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Drude model for a metal (high frequency):
2
Wp
e(w) =¢eo (1 - 7) )

where w,, is the plasma frequency.

/<— e(w) < 0 for w < wy,

(
'

w

2 /40



Introduction: context

Scattering by a negative material in electromagnetism in time-harmonic
regime (at a given frequency):

Negative material
e<0
©n<0

Positive material
e>0

and p>0 and/or

What are these negative materials in practice?

» For metals at optical frequencies, ¢ < 0 and p > 0.

2 /40



Introduction: context

Scattering by a negative material in electromagnetism in time-harmonic
regime (at a given frequency):

Positive material
e>0
and u>0

Negative material
e<0

and/or pu<0

What are these negative materials in practice?

» For metals at optical frequencies, ¢ < 0 and p > 0.

» Recently, artificial metamaterials have been realized which can be
modelled (at some frequency of interest) by ¢ < 0 and p < 0.
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Introduction: context

1 -1 . 1 1

Zoom on a metamaterial: practical realizations of metamaterials are

achieved by a periodic assembly of small resonators.
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EXAMPLE OF METAMATERIAL (NASA)

Mathematical justification of the homogenized model (Bouchitté,
Bourel, Felbacq 09,...).

modelled (at some frequency of interest) by ¢ < 0 and p < 0.
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metal and a dielectric can help reducing the size of computer chips.
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» Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

= |

n=-—1 e] 2e

A=1,600 nm

» The negative refraction at the interface metamaterial/dielectric could
allow the realization of perfect lenses (Pendry 00), photonic traps...

Interfaces between negative materials and dielectrics occur in all (exciting)

applications...
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Introduction: in this talk

Problem set in a bounded domain §:

e>0 Q <0
©w>0 2 nw<0

Metamaterial

» Unusual transmission problem because the sign of the coefficients ¢ and
1 changes through the interface X.

» Well-posedness is recovered by the presence of dissipation: Sme, p > 0.
But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected?

@ Does well-posedness still hold?
) @ What is the appropriate functional framework?
° @ What about the convergence of approximation methods?

4/ 40
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@ Scalar problem: variational techniques
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to study the operator div(p~1V-) : H{(Q) — H=1(Q).
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@ Scalar problem: variational techniques

We develop a T-coercivity approach based on geometrical transformations
to study the operator div(p~1V-) : H{(Q) — H=1(Q).

© Scalar problem: a new functional framework in the critical interval

We propose a new functional framework for the scalar problem when
div(p=tV:) : H§(2) — H=1(Q) is not Fredholm.

© Maxwell’s equations

We develop a T-coercivity approach to study the Maxwell’s operator
curl (u~teurl:) : Xy (e) = Xpy(e)*.

@ The Interior Transmission Eigenvalue Problem
We study the operator A(cA-) : H3(Q) — H=2(Q).
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A scalar model problem

Problem for E, in 2D in case of an invariance with respect to z:

Find E, € H}(Q2) such that:
—div(u™! VE,) —w?eE, = f in Q.
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Since H{(Q) cc L?(9), we focus on the principal part.
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A scalar model problem

Problem for E, in 2D in case of an invariance with respect to z:

Find E, € H}(Q2) such that:
—div(u=1VE,) —w?eE, = f in Q.

0 N
° H}(Q) = {v € LA()| Vo € L¥(); vlon = 0} (al —olg, >07
@ f is the source term in H=1(Q) o2 =0ola, <0
(constant)

Since H{(Q) cc L?(9), we focus on the principal part.

Find v € H}(Q) s.t.:
—div(eVu) = f in .

Find u € H}(Q) s.t.:

(#v) a(u,v) = L(v), Yo € H}(Q).

with a(u,v) = / oVu-Vuv and L(v) = (f,v)q.
Q

DEFINITION. We will say that the problem (&) is well-posed if the operator
div (6V+) is an isomorphism from H}(Q) to H=1(Q).
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Mathematical difficulty

o Classical case ¢ > 0 everywhere:
2 : 2 o
a(u,u) = /Qa|Vu| > min(o) ||u||H(1)(Q) coercivity

Lax-Milgram theorem = () well-posed.
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Mathematical difficulty

o Classical case ¢ > 0 everywhere:
2 : 2 o
a(u,u) = /ch|Vu| > min(o) ||u||H(1)(Q) coercivity

Lax-Milgram theorem = () well-posed.

o The case o changes sign:

a(u,u) = . C HUH%{é(Q) loss of coercivity

» When oy = —0y, (&) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. ¥), we can build a kernel of
infinite dimension.

