1/\ell]$ with $\ell = (\pi - \vartheta)/\vartheta$.

♣ When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues:

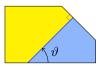
$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \xrightarrow[n \to +\infty]{} +\infty.$$

In this case, there holds $\mathfrak{S}(A^{\delta}) \xrightarrow[\delta \to 0]{} \mathfrak{S}(A)$.

Proof: As when $\delta > 0$.

• Let A denote the limit operator $(\delta = 0)$ such that

$$\begin{split} D(\mathbf{A}) &= \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}u &= \mathrm{div}(\sigma \nabla u). \end{split}$$



► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} . Here, $I_c = [-1; -1/\ell]$ with $\ell = (\pi - \vartheta)/\vartheta$.

♣ When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(\mathbf{A})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \xrightarrow[n \to +\infty]{} +\infty.$$

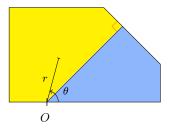
In this case, there holds $\mathfrak{S}(\mathbf{A}^{\delta}) \xrightarrow[\delta \to 0]{} \mathfrak{S}(\mathbf{A})$.

Proof: As when $\delta > 0$.

♣ When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, A is not selfadjoint.

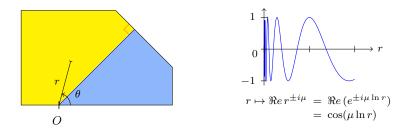
Let us clarify this...

Spectral problem at the limit $\delta = 0$ inside I_c



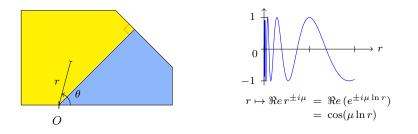
• When $\kappa_{\sigma} \in (-1; -1/\ell)$, there are singularities $r^{\pm i\mu}\phi(\theta)$ with $\mu \in \mathbb{R}^*$, $\phi(0) = \phi(\pi) = 0$, satisfying div $(\sigma \nabla(r^{\pm i\mu}\phi(\theta)) = 0$ in a neighbour. of O.

Spectral problem at the limit $\delta = 0$ inside I_c



• When $\kappa_{\sigma} \in (-1; -1/\ell)$, there are singularities $r^{\pm i\mu}\phi(\theta)$ with $\mu \in \mathbb{R}^*$, $\phi(0) = \phi(\pi) = 0$, satisfying div $(\sigma \nabla(r^{\pm i\mu}\phi(\theta)) = 0$ in a neighbour. of O.

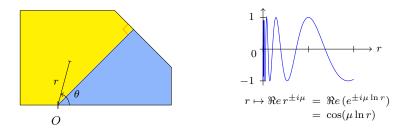
Spectral problem at the limit $\delta = 0$ inside I_c



• When $\kappa_{\sigma} \in (-1; -1/\ell)$, there are singularities $r^{\pm i\mu}\phi(\theta)$ with $\mu \in \mathbb{R}^*$, $\phi(0) = \phi(\pi) = 0$, satisfying div $(\sigma \nabla(r^{\pm i\mu}\phi(\theta)) = 0$ in a neighbour. of O. Set

$$s_{\pm}(x) = \zeta(r)r^{\pm i\mu}\phi(\theta)$$
 $\in \mathrm{L}^{2}(\Omega) \setminus \mathrm{H}^{1}(\Omega)$

Spectral problem at the limit $\delta = 0$ inside I_c

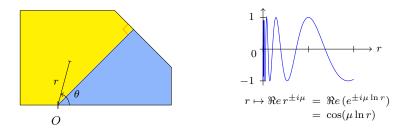


• When $\kappa_{\sigma} \in (-1; -1/\ell)$, there are singularities $r^{\pm i\mu}\phi(\theta)$ with $\mu \in \mathbb{R}^*$, $\phi(0) = \phi(\pi) = 0$, satisfying div $(\sigma \nabla(r^{\pm i\mu}\phi(\theta)) = 0$ in a neighbour. of O. Set

$$s_{\pm}(x) = \zeta(r)r^{\pm i\mu}\phi(\theta)$$
 $\in \mathrm{L}^{2}(\Omega) \setminus \mathrm{H}^{1}(\Omega)$

 $(\zeta \text{ is a cut-off function such that } \zeta = 1 \text{ near } O \text{ and } s_{\pm}|_{\partial\Omega} = 0)$

Spectral problem at the limit $\delta = 0$ inside I_c



• When $\kappa_{\sigma} \in (-1; -1/\ell)$, there are singularities $r^{\pm i\mu}\phi(\theta)$ with $\mu \in \mathbb{R}^*$, $\phi(0) = \phi(\pi) = 0$, satisfying div $(\sigma \nabla(r^{\pm i\mu}\phi(\theta)) = 0$ in a neighbour. of O. Set

$$s_{\pm}(x) = \zeta(r)r^{\pm i\mu}\phi(\theta)$$
 $\in \mathrm{L}^{2}(\Omega) \setminus \mathrm{H}^{1}(\Omega)$

(ζ is a cut-off function such that $\zeta = 1$ near O and $s_{\pm}|_{\partial\Omega} = 0$)

♣ When $\kappa_{\sigma} \in (-1; -1/\ell)$, there holds $D(\mathbf{A}^*) = D(\mathbf{A}) \oplus \operatorname{span}(s_+, s_-)$ (in particular A is not selfadjoint). Moreover, $\mathfrak{S}(\mathbf{A}) = \mathbb{C}$.

