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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide  coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + vy s. t.
—Av = k*v inQ,
Opv = 0 on 01,
Vg is outgoing.
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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + vg s. t.
—Av = k*v inQ,
Opv = 0 on 01,
Vg is outgoing.

—p +p
» For ke (0;7),

only 2 propagating modes wt = et // 2k.‘ Set v; = w™.

> o, isoutgoing & | vs=stwT +7 for £z > p,

with s* € C, @5 exponentially decaying at +oc.

DEFINITION: | v; = incident field
v = total field
vy = scattered field.
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Invisibility and complete reflectivity

» At infinity, one measures the reflection coefficient R = s~ and/or the
transmission coefficient 7' = 1 + s™ (other terms are too small).

» From conservation of energy, one has

|R]? + T = 1.
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» From conservation of energy, one has

|R]? + T = 1.

non reflecting if R =0 (|7 = 1)

DEFINITION: Defect is said perfectly invisible if T =1 (R = 0)

@ For T' =1, defect cannot be detected from far field measurements.
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Invisibility and complete reflectivity

» At infinity, one measures the reflection coefficient R = s~ and/or the
transmission coefficient 7' = 1 + s™ (other terms are too small).

» From conservation of energy, one has

|R]? + T = 1.

non reflecting if R =0 (|7 = 1)
perfectly invisible if T =1 (R = 0)
completely reflecting if =0 (|R| = 1).

DEFINITION: Defect is said

@ For T' =1, defect cannot be detected from far field measurements.

@ For T = 0, defect is like a mirror.

We explain how to construct waveguides such that

R=0(T|=1), T=1(R=0) or T=0 (R =1).

» We assume that & is given (# A.-S. Bonnet-Ben Dhia’s talk last Mond.).
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First idea

» Perturbative technique: we can construct small non reflecting defects
using the implicit functions theorem.

1+ ch(z)

R=0 R =0

= We obtain small defects such that R = 0 (harder to get T'=1).
Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.
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First idea

» Perturbative technique: we can construct small non reflecting defects
using the implicit functions theorem.

1+ ch(z)

R=0 R =0

= We obtain small defects such that R = 0 (harder to get T'=1).
Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.

TALK We propose another mechanism to get large defects s. t.
R=0(T|=1), T=1(R=0) or T=0 (Rl =1).
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Geometrical setting

» We work in waveguides which are symmetric with respect to (Oy) and
which contain a branch of finite height .
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Outline of the talk

@ Main analysis
© Numerical results

© Variants and extensions
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@ Main analysis
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Half-waveguide problems

» Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.
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Half-waveguide problems

» Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

—Av = kQ’U in Qh
Opv = 0 on 082y,
» Introduce the two half-waveguide problems
£/2
>‘/--< —Au = k’u in wp
Oywu = 0 on Owy,
_ wp —AU E2U  in wy
Neumann/ U = 0 on dwp, \ >,
_ Dirichlet U =0 on >,.
Zh
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Half-waveguide problems

» Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

—Av = kQ’U in Qh
Opv = 0 on 99,
» Introduce the two half-waveguide problems
£/2
>/--< —Au = k’u in wp
Opu = 0 on Owy, Neumann B.C.
. wa —AU kU in wy
Neumann/ U = 0 on dwp \ ¥,
_ Dirichlet U = 0 on >;,. Mixed B.C.
Zh
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

u = wt+RYw™ +1, with @ € H!(wy,) S

U=wr+RPw™ +T, with U € H*(wp,). Q
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

u = wt+RYw™ +1, with @ € H!(wy,) -
U=wt+Rw +U, with U € H*(wp,). Q
RN - Rl)
» Due to conservation of energy, one has ,
N D
RY| = |RP| = 1.
+U —z,y) — U(—=,
» Using that v = “ inwp, v(z,y) = u=zy) 3 (czy) in Qp \ wn,
RN + RP RN — RP
we deduce that R= ——— and | T = ——.