8 / 40



The symmetric case with oy = —0;

Consider the case where €2 is symmetric and oo = —0o7.
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The symmetric case with oy = —0;

Consider the case where €2 is symmetric and oo = —0o7.

O ror g € 65°(%), let uy € HY(Qy) be such that

Aul = 0 in Ql
U1 0 on 902NN
uy = g onX.

® Define us such that ug(z,y) = ui(—z,y).

= We have o¢10,u1 = 09 0zus on X.

@® The function u € HY(Q) s.t. u|g, = uy solves div(eVu) =0 in Q.

PROPOSITION. In the symmetric geometry, for o9 = —oq, (£?) has a
kernel of infinite dimension.
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H}(€2).

Find v € H}(2) such that:

(Z) S PV, 0) = (v), o € HA(Q).
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H}(€2).

Find u € H}(Q2) such that:

(2) & (Pv) & (2) a(u, Tv) = 1(Tv), Vv € H{(Q).

Goal: Find T such that a is T-coercive: /
Q

In this case, Lax-Milgram = (7)) (and so (P )) is well-posed.

oVu-V(Tu) > C ||u||%1(1)(m.

in Q
@ Define Tiu = v .

—u+ 2Ry (u|q,) in Qg
Ry transfer/extension operator continuous from 1 to Qs

Ri(u|g,) =u on X
Ri(ulg,) =0 ond\ X

® T, o T; = Id which ensures that Ty is an isomorphism of H}(€)

with

10 / 40



Idea of the T-coercivity 2/2

@® We find a(u, Tiu) = / lo| |Vul* - 2/ o2 Vu - V(R (u|a,)) -
Q Q2
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Ui

=

2/{52 Vu - V(Rl(u|ﬂ1))

R1 2 g9
<nloaf v + LI i
Qz 77 Q1
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@® We find a(u, Tiu) = / lo| |Vul* - 2/ o2 Vu - V(R (u|g,)) -
Q Qs

2
Young’s inequality: Vn > 0, we have [2zy| < na?+ L
Ui

=

9 ||R1||2|U2‘ 2
2 [ o2 Vu-V(Ri(ulo,)) | < nlo2f [ [Vul +777 |Vl
Qz Q1

Q3

= la(u, Tru)] > Joal(l = n) /Q Vul? + (o1 — 7 Y| Ba? o)) /Q Vuf?
2 1

12

Conclusion : a is T-coercive when o1 > ||R1||* |o2]
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Idea of the T-coercivity 2/2

@® We find a(u, Tiu) = / lo| |Vul* - 2/ o2 Vu - V(R (u|a,)) -
Q Qs

Young’s inequality: = a is T-coercive when a1 > ||R1||? |o2]-

O Working with Tou = , where Rs : Qo — 4, one

u — 2R2(U|92) in Ql
—u in Q9

proves that a is T-coercive when |o3| > || Ra]|? 0.

The interval depends on the

Conclusion:
® norms of the transfer operators

THEOREM. If the contrast x, = o2/01 ¢| [—| Ral|*; —1/||R1]|?] | then Prob-
lem (&) is well-posed.

11 / 40
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» A simple case: the symmetric domain

R1 = RQ - SZ
One checks that | R1|| = || Rz|| =1

“ () well-posed < Kk, # —1

» Interface with a 2D corner

z Action of R;: symmetry + dilatation in 6
- Action of Ry: symmetry + contraction in 6
IR 2 = 1R = R 1= (27 — )/
(2) well-posedness < k, ¢ [—TR;—1/1.]