► The selfadjoint extensions of A are the operators $A(\tau), \tau \in \mathbb{R}$, such that $D(A(\tau)) = D(A) \oplus \operatorname{span}(s_+ + e^{i\tau}s_-)$ $A(\tau)u = \operatorname{div}(\sigma \nabla u).$

► The selfadjoint extensions of A are the operators $A(\tau), \tau \in \mathbb{R}$, such that $D(A(\tau)) = D(A) \oplus \operatorname{span}(s_+ + e^{i\tau}s_-)$ $A(\tau)u = \operatorname{div}(\sigma \nabla u).$

Proof: Pick two $u_i = \lambda_i (c_+ s_+ + c_- s_-) + \tilde{u}_i$ with $\lambda_i \in \mathbb{C}$, $\tilde{u}_i \in D(A)$. We find $(A^* u_1, u_2)_{\Omega} - (u_1, A^* u_2)_{\Omega} = 2i\mu\lambda_1\overline{\lambda_2} (|c_+|^2 - |c_-|^2).$

Therefore, we must impose $|c_+| = |c_-|$. We take $c_+ = 1$, $c_- = e^{i\tau}$ with $\tau \in \mathbb{R}$.

► The selfadjoint extensions of A are the operators $A(\tau), \tau \in \mathbb{R}$, such that $D(A(\tau)) = D(A) \oplus \operatorname{span}(s_+ + e^{i\tau}s_-)$ $A(\tau)u = \operatorname{div}(\sigma \nabla u).$

Proof: Pick two $u_i = \lambda_i (c_+ s_+ + c_- s_-) + \tilde{u}_i$ with $\lambda_i \in \mathbb{C}$, $\tilde{u}_i \in D(A)$. We find $(A^* u_1, u_2)_{\Omega} - (u_1, A^* u_2)_{\Omega} = 2i\mu\lambda_1\overline{\lambda_2} (|c_+|^2 - |c_-|^2).$

Therefore, we must impose $|c_+| = |c_-|$. We take $c_+ = 1$, $c_- = e^{i\tau}$ with $\tau \in \mathbb{R}$.

For all $\tau \in \mathbb{R}$, $A(\tau)$ has compact resolvent. Its spectrum $\mathfrak{S}(A(\tau))$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \eta_{-n}(\tau) \leq \dots \leq \eta_{-1}(\tau) < 0 \leq \eta_1(\tau) \leq \dots \leq \eta_n(\tau) \dots \underset{n \to +\infty}{\to} +\infty.$$

Proof: As for A^{δ} when $\delta > 0$.

► The selfadjoint extensions of A are the operators $A(\tau), \tau \in \mathbb{R}$, such that $D(A(\tau)) = D(A) \oplus \operatorname{span}(s_+ + e^{i\tau}s_-)$ $A(\tau)u = \operatorname{div}(\sigma \nabla u).$

Proof: Pick two $u_i = \lambda_i (c_+ s_+ + c_- s_-) + \tilde{u}_i$ with $\lambda_i \in \mathbb{C}$, $\tilde{u}_i \in D(A)$. We find $(A^* u_1, u_2)_{\Omega} - (u_1, A^* u_2)_{\Omega} = 2i\mu\lambda_1\overline{\lambda_2} (|c_+|^2 - |c_-|^2).$

Therefore, we must impose $|c_+| = |c_-|$. We take $c_+ = 1$, $c_- = e^{i\tau}$ with $\tau \in \mathbb{R}$.

For all $\tau \in \mathbb{R}$, $A(\tau)$ has compact resolvent. Its spectrum $\mathfrak{S}(A(\tau))$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \eta_{-n}(\tau) \le \dots \le \eta_{-1}(\tau) < 0 \le \eta_1(\tau) \le \dots \le \eta_n(\tau) \dots \underset{n \to +\infty}{\to} +\infty.$$

Proof: As for A^{δ} when $\delta > 0$.

Maybe $\mathfrak{S}(A^{\delta}) \to \mathfrak{S}(A(\tau))$ for some τ as $\delta \to 0$. But for which τ ?

1 Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

3 Numerical experiments for the spectral problem

Asymptotic expansion

From now, we assume that $\kappa_{\sigma} \in (-1; -1/\ell)$.

• Consider $(\lambda^{\delta}, u^{\delta})$ an eigenpair of the original spectral problem.

$$\left| \begin{array}{l} {\rm Find} \ (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times ({\rm H}^1_0(\Omega) \setminus \{0\}) \ {\rm s.t.}: \\ -{\rm div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad {\rm in} \ \Omega. \end{array} \right.$$

• To compute an asymptotic expansion of $(\lambda^{\delta}, u^{\delta})$, we make the ansatz

$$\begin{array}{rcl} \lambda^{\delta} &=& \eta^{\delta} &+& \dots \\ u^{\delta}(x) &=& v^{\delta}(x) &+& \dots & \text{far from } O \\ u^{\delta}(x) &=& V^{\delta}(x/\delta) &+& \dots & \text{near } O \end{array}$$

where η^{δ} , v^{δ} , V^{δ} have to be determined (... stand for lower order terms).