2 2
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

h
u = wt+RYw™ +1, with @ € H!(wy,) -
U=wt+RPw +70, with U € H (wp,). Q :
RD
» Due to conservation of energy, one has ,
N D
RY| = |RP| = 1. \
R
+U u(—z,y) — U(—x,
» Using that v = “ inwp, v(z,y) = (czy) 3 (czy) in Qp \ wn,
RN 4+ RD RN _ pP Non reflectivity
we deduce that R = — and [T = — o RN _ _RD

— Now, we study the behaviour of R = RY(h), R” = R”(h) as h — 4o0.
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Asymptotics of RV, R"

1/2

g ’Depend on the nb. of propagating modes in the vertical branch of we, ‘

/2

S

—Ap = k¢ inw
N oo
(Z7) O = 0 on Owee
—Ap = Kk?¢ inwe
(2P)| Gpp = 0 on Owee \ Yo
p = 0 on Y.
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Asymptotics of RY, RP

M ‘ Depend on the nb. of propagating modes in the vertical branch of we, ‘

0/2
()] -

> ’Analysis for R” ‘

Woo

e For £ € (0;w/k), no prop.

—Ap = k¢ inw
N o0
(%) O = 0 on Owee
—Ap = Kk?¢ inwe
(PPY| O, = 0 on Oweo \ ¥
p = 0 on Y.

1/2

modes in the vertical branch of wy, for (27).
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(PN) —Ap = K¢ inwe
O = 0 on Owse
ok £/2
_ W —Ap = Kk?¢ inwe
Q - (PPY| O, = 0 on Oweo \ o
_- o p = 0 on >

> ‘Analysis for R” ‘

e For £ € (0;7/k), no prop. modes in the vertical branch of w,, for (#7).

o (2P) admits the solution
Uso = wy + RE wi + U, with Uy, € H'(weo), |REZ| = 1.
(wit = xywT where x; is a cut-off function s.t. x; =1 forx < —2¢, x; =0 forx > —£)
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Asymptotics of RY, RP 1/2

M ‘ Depend on the nb. of propagating modes in the vertical branch of we, ‘

_ 2 :
(V)| 8 Z e e
Lo Lo = on Owee
_ W —Ap = Kk?¢ inwe
Q > (PP)Y| Onp = 0 on Oweo \ o
- - - p = 0 on Y.

> ‘Analysis for R” ‘

e For £ € (0;7/k), no prop. modes in the vertical branch of w,, for (#7).
o (2P) admits the solution

U = wy +R£o wf + U(xn with Uoo € H1<w00)7 |RoDo| =1

e As h — +oo, we have U = Uy, + ... which implies |R” — R2| < C e Fh.
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Asymptotics of RV, R" 1/2

M ’Depend on the nb. of propagating modes in the vertical branch of we, ‘

L —Ap = k¢ inw
N oo
02 (%) O = 0 on Owse
_ —Ap = Kk?¢ inwe
S (2P)| Gpp = 0 on Owee \ Yo
- - e = 0 on ..

» | Analysis for R” ‘

’For £ € (0;m/k), h— RP(h) tends to a constant on ¢ := {z € C, |2| = 1}. ‘
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Asymptotic of RV, R" 2/2

> |Analysis for RN |

e For £ € (0;27/k), 2 prop. modes in the vertical branch of w, for (2V)
wE = X et I\l
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> |Analysis for RN |

e For £ € (0;27/k), 2 prop. modes in the vertical branch of w, for (2V)

'in =Xt eiiky/m

(xt is a cut-off function such that xt =1 fory>2, xt =0 fory<1)
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Asymptotic of RV, R" 2/2

> ’Analysis for RN ‘

e For £ € (0;27/k), 2 prop. modes in the vertical branch of w, for (2V)

wéﬁ =Xt eiiky/m
o (2N) admits the solutions

ul, = wy + sy w) + s wy +al,, with @l € H(weo)
2 = wy + sgpwl + seawy + @k, with 42, € H (weo)-
| |
|
The scattering matrix
Woo

- S11 S12 . .
1s unitary.
1 s21 522

11 / 28



Asymptotic of RV, R" 2/2

> ’Analysis for RN ‘

e For £ € (0;27/k), 2 prop. modes in the vertical branch of w, for (2V)

wéﬁ =Xt eiiky/\/ ke
o (2N) admits the solutions
1
u

= w] + s w) + sipwy +al, with @, € H(wso)

= wy + S21 wf + S99 w; + a2, with 42, € H! (woo).