12 / 40



General geometry
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General geometry

Idea: work by localisation

» With Riesz, define the operator A : H}(2) — H}(Q2) such that

(Au, v)u1(a) = /QJVU - Vo, Yu,v € Hy(Q).

0 @ Partition of unity.
1
© One constructs an isomorphism T by using the local
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0 @ Partition of unity.
1
© One constructs an isomorphism T by using the local

operators.
© One shows the identity
by AoT=1+4+K

where [ is an isomorphism, K is compact, when the
contrast and the geometry are such that one has local
invertibility.

PROPOSITION. For a curvilinear polygonal interface, (£?) is well-posed in
the Fredholm sense when k, ¢ [—72.; —1/72 ] where 7 is the smallest angle.

= If ¥ is smooth, (&) is well-posed in the Fredholm sense when x, # —1.
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Summary of the results for the 2D cavity
tO‘o\e‘“

v Find v € H}(Q) s.t.: B Q

—le(Uvu):f in Q. 01>0 g2 <0

(2) ‘

¢:For ke € C\R_, (£) well-posed

(Lax-Milgram)
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Summary of the results for the 2D cavity

o
3> ‘ Find u € H(Q) s.t.: X Q

—div(eVu) = f in Q. o1>0 02 <0

—a b

PROPOSITION. The operator A = div (oV-) : H§(Q) — H™*(Q) is an isomorphism
if and only Kk, € C*\ . with . = {— tanh(nnb)/tanh(nma), n € N*} U{—1}. For
ko = — tanh(nmb)/ tanh(nma), we have ker A = span ¢, with

sinh(nm(z + a)) sin(nmy) on 4
on(z,y) = sinh(nra) )
Wsmh(nﬂ'(m b)) sin(nmy) on Qo

L\
<?~e€>“\./ts
For k, € C\R_, (£) well-posed

(Lax-Milgram)
I For k, € R* \.&77, (2) well-posed

[ For ko, € \ {—1}, (£) is well-posed
in the Fredholm sense with a one dimension
kernel

@ ko, =—1,(2) ill-posed in H(Q)
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Link with the Poincaré problem (knhavinson et al., 07)

» Poincaré question (1897):

Let ug be the potential for an electrostatic charge g distributed on X. If we
normalize the total energy in Q, what is the minimum of enerqgy in Qs ¢
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» Poincaré question (1897):

Let ug be the potential for an electrostatic charge g distributed on X. If we

normalize the total energy in Q, what is the minimum of enerqgy in Qs ¢

» With our notation:

Aug, =
ug solves | ug =

0 in Qz
0 on 902N,
g on X.

What is

[V, |2
mf 2

/ Vu g|2

» For ¥ smooth, the inf, equal to A € (0; 1), is attained for g = ¢. We have

/Vu¢~Vv+(1—)\_1)/ Vu, - Vo =0
Q1 Q2

for all v € H{(Q),

ie.

div (cVu,) =0 in Q

with

a7

=1-Xx1<o.
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» Poincaré question (1897):
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» With our notation:

Aug = 0 in €y / |Vug|2
ug solves| ug = 0 on 902N 0, What is f e
ug = g onX. / |[Vu g|2

» For ¥ smooth, the inf, equal to A € (0; 1), is attained for g = ¢. We have

Vu, -Vo+ (1-A"1 [ Vu, -Vu=0
Q1 Q2

for all v € H{(Q), ie. |div(6Vu,) =0in Q@ with k,=1-X"1<0.

Solving the Poincaré problem gives the contrasts for which our
g problem has a non zero kernel.
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Extensions for the scalar case

» T-coercivity can be used to deal with non constant oy, oo and with the
Neumann problem.
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Extensions for the scalar case

» T-coercivity can be used to deal with non constant oy, oo and with the
Neumann problem.

» 3D geometries can be handled in the same way.

2
z
z‘
T
Y
3
T
Yy

» T-coercivity can be used to
justify the convergence of standard
FEM with assumptions on meshes
(Nicaise, Venel 11, Bonnet-Ben
Dhia, Carvalho, Ciarlet 18).