Asymptotic expansion

From now, we assume that $\kappa_{\sigma} \in (-1; -1/\ell)$.

• Consider $(\lambda^{\delta}, u^{\delta})$ an eigenpair of the original spectral problem.

$$\left| \begin{array}{l} \text{Find } (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \text{ in } \Omega. \end{array} \right.$$

To compute an asymptotic expansion of $(\lambda^{\delta}, u^{\delta})$, we make the ansatz

$$\lambda^{\delta} = \eta^{\delta} + \dots$$

 $u^{\delta}(x) = v^{\delta}(x) + \dots$ far from O
 $u^{\delta}(x) = V^{\delta}(x/\delta) + \dots$ near O

where η^{δ} , v^{δ} , V^{δ} have to be determined (... stand for lower order terms).

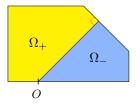
• Note that η^{δ} , v^{δ} , V^{δ} will be defined as solutions of problems set in geometries independent of δ .

Far field

• The far field is defined in the geometry obtained taking $\delta = 0$.

• We find that the pair $(\eta^{\delta}, v^{\delta})$ must verify

$$\begin{aligned} -\mathrm{div}(\sigma^0 \nabla v^\delta) &= \eta^\delta v^\delta & \quad \mathrm{in} \ \Omega \\ v^\delta &= 0 & \quad \mathrm{on} \ \partial \Omega. \end{aligned}$$

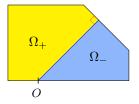


Far field

• The far field is defined in the geometry obtained taking $\delta = 0$.

• We find that the pair $(\eta^{\delta}, v^{\delta})$ must verify

$$-\operatorname{div}(\sigma^{0}\nabla v^{\delta}) = \eta^{\delta}v^{\delta} \quad \text{in } \Omega$$
$$v^{\delta} = 0 \quad \text{on } \partial\Omega.$$

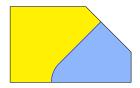


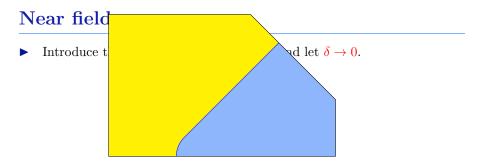
Since we do not know which behaviour to prescribe at O, we allow decomposition on the two singularities s_{\pm} and search for v^{δ} under the form

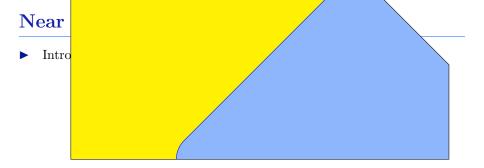
$$\begin{aligned} v^{\delta} &= c^{\delta}_{+} s_{+} &+ c^{\delta}_{-} s_{-} &+ \tilde{v}^{\delta} \\ &= c^{\delta}_{+} r^{i\mu} \phi(\theta) &+ c^{\delta}_{-} r^{-i\mu} \phi(\theta) &+ \tilde{v}^{\delta}, \end{aligned}$$

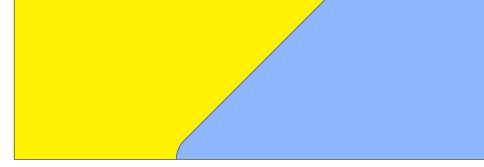
where the jauge functions c_{\pm}^{δ} and $\tilde{v}^{\delta} \in D(\mathbf{A})$ have to be determined.

• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.









• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.

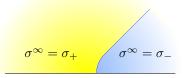
$$\sigma^{\infty} = \sigma_+$$
 $\sigma^{\infty} = \sigma_-$

• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.

$$\sigma^{\infty} = \sigma_+$$
 $\sigma^{\infty} = \sigma_-$

Set
$$U^{\delta}(\xi) = u^{\delta}(\delta\xi)$$
. We have
 $u^{\delta}(x) = V^{\delta}(x/\delta) + \dots$
 $\Leftrightarrow U^{\delta}(\xi) = V^{\delta}(\xi) + \dots$

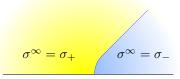
• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.



 $\sigma^{\infty} = \sigma_{-}$ Set $U^{\delta}(\xi) = u^{\delta}(\delta\xi)$. We have $u^{\delta}(x) = V^{\delta}(x/\delta) + \dots$ $\Leftrightarrow U^{\delta}(\xi) = V^{\delta}(\xi) + \dots$

► Letting $\delta \to 0$ in $-\operatorname{div}(\sigma^{\delta}\nabla U^{\delta}) = \delta^{2}\lambda^{\delta}U^{\delta}$, we find that V^{δ} must satisfy $\begin{vmatrix} -\operatorname{div}(\sigma^{\infty}\nabla V^{\delta}) &= 0 & \text{in } \Xi := \mathbb{R} \times (0; +\infty) \\ V^{\delta} &= 0 & \text{on } \partial \Xi. \end{vmatrix}$

Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.