00
2
00

o If 515 # 0, we make the ansatz u = ul, +a(h)ud +....

The scattering matrix

S11 S12 . .
1s unitary.
1 s21 522
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e For £ € (0;27/k), 2 prop. modes in the vertical branch of w, for (2V)

wéﬁ =Xt eiiky/\/ |74
o (2N) admits the solutions
ul, = wy + sy w) + s wy +al,, with @l € H(weo)
2
o0

u

o If 515 # 0, we make the ansatz u = ul, +a(h)ud +....
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e For £ € (0;27/k), 2 prop. modes in the vertical branch of w, for (2V)

wéﬁ =Xt eiiky/m
o (2N) admits the solutions

ul, = wy + sy w) + s wy +al,, with @l € H(weo)
2 = wy + sgpwl + seawy + @k, with @2, € H!(weo).

o If 515 # 0, we make the ansatz u = ul, +a(h)ud +....

On Ty, 0=0,u=C (slgeikh +a(h) (—e_ikh + SQQ@ikh)) +.

e This gives a(/h) and implies, as h — +o0,

Lol Ri\gy(h” <Ce P with RN (h)=sn 512 521

asy o—2ikh

— 522

e Unitarity of ( «211 212 ) = h — RL (h) runs periodically on €.
21 S22
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Asymptotic of RV, R" 2/2

> ’Analysis for RN ‘

‘For £ € (0;27/k), h — RY(h) runs continuously and almost period. on €.
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Conclusions for ¢ € (0;7/k), s12 # 0

: RN + RP RN — RP
» Reminder: | R = — and [T = —

PROPOSITION: Asympt. as h — +o0o, R and T run on circles of radius 1/2.
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Conclusions for ¢ € (0;7/k), s12 # 0

, RY + RP RN — RP
» Reminder: R = T — and T = — !

PROPOSITION: Asympt. as h — 400, R and 7' run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h,,) such that for h = h,,
RN = —RP and so R = 0 (non reflectivity).

PROPOSITION: There is an unbounded sequence (H,,) such that for h = H,,,
RN = RP and so T = 0 (complete reflectivity).

» Sequences (h,,) and (H,,) are almost periodic. As n — 400, we have

hpg1 —hp=7/k+... and Hps1 —Ho=7/k+....
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© Numerical results
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Setting

» We compute numerically R, T for h € (2;10) in the geometry

» We use a P2 finite element method with Dirichlet-to-Neumann maps.

> Weset k=0.87and {=1¢€ (0;7/k).
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Numerical results

» Reflection coefficient R and transmission coefficient 7" for h € (2;10).

1-
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Non reflectivity

» Curve h — —In|R)|. Peaks correspond to non reflectivity.

8,
*
yas . ~ 71'/k X
*
6" * *
* * *
* " * * « .
5;igé . « %
x % %
w8 2 &
3; ¢ * : 3
27 03
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_1 1 1 1 1 1 1 1 J
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Non reflectivity

» Total field v for A such that R = 0.
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Non reflectivity

» Total field v for A such that R = 0.
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Other non reflecting geometry

» Scattered field vg
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Complete reflectivity

» Curve h— —In|T|. Peaks correspond to complete reflectivity.
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Complete reflectivity

» Total field v for h such that 7" = 0.
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@ Variants and extensions
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Analysis for ( € (7/k; 2 /k)

We did ¢ € (0;7/k) Now ¢ € (7w /k;2m /k)
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Analysis for ¢ € (n/k; 27 /k)

. RN + RP RN — RD
» We still have R = — and T = —

» Now 2 prop. modes exist in the vertical branch of w, for (27).
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» We still have R = — and T = —

» Now 2 prop. modes exist in the vertical branch of w., for (Z7).