— for other methods without mesh assumption based on optimization

techniques, see Abdulle, Lemaire 23, Ciarlet, Lassounon, Rihani 22.
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Transition: from variational methods to
Fourier /Mellin techniques

For the corner case, what happens when the contrast lies inside the
® | criticial interval, i.e. when Kk, € [-R.; —1/R]?

Q
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Transition: from variational methods to
Fourier /Mellin techniques

For the corner case, what happens when the contrast lies inside the
® | criticial interval, i.e. when k, € [-R;—1/R,]?

Q

., | Idea: let us study the regularity of the “solutions” using the Kon-
“[P- | dratiev’s tools, i.e. the Fourier/Mellin transform (Dauge, Texier
= 97, Nazarov, Plamenevsky 94).

I
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© Scalar problem: a new functional framework in the critical interval
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Problem considered in this section

» We recall the problem under consideration

Find u € H}(Q2) such that:

(&) —div(eVu) = f in

» To simplify the presentation, we work on a particular configuration.
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b))
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» Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (&) is well-posed as soon as the contrast kK, =
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Problem considered in this section

» We recall the problem under consideration

Find u € H}(Q2) such that:

(&) —div(eVu) = f in

» To simplify the presentation, we work on a particular configuration.

b))
971 92
o1 >0 o9 <0
O

» Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (&) is well-posed as soon as the contrast kK, =
o9/0y satisfies k, & I. = [ 1; -

What happens when , € (—1; ?

)
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Analogy with a waveguide problem

We compute the singularities s(r, #) = r*(6) and we observe two cases
» Outside the critical interval A\
=t
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Analogy with a waveguide problem

1

» Outside the critical interval A\
N r—=rtt
ke = —1/4 . A
—X2 -\ BB A2
PP YRR LY TRREE - [0 ()-8 r
2 1 1 2 0
1 -1 1
not H ; H —1
» Inside the critical interval
Ko=-1/2 1
—A2 % A2
R SEPTTTP RPN oo fooenes >
-2 -17/\1 5. 1 2
1 -1 1
not H H

We compute the singularities s(r, #) = r*(6) and we observe two cases:
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Analogy with a waveguide problem

For k., inside the critical interval, there are singularities of the form
s(r,0) = r¥p(0) with n € R\ {0}.

» By using these singularities, one breaks the a priori estimate

[l o) < C (AT Vu € H(Q).

» This shows that one cannot have A = I + K where I is an isomorphism
of H}(Q2) and K is a compact operator of Hj(€2).

=4 PROPOSITION. For 5, € (—1;—-1/3), div(eV-) : H}(Q) — H™1(Q)
is not of Fredholm type.
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For k., inside the critical interval, there are singularities of the form
s(r,0) = r¥p(0) with n € R\ {0}.

» By using these singularities, one breaks the a priori estimate

» This shows that one cannot have A = I + K where I is an isomorphism
of H}(Q2) and K is a compact operator of Hj(€2).

><

Let us see how to modify the functional framework to recover Fredholmness.

lullm o) < C (AT Vu € H(Q).

PROPOSITION. For 5, € (—1;-1/3), div(eV-) : H{(Q) — H~1(Q)
is not of Fredholm type.
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Analogy with a waveguide problem
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(2,0) =(—1Inr,0)

—"

(r,0) = (e™*,6)
E o Equa
T xuTorTTurv oY :
e Singularities in the sector ' e Modes in the strip
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Analogy with a waveguide problem

e Bounded sector 2 E o Half-strip B

(2,0) =(—1Inr,0)

—"

(r,0) = (e~ %,0)

e Singularities in the sector e Modes in the strip
s(r,0) = 7)\()0(9) m(z,0) = e_AZQD(e)
:><(cos blnr +isinblnr)p(d) . :><(cos bz — isinbz)p(h)

(ReX =a, SmA=>b)
I

s€ HY(Q) Re A > 0 m is evanescent
s¢ HY(Q) ReX=0 m is propagative
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Analogy with a waveguide problem

e Bounded sector €2

O (r0)

o Equation:

—div(oVu) =

———
—1r=2(0(r0y)%24+090dp)u

e Singularities in the sector
s(r,0) = r*o(0)

:><(cos blnr +isinblnr)p(6)

s€ HY(Q)
s¢ HY(Q)

» This encourages us to use modal decomposition in the half-strip.