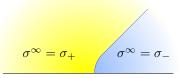
Set $U^{\delta}(\xi) = u^{\delta}(\delta\xi)$. We have

Letting $\delta \to 0$ in $-\operatorname{div}(\sigma^{\delta}\nabla U^{\delta}) = \delta^2 \lambda^{\delta} U^{\delta}$, we find that V^{δ} must satisfy $\begin{aligned} -\operatorname{div}(\sigma^{\infty}\nabla V^{\delta}) &= 0 & \text{ in } \Xi := \mathbb{R} \times (0; +\infty) \\ V^{\delta} &= 0 & \text{ on } \partial \Xi. \end{aligned}$

There is V^{δ} solution of this problem admitting the expansion

 $V^{\delta}(\xi) = |\xi|^{i\mu} \phi(\theta) + \alpha |\xi|^{-i\mu} \phi(\theta) + \tilde{V}^{\delta}(\xi), \quad \text{with } \alpha \in \mathbb{C}, \ \tilde{V}^{\delta} \in \mathrm{H}^{1}(\Xi).$

• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.



 $\begin{aligned} & \text{Set } U^{\delta}(\xi) = u^{\delta}(\delta\xi). \text{ We have} \\ & u^{\delta}(x) = V^{\delta}(x/\delta) + \dots \\ \Leftrightarrow & U^{\delta}(\xi) = V^{\delta}(\xi) + \dots . \end{aligned}$

• Letting $\delta \to 0$ in $-\operatorname{div}(\sigma^{\delta} \nabla U^{\delta}) = \delta^{2} \lambda^{\delta} U^{\delta}$, we find that V^{δ} must satisfy $\begin{vmatrix} -\operatorname{div}(\sigma^{\infty} \nabla V^{\delta}) &= 0 & \text{in } \Xi := \mathbb{R} \times (0; +\infty) \\ V^{\delta} &= 0 & \text{on } \partial \Xi. \end{vmatrix}$

There is V^{δ} solution of this problem admitting the expansion

$$V^{\delta}(\xi) = |\xi|^{i\mu} \phi(\theta) + \alpha \, |\xi|^{-i\mu} \phi(\theta) + \tilde{V}^{\delta}(\xi),$$

with $\alpha \in \mathbb{C}, \tilde{V}^{\delta} \in \mathrm{H}^1(\Xi)$.

• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.

From

$$-{\rm div}(\sigma^{\infty}\nabla V^{\delta})=0 \ {\rm in}\ \Xi, \qquad V^{\delta}=0 \ {\rm on}\ \partial\Xi,$$

multiplying by $\overline{V^{\delta}}$ and integrating by parts on $\{\xi \in \Xi \mid |\xi| < R\}$, we find

$$0 = \Im m \int_{\Xi \cap \{|\xi|=R\}} \sigma^{\infty} \partial_r V^{\delta} \overline{V^{\delta}} \, d\theta$$

There is V^o solution of this problem admitting the expansion

$$V^{\delta}(\xi) = |\xi|^{i\mu} \phi(\theta) + \alpha \, |\xi|^{-i\mu} \phi(\theta) + \tilde{V}^{\delta}(\xi),$$

with $\alpha \in \mathbb{C}, \tilde{V}^{\delta} \in \mathrm{H}^{1}(\Xi).$

• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.

From

$$-{\rm div}(\sigma^{\infty}\nabla V^{\delta})=0 \ {\rm in}\ \Xi, \qquad V^{\delta}=0 \ {\rm on}\ \partial\Xi,$$

multiplying by $\overline{V^{\delta}}$ and integrating by parts on $\{\xi \in \Xi \mid |\xi| < R\}$, we find

$$0 = \Im m \int_{\Xi \cap \{|\xi|=R\}} \sigma^{\infty} \partial_r V^{\delta} \overline{V^{\delta}} d\theta$$
$$= 1 - |\alpha|^2 + O(R^{-\gamma}), \text{ for some } \gamma > 0.$$

There is V° solution of this problem admitting the expansion

$$V^{\delta}(\xi) = |\xi|^{i\mu}\phi(\theta) + \alpha \, |\xi|^{-i\mu}\phi(\theta) + \tilde{V}^{\delta}(\xi),$$

with $\boldsymbol{\alpha} \in \mathbb{C}, \, \tilde{V}^{\delta} \in \mathrm{H}^1(\Xi).$

• Introduce the rapid coordinate $\xi := x/\delta$ and let $\delta \to 0$.

From

$$-{\rm div}(\sigma^{\infty}\nabla V^{\delta})=0 \ {\rm in}\ \Xi, \qquad V^{\delta}=0 \ {\rm on}\ \partial\Xi,$$

multiplying by $\overline{V^{\delta}}$ and integrating by parts on $\{\xi \in \Xi \mid |\xi| < R\}$, we find

$$0 = \Im m \int_{\Xi \cap \{|\xi|=R\}} \sigma^{\infty} \partial_r V^{\delta} \overline{V^{\delta}} \, d\theta$$
$$= 1 - |\alpha|^2 + O(R^{-\gamma}), \quad \text{for some } \gamma > 0.$$

Taking the limit $R \to +\infty$ gives $|\alpha| = 1$.

$$V^{\delta}(\xi) = |\xi|^{i\mu}\phi(\theta) + \alpha \, |\xi|^{-i\mu}\phi(\theta) + \tilde{V}^{\delta}(\xi),$$

with $\alpha \in \mathbb{C}, \tilde{V}^{\delta} \in \mathrm{H}^{1}(\Xi).$

• We match the far field and near field expansions in some intermediate region where $r \to 0$ and $r/\delta \to +\infty$ (for example where $r \sim \sqrt{\delta}$).