» As before, we can show, with a = \/k? — (7/£)?,

S12 521

D D —ph i D = e
|RP — RE (h)| < CeP"  with RE (h) =51+ e—2ioh _ G,

asy asy
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IR — R (h)| SC@ B with R <h)_511+m
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g h s RN (h), h+— RE_(h) run period. on € with periods 7/k, 7/a.
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Analysis for ¢ € (n/k; 27 /k)

. RN + RP RN — RD
» We still have R = — and T = —

» Now 2 prop. modes exist in the vertical branch of w, for (27).

» As before, we can show, with a = \/k? — (7/£)?,

S12 521

D D —ph i D = e
|RP — RE (h)| < CeP"  with RE (h) =51+ e—2ioh _ G,

asy asy

g h s RN (h), h+— RE_(h) run period. on € with periods 7/k, 7/a.

asy asy

* The curves h — R(h), T'(h) still pass through zero an infinite nb. of times.

* Behaviours of h — R(h), T'(h) can be much more complex than before...
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Numerical results for ¢ € (7w /k; 27 /k)

» Asympt. curves of h — R(h), T'(h) for h € (0;+00) and ¢ such that

/o k
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/o k

kR =07
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Numerical results for ¢ € (7 /k;2n/k)

» Asympt. curves of h+— R(h), T'(h) for h € (0;100) and ¢ such that

@7 k
n/k kQ—(w/€)2¢Q.
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Numerical results for ¢ € (w/k;27n/k)

» Non reflecting geometry (¢ — Re (v(x,y)e !)).

EO.‘]

Z0.20

0.00

-0.20
IRIRIRAREROENENL.

» Completely reflecting geometry (t — Re (v(x,y)e~?)).

Eu.ss
Z0.42
- E
0.00
. —0.42
INiRTh
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The special case ¢ = 27 /k

» Now set £ = 27 /k in the geometry
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» Now set £ = 27 /k in the geometry

_ RV +RP
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The special case ¢ = 27 /k

» Now set £ = 27 /k in the geometry

RN RP| | _RN-RP| RV RY
= —— an = |

» Westill h R
e still have 5 5

*xu=wt +w” = C cos(kx) solves the Neum. pb. in w, = RN =1, Vh > 1.

x h + RP(h) still runs on the unit circle and goes through —1.

’There is a sequence (h,,) such that 7" = 1 (perfect invisibility) ‘
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The special case ¢ = 27 /k - perfect invisibility

» Works also in the geometry below (h is the height of the central branch).

» Perfectly invisible defect (¢ — Re (v —iwt)

0.42
Z0.21
_S.EE—DE
il ll.
e i L.

» Reference waveguide (¢ — Re (v(x,y)e “")).

0.42
Z0.21

3.8e-06

IO.ZI
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The special case ¢ = 27/k - trapped modes
e:Fikz 4 e~ 1T ¥ iel®

> Sety=vVr?—k?, wi=-— and wi=-— """ cos(ny).
Y 1 m 2 m (y)

» The Neumann problem in wy admits the solutions
with @, fastly expo. decaying

with @5 fastly expo. decaying.

up = wy + 811wy +s12wy + @,

Uz = wy + S21 Wi + S22 Wy + i,
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The special case ¢ = 27/k - trapped modes
e:Fikz 4 e~ 1T ¥ iel®

> Sety=vm?—k? wi=—= and w;y=-—7pr—
V2k v2y

cos(my) .

» The Neumann problem in wy admits the solutions
with @, fastly expo. decaying

up = wy; + 611 u}f —|—512w§r + U1,
with @5 fastly expo. decaying.