(2,0) = (—
&/
(r,0) = (e

(Re X = a, S
I

Re \

o Half-strip B

nr,0)
/ 0=m/4
__27 0) Z
o Equation:
—div(cVu) =e 2% f
—_———

—(002+0900s)u

e Modes in the strip
m(z,0) = e *p(0)
:}'{(cos bz — isin bz)p(6)

A =1b)

0 m is evanescent

e N 3

=0 m is propagative
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Modal analysis in the waveguide

_ A
ke =—1/4 1L
/\2 /\] 1
. |- 40
-2 -1
+-1

» Outside the critical interval . All the

modes are exponentially growing or decaying.

— We look for an exponentially decaying

solution.
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Rg = _1/4 4 . o .
1= » Outside the critical interval . All the
Ay by 1 Ao modes are exponentially growing or decaying.
o [T SN .-
2 -1 1 2 — We look for an exponentially decaying
-1 solution.
Inside the critical interval . There are
ke =—1/2 4 exactly two propagative modes.
1 -
o)\
A2 ! A2
o | + | .-
-2 -1 1 2
A\ e
+-1
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Modal analysis in the waveguide

Rg = _1/4 4 . o .
1= » Outside the critical interval . All the
) P ’ Ao modes are exponentially growing or decaying.
o I o>
2 A 1 2 — We look for an exponentially decaying
= solution.
» Inside the critical interval . There are
Ky = —1 /2 A exactly two propagative modes.
1 -
) o)\ \ — The decomposition on the outgoing modes
PO H | <. | leads to look for a solution of the form
-2 -1 1 2
—A ® U= c1 Q1 ez + Ue.
1 —_———

propagative part

[non H! framework]

evanescent part
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The new functional framework

Consider 0 < < 2, ¢ a cut-off function (equal to 1 in +00) and define

W_5 = {v]e’*v € H}(B)} space of exponentially decaying functions
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Consider 0 < < 2, ¢ a cut-off function (equal to 1 in +00) and define

Wop = {v|ef*v € H{(B)} space of exponentially decaying functions
W =span(Cp1 eM*) ®W_j5  propagative part 4 evanescent part
Ws = {v]|e v e H{(B)} space of exponentially growing functions

THEOREM. Let k, € (—1;—1/3) and 0 < 8 < 2. The operator
div(cV-) from to Wg* is an isomorphism.

IDEAS OF THE PROOF:
Q@ A_j:div(eV:) from W_z to Wg* is injective but not surjective.
Q Ap:div(eV:) from Wy to W_g* is surjective but not injective.

@ The intermediate operator : — Wpg* is injective (energy
integral) and surjective (residue theorem).

@ Limiting absorption principle to select the outgoing mode.

€
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Naive approximation

» Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find up € Vy, s.t.:
/ oVup - Vo, = / fon, Vv € Vy,
Q Q

where V), approximates Hj(Q2) as h — 0 (h is the mesh size).
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Naive approximation

where V), approximates Hj(Q2) as h — 0 (h is the mesh size).

» We display up as h — 0.

Contrast k, = —0.999 € (—1;—-1/3).
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FilmDICMaillage.avi
Media File (video/avi)


Remark

» Outside the critical interval, the sequence (uy) converges with the naive
approximation.

Contrast £, = —1.001 ¢ (—1;—1/3).
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FilmHICMaillage.avi
Media File (video/avi)


How to approximate the solution?

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (k, = —0.999 € (—1;—1/3))
(Bonnet-Ben Dhia, Carvalho, Chesnel, Ciarlet 16).

.8079
Ia.aow

10
10
0 0
_10 -10
20
-20
-25.1087
! -25.1087
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How to approximate the solution?

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (k, = —0.999 € (—1;—1/3))
(Bonnet-Ben Dhia, Carvalho, Chesnel, Ciarlet 16).

.8079
Ia.aow

10
10
0 0
-10 -10
20

-20

! -25.1087
' |

-25.1087

PML

Without the PML, the solution in the truncated strip of length
L does not converge when L — co.
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A black hole phenomenon

» The same phenomenon occurs for the problem with a non zero w.