Far field:
$$v^{\delta}(x) = c^{\delta}_{+} r^{i\mu} \phi(\theta) + c^{\delta}_{-} r^{-i\mu} \phi(\theta) + \dots$$

Near field: $V^{\delta}(x/\delta) = (r/\delta)^{i\mu} \phi(\theta) + \alpha (r/\delta)^{-i\mu} \phi(\theta) + \dots$

Since $r \mapsto r^{i\mu}$ and $r \mapsto r^{-i\mu}$ are linearly independent, we impose

$$c^{\delta}_{+} = \delta^{-i\mu} \quad \text{ and } \quad c^{\delta}_{-} = \alpha \, \delta^{i\mu}$$

• We match the far field and near field expansions in some intermediate region where $r \to 0$ and $r/\delta \to +\infty$ (for example where $r \sim \sqrt{\delta}$).

Far field:
$$v^{\delta}(x) = c^{\delta}_{+} r^{i\mu} \phi(\theta) + c^{\delta}_{-} r^{-i\mu} \phi(\theta) + \dots$$

Near field: $V^{\delta}(x/\delta) = (r/\delta)^{i\mu} \phi(\theta) + \alpha (r/\delta)^{-i\mu} \phi(\theta) + \dots$

Since $r \mapsto r^{i\mu}$ and $r \mapsto r^{-i\mu}$ are linearly independent, we impose

$$c^{\delta}_+ = \delta^{-i\mu} \quad \text{and} \quad c^{\delta}_- = \alpha \, \delta^{i\mu} \qquad \Rightarrow \qquad c^{\delta}_-/c^{\delta}_+ = \alpha \, \delta^{2i\mu}.$$

• We match the far field and near field expansions in some intermediate region where $r \to 0$ and $r/\delta \to +\infty$ (for example where $r \sim \sqrt{\delta}$).

Far field:
$$v^{\delta}(x) = c^{\delta}_{+} r^{i\mu} \phi(\theta) + c^{\delta}_{-} r^{-i\mu} \phi(\theta) + \dots$$

Near field: $V^{\delta}(x/\delta) = (r/\delta)^{i\mu} \phi(\theta) + \alpha (r/\delta)^{-i\mu} \phi(\theta) + \dots$

• Since $r \mapsto r^{i\mu}$ and $r \mapsto r^{-i\mu}$ are linearly independent, we impose

$$c^{\delta}_+ = \delta^{-i\mu}$$
 and $c^{\delta}_- = \alpha \, \delta^{i\mu}$ \Rightarrow $c^{\delta}_-/c^{\delta}_+ = \alpha \, \delta^{2i\mu}$.

This suggests that the eigenpairs of A^{δ} behave as the eigenpairs of the model operator $\mathscr{M}(\delta)$ such that

$$\begin{aligned} D(\mathcal{M}(\delta)) &= D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + \alpha \, \delta^{2i\mu} s_{-}) \\ \mathcal{M}(\delta) u &= \operatorname{div}(\sigma \nabla u). \end{aligned}$$

• We match the far field and near field expansions in some intermediate region where $r \to 0$ and $r/\delta \to +\infty$ (for example where $r \sim \sqrt{\delta}$).

Far field:
$$v^{\delta}(x) = c^{\delta}_{+} r^{i\mu} \phi(\theta) + c^{\delta}_{-} r^{-i\mu} \phi(\theta) + \dots$$

Near field: $V^{\delta}(x/\delta) = (r/\delta)^{i\mu} \phi(\theta) + \alpha (r/\delta)^{-i\mu} \phi(\theta) + \dots$

• Since $r \mapsto r^{i\mu}$ and $r \mapsto r^{-i\mu}$ are linearly independent, we impose

$$c^{\delta}_+ = \delta^{-i\mu}$$
 and $c^{\delta}_- = \alpha \, \delta^{i\mu}$ \Rightarrow $c^{\delta}_-/c^{\delta}_+ = \alpha \, \delta^{2i\mu}$.

This suggests that the eigenpairs of A^{δ} behave as the eigenpairs of the model operator $\mathcal{M}(\delta)$ such that

$$\begin{aligned} D(\mathcal{M}(\delta)) &= D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + \alpha \, \delta^{2i\mu} s_{-}) \\ \mathcal{M}(\delta)u &= \operatorname{div}(\sigma \nabla u). \end{aligned}$$

The model operator at first order depends and δ .

• We match the far field and near field expansions in some intermediate region where $r \to 0$ and $r/\delta \to +\infty$ (for example where $r \sim \sqrt{\delta}$).