Uz = wy + S21 Wi + S22 Wy + i,

5 5 . .
u 12 ) is unitary.

» The augmented scattering matrix S =
521 S22
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The special case ¢ = 27/k - trapped modes

e:Fikz 4 e~ 1T ¥ iel®

> Sety=+vn2 k2, wi=-—— and |wi=-—F"——cos(my).
V2k v2y

» The Neumann problem in wy admits the solutions

up = w; + 511 u}l+ + 510 wsr + U1, with @, fastly expo. decaying
Uz = Wy + 521 wf + S99 w; + g, with @5 fastly expo. decaying.
» The augmented scattering matrix S = S S is unitary.
521 522
LEMMA: If s99 = —1, the Neumann problems in wj, admits trapped modes.
Proof: 599 = —1 = 891 = 0 (S is unitary) and uy € H*(wy,) s a trapped mode.
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*x u = w; + w; solves the Neum. pb. in wy, as in the previous slide
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The special case ¢ = 27/k - trapped modes
e:Fikz 4 e~ 1T ¥ iel®

> Sety=Vr?—k?, wi=-— and wi=-— "
v 1 ok 2 2y

The Neumann problem in wj, admits the solutions
with @, fastly expo. decaying

with @5 fastly expo. decaying.

cos(my) .

| 4
up = wy + 811wy +s12wy + @,
Uy = wy + 521wy + S22 wy + lg,
. . . o $11 512 . .
» The augmented scattering matrix S = is unitary.
521 S22
LEMMA: If s95 = —1, the Neumann problems in wj admits trapped modes

Proof: 599 = —1 = 891 = 0 (S is unitary) and uy € H*(wy,) s a trapped mode.

*x u = w; + w; solves the Neum. pb. in wy, as in the previous slide

=61, =1 = [so] =1, Vh> 1

* As previously, h — s22(h) runs on the unit circle and goes through —1.
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The special case ¢ = 27/k - trapped modes
e:Fikz 4 e~ 1T ¥ iel®

> Sety=Vr?—k?, wi=-— and wi=-— "
v 1 ok 2 2y

The Neumann problem in wj, admits the solutions
with @, fastly expo. decaying

with @5 fastly expo. decaying.

cos(my) .

| 4
up = wy + 811wy +s12wy + @,
Uy = wy + 521wy + S22 wy + lg,
. . . o $11 512 . .
» The augmented scattering matrix S = is unitary.
521 S22
LEMMA: If s95 = —1, the Neumann problems in wj admits trapped modes

Proof: 599 = —1 = 891 = 0 (S is unitary) and uy € H*(wy,) s a trapped mode.

*x u = w; + w; solves the Neum. pb. in wy, as in the previous slide

=61, =1 = [so] =1, Vh> 1

* As previously, h — s22(h) runs on the unit circle and goes through —1.

E ‘There is a sequence (h,) such that trapped modes exist in wy,.
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The special case ¢ = 27 /k - trapped modes

» Symmetry argument w.r.t. (Oy) = existence of trapped modes in Q. It
works also in the geometry below (h is the height of the central branch).

Non zero v € H' () satisfying Av + kv = 0 in Qp, 9,0 = 0 on 9.
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@ Main analysis
© Numerical results

@ Variants and extensions
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Conclusion

What we did

& We explained how to construct waveguides such that R =0, 7' =0
(the method works also for the Dirichlet problem) or 7" = 1.

& We showed how to construct waveguides supporting trapped modes.

1) When the symmetry is broken, we can still do things...

2) Can we work at higher frequencies (several propagating modes)?

3) Can we deal with multi-channel waveguides?

4) For a given perturbation, can we study the frequencies such that

invisibility holds? = A.-S. Bonnet-Ben Dhia’s talk last Monday.
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Thank you for your attention and

happy birthday to you Patrick!!!

28 / 28



	Main analysis
	Numerical results
	Variants and extensions

	anm0: 
	anm1: 
	anm2: 
	anm3: 