Far field:
$$v^{\delta}(x) = c^{\delta}_{+} r^{i\mu} \phi(\theta) + c^{\delta}_{-} r^{-i\mu} \phi(\theta) + \dots$$

Near field: $V^{\delta}(x/\delta) = (r/\delta)^{i\mu} \phi(\theta) + \alpha (r/\delta)^{-i\mu} \phi(\theta) + \dots$

• Since $r \mapsto r^{i\mu}$ and $r \mapsto r^{-i\mu}$ are linearly independent, we impose

$$c^{\delta}_+ = \delta^{-i\mu}$$
 and $c^{\delta}_- = \alpha \, \delta^{i\mu}$ \Rightarrow $c^{\delta}_-/c^{\delta}_+ = \alpha \, \delta^{2i\mu}$.

This suggests that the eigenpairs of A^{δ} behave as the eigenpairs of the model operator $\mathscr{M}(\delta)$ such that

$$\begin{aligned} D(\mathscr{M}(\delta)) &= D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + \alpha \, \delta^{2\iota \mu} s_{-}) \\ \mathscr{M}(\delta) u &= \operatorname{div}(\sigma \nabla u). \end{aligned}$$

• The model operator at first order depends and δ . Moreover, for $\delta > 0$, we have $|\alpha \, \delta^{2i\mu}| = 1$.

• We match the far field and near field expansions in some intermediate region where $r \to 0$ and $r/\delta \to +\infty$ (for example where $r \sim \sqrt{\delta}$).

Far field:
$$v^{\delta}(x) = c^{\delta}_{+} r^{i\mu} \phi(\theta) + c^{\delta}_{-} r^{-i\mu} \phi(\theta) + \dots$$

Near field: $V^{\delta}(x/\delta) = (r/\delta)^{i\mu} \phi(\theta) + \alpha (r/\delta)^{-i\mu} \phi(\theta) + \dots$

• Since $r \mapsto r^{i\mu}$ and $r \mapsto r^{-i\mu}$ are linearly independent, we impose

$$c^{\delta}_+ = \delta^{-i\mu}$$
 and $c^{\delta}_- = \alpha \, \delta^{i\mu}$ \Rightarrow $c^{\delta}_-/c^{\delta}_+ = \alpha \, \delta^{2i\mu}$.

This suggests that the eigenpairs of A^{δ} behave as the eigenpairs of the model operator $\mathscr{M}(\delta)$ such that

$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + \alpha \, \delta^{2i\mu} s_{-})$$
$$\mathscr{M}(\delta)u = \operatorname{div}(\sigma \nabla u).$$

/ 29

The model operator at first order depends and δ . Moreover, for $\delta > 0$, we have $|\alpha \, \delta^{2i\mu}| = 1$. $\Rightarrow \quad \mathscr{M}(\delta)$ is selfadjoint.

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$ (Asymptotically, the spectrum of A^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0.$)

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of \mathbf{A}^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0.)$

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-)$$
. Since $\delta^{2i\mu} = e^{2i\mu \ln \delta}$, if δ_2 , δ_1 s.t.
 $\ln \delta_2 = \ln \delta_1 + k\pi/\mu, \ k \in \mathbb{Z}$

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of \mathbf{A}^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0.)$

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-)$$
. Since $\delta^{2i\mu} = e^{2i\mu \ln \delta}$, if δ_2 , δ_1 s.t.
 $\ln \delta_2 = \ln \delta_1 + k\pi/\mu, \ k \in \mathbb{Z}$ then $\mathscr{M}(\delta_2) = \mathscr{M}(\delta_1)$.

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of A^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0$.)

$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + \alpha \, \delta^{2i\mu} s_{-}). \text{ Since } \delta^{2i\mu} = e^{2i\mu \ln \delta}, \text{ if } \delta_{2}, \, \delta_{1} \text{ s.t.}$$
$$\ln \delta_{2} = \ln \delta_{1} + k\pi/\mu, \, k \in \mathbb{Z} \quad \text{ then } \quad \mathscr{M}(\delta_{2}) = \mathscr{M}(\delta_{1}).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of \mathbf{A}^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0.)$

$$\blacktriangleright D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of \mathbf{A}^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0.)$

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

COMMENTS

• As $\kappa_{\sigma} \to -1^+$, we have $\mu \to +\infty$ (period becomes shorter).

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of A^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0$.)

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

COMMENTS

• As $\kappa_{\sigma} \to -1^+$, we have $\mu \to +\infty$ (period becomes shorter).

• There is z satisfying div $(\sigma \nabla z) = 0$ in Ω and $z|_{\partial \Omega} = 0$ with

$$z = s_+ + \beta s_- + \tilde{z}, \qquad \beta \in \mathbb{C}, \ \tilde{z} \in D(A).$$

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of \mathbf{A}^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0.)$

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

COMMENTS

• As $\kappa_{\sigma} \to -1^+$, we have $\mu \to +\infty$ (period becomes shorter).

• There is z satisfying div $(\sigma \nabla z) = 0$ in Ω and $z|_{\partial \Omega} = 0$ with

 $z = s_+ + \beta s_- + \tilde{z}, \qquad \beta \in \mathbb{C}, \ \tilde{z} \in D(A).$

Important: there holds $|\beta| = 1$

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of A^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0$.)

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

COMMENTS

• As $\kappa_{\sigma} \to -1^+$, we have $\mu \to +\infty$ (period becomes shorter).

• There is z satisfying div $(\sigma \nabla z) = 0$ in Ω and $z|_{\partial \Omega} = 0$ with

$$z = s_+ + \beta s_- + \tilde{z}, \qquad \beta \in \mathbb{C}, \ \tilde{z} \in D(A).$$

Important: there holds $|\beta| = 1 \Rightarrow$ for δ s.t. $\alpha \delta^{2i\mu} = \beta, z \in D(\mathcal{M}(\delta)).$

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of A^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0$.)

►
$$D(\mathscr{M}(\delta)) = D(\mathbf{A}) \oplus \operatorname{span}(s_+ + \alpha \, \delta^{2i\mu} s_-).$$

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is π/μ -periodic in $\ln \delta$ -scale.

COMMENTS

• As $\kappa_{\sigma} \to -1^+$, we have $\mu \to +\infty$ (period becomes shorter).

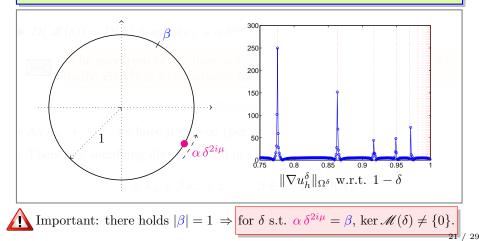
• There is z satisfying div $(\sigma \nabla z) = 0$ in Ω and $z|_{\partial \Omega} = 0$ with

$$z = s_+ + \beta s_- + \tilde{z}, \qquad \beta \in \mathbb{C}, \ \tilde{z} \in D(A).$$

Important: there holds $|\beta| = 1 \Rightarrow$ for δ s.t. $\alpha \delta^{2i\mu} = \beta$, ker $\mathscr{M}(\delta) \neq \{0\}$.

THEOREM. For $\kappa_{\sigma} \in (-1; -1/\ell)$, on each compact set of \mathbb{R} , we have $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(\mathscr{M}(\delta))) \xrightarrow[\delta \to 0]{} 0.$

(Asymptotically, the spectrum of A^{δ} behaves as the one of $\mathscr{M}(\delta)$ as $\delta \to 0$.)



For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)}$ (1)

For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)}$ (1)

for all δ in some set \mathscr{S} excluding a neighbourhood of $\{\delta \mid \ker \mathscr{M}(\delta) \neq \{0\}\}$.

$$\begin{array}{c} \times & \longrightarrow & \times & \longrightarrow & \times & \longrightarrow & \times & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & &$$

For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)}$ (1)

for all δ in some set \mathscr{S} excluding a neighbourhood of $\{\delta \mid \ker \mathscr{M}(\delta) \neq \{0\}\}$.

$$\ln \mathscr{S} = \{\ln \delta, \ \delta \in \mathscr{S}\}$$

But $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$ accumulates in zero \Rightarrow This is not enough! We want some uniform estimate w.r.t to $\delta \to 0$.

For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)} \tag{1}$

for all δ in some set \mathscr{S} excluding a neighbourhood of $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$.

$$\ln \mathscr{S} = \{\ln \delta, \ \delta \in \mathscr{S}\}$$

But $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$ accumulates in zero \Rightarrow This is not enough! We want some uniform estimate w.r.t to $\delta \to 0$.

For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)} \tag{1}$

for all δ in some set \mathscr{S} excluding a neighbourhood of $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$.

$$\ln \mathscr{S} = \{\ln \delta, \ \delta \in \mathscr{S}\}$$

But $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$ accumulates in zero \Rightarrow This is not enough! We want some uniform estimate w.r.t to $\delta \to 0$.

► We proved the estimate, for some $\beta > 0$, $\| (\mathbf{A}^{\delta} + i \mathrm{Id})^{-1} f - (\mathscr{M}(\delta) + i \mathrm{Id})^{-1} f \|_{\mathbf{L}^{2}(\Omega)} \leq C \, \delta^{\beta} \| f \|_{\mathbf{L}^{2}(\Omega)}$ (2) for δ small enough.

For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)} \tag{1}$

for all δ in some set \mathscr{S} excluding a neighbourhood of $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$.

$$\ln \mathscr{S} = \{\ln \delta, \ \delta \in \mathscr{S}\}$$

But $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$ accumulates in zero \Rightarrow This is not enough! We want some uniform estimate w.r.t to $\delta \to 0$.

• We proved the estimate, for some $\beta > 0$,

$$\|(\mathbf{A}^{\delta} + i\mathrm{Id})^{-1}f - (\mathscr{M}(\delta) + i\mathrm{Id})^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C\,\delta^{\beta}\|f\|_{\mathbf{L}^{2}(\Omega)}$$
(2)

for δ small enough. This implies that the spectra are closed to each other.

For the source term problem, we proved the estimate, for some $\beta > 0$, $\|(\mathbf{A}^{\delta})^{-1}f - (\mathscr{M}(\delta))^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \leq C \,\delta^{\beta} \|f\|_{\mathbf{L}^{2}(\Omega)} \tag{1}$

for all δ in some set \mathscr{S} excluding a neighbourhood of $\{\delta \mid \ker \mathscr{M}(\delta) \neq \{0\}\}$.

$$\ln \mathscr{S} = \{\ln \delta, \ \delta \in \mathscr{S}\}$$

But $\{\delta | \ker \mathscr{M}(\delta) \neq \{0\}\}$ accumulates in zero \Rightarrow This is not enough! We want some uniform estimate w.r.t to $\delta \to 0$.

• We proved the estimate, for some $\beta > 0$,

$$\|(\mathbf{A}^{\delta} + i\mathrm{Id})^{-1}f - (\mathscr{M}(\delta) + i\mathrm{Id})^{-1}f\|_{\mathbf{L}^{2}(\Omega)} \le C\,\delta^{\beta}\|f\|_{\mathbf{L}^{2}(\Omega)}$$
(2)

for δ small enough. This implies that the spectra are closed to each other.

Proving (1), (2) is not straightforward due to the change of sign of σ . This aspect is interesting in itself (S.A. Nazarov's technique).

22

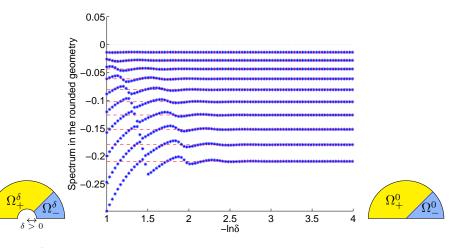
1 Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

3 Numerical experiments for the spectral problem

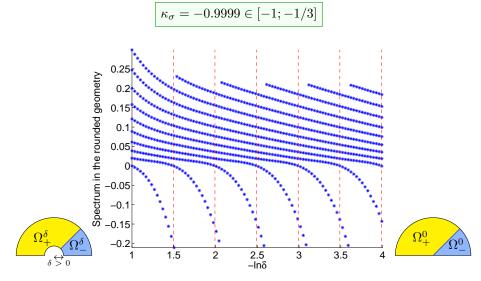
Outside the critical interval

$$\kappa_{\sigma} = -1.0001 \notin [-1; -1/3]$$



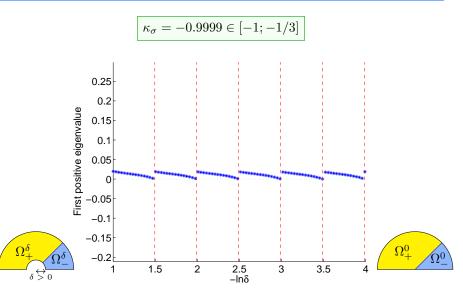
• $\mathfrak{S}(\mathbf{A}^{\delta})$ converges to $\mathfrak{S}(\mathbf{A})$ (A is the limit operator) when $\delta \to 0$.

Inside the critical interval



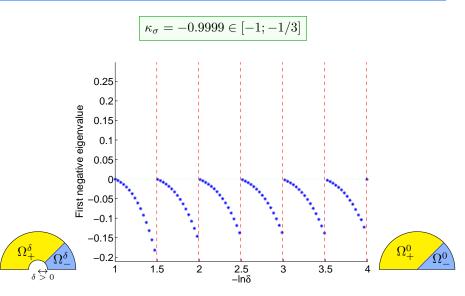
Asymptotically, $\mathfrak{S}(\mathbf{A}^{\delta})$ is periodic in $\ln \delta$ -scale as $\delta \to 0$.

Inside the critical interval



Asymptotically, $\mathfrak{S}(\mathbf{A}^{\delta})$ is periodic in $\ln \delta$ -scale as $\delta \to 0$.

Inside the critical interval



Asymptotically, $\mathfrak{S}(\mathbf{A}^{\delta})$ is periodic in $\ln \delta$ -scale as $\delta \to 0$.

1 Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

3 Numerical experiments for the spectral problem

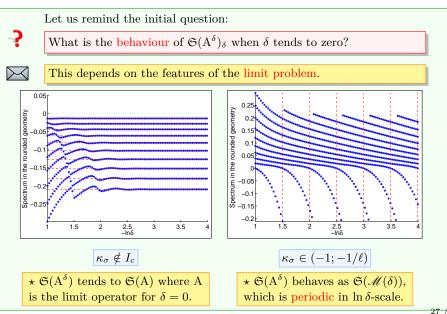
Conclusion 1/2

-Ş

Let us remind the initial question:

What is the **behaviour** of $\mathfrak{S}(A^{\delta})_{\delta}$ when δ tends to zero?

Conclusion 1/2



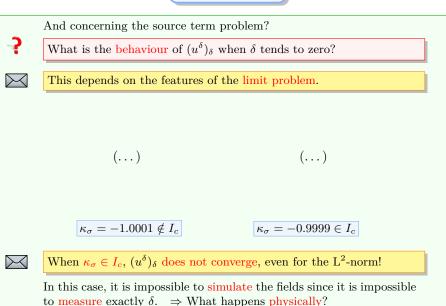
729

Conclusion 2/2

And concerning the source term problem?

What is the **behaviour** of $(u^{\delta})_{\delta}$ when δ tends to zero?

Conclusion 2/2



Thank you for your attention!

Related works:

- ► ANR project Metamath coordinated by S. Fliss.
- L. Chesnel, X. Claeys, S.A. Nazarov, A curious instability phenomenon for a rounded corner in presence of a negative material, Asymp. Anal., vol. 88, 1-2:43-74, 2014.
- L. Chesnel, X. Claeys, S.A. Nazarov, Asymptotics of the eigenvalues for a rounded corner in presence of a negative material, to come, 2015.