(z,t) — Re (u(x)e™™?) for k, = —1/1.3J

2.46

.36

E;_qq Ez.uu
'51-00 ’21.00
0.000 0.000
-1.00

-1.00
-2.00

-2.00
-2.45

-2.36

The corner point is like infinite: it is necessary to impose a radiation
EA | condition to select the outgoing behaviour.

» Analogous phenomena occur in cuspidal domains in the theory of
water-waves and in elasticity (Cardone, Nazarov, Taskinen 11).
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Summary of the results for the scalar problem

v
910‘0\6 ) Find u € H§(Q) s.t.:
—div(cVu) = f in Q.
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—div(eVu) = f in Q.

‘gFor ke € C\R_, (&) well-posed in

H(Q) (Lax-Milgram)

B For x, € R*\[-1;-1/3], (&) well-
posed in H§(Q) (T-coercivity)

[] For k, € (—1;-1/3), (£) is not
well-posed in the Fredholm sense in H§(Q)
but well-posed in V' (PMLs)
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9) ‘ Find u € H§(Q) s.t.:

—div(eVu) = f in Q.

‘GFOI‘ ke € C\R_, (&) well-posed in

H(Q) (Lax-Milgram)
B For x, € R*\[-1;-1/3], (&) well-
posed in H§(Q) (T-coercivity)

[] For k, € (—1;-1/3), (£) is not
well-posed in the Fredholm sense in H§(Q)
but well-posed in V' (PMLs)

® .= -1, () illposed in H}()
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© Maxwell’s equations
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Problem formulation

For F € L*() s.t. div F = 0, consider the problem for the clectric field E

Find E € Xy(¢) such that for all E' € Xy/(e) :

/,uflcurlE~curlEfw2/5E~E:/F~E,
Q Q Q

o(E,E") c(E,E') ((E")

with Xy (g) := {u € H(curl) |div (eu) =0 in Q, u x n = 0 on 0}.

Difficulties:
When p changes sign, a(-, -) is not coercive.

When e changes sign, is the embedding Xy (¢) € L*(Q) compact?
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T-coercivity for Maxwell

If T is an isomorphism of Xy (¢), we have
a(E,E") —w?(E,E') = (E), VE' € Xy(e)

& a(E,TE')—w?c(E,TE') = (TE'), VE €Xy(e).

1/2

Goal: to construct T such that

a(E,TE') = / pteurl E - curl (TE')
Q

is coercive in X (e).
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Let us try TE = —E;+2R1E; inQy’
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T-coercivity for Maxwell

If T is an isomorphism of Xy (¢), we have
a(E,E") —w?(E,E') = (E), VE' € Xy(e)

& a(E,TE')—w?c(E,TE') = (TE'), VE €Xy(e).

1/2

Goal: to construct T such that

a(E,TE') = / pteurl E - curl (TE')
Q

is coercive in X (e).

Scalar approach

o El in Ql .
Let us try TE = Byt 2R By inQy with Ry such that
(Rl 1 = E on .
ssible!
{ e = 5 Not possible
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T-coercivity for Maxwell 2/2
Consider E € Xy(e). We would like to have

curl (TE) = pcurl E

to get a(E,TE) = / ptcurl E - curl (TE)dx = / |curl E|? dz.
Q Q
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T-coercivity for Maxwell 2/2
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Q Q

But impossible in general (take the divergence)!
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T-coercivity for Maxwell 2/2
Consider E € Xy(e). We would like to have

curl (TE) = pcurl E

to get a(E,TE) = / ptcurl E - curl (TE)dx = / |curl E|? dz.
Q Q

L

But impossible in general (take the divergence)! 9 (Idea: use gradients...)

To present the construction, define the scalar operators A. : H{(2) —
H5(Q), A, : H () — HL(Q) such that

(Aep, @ )mp () = /QEV<P -V de, Vo, ¢’ € Hy(Q).

where H (Q) := {9 e H'(Q) | [, ¢ dz = 0}.
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T-coercivity for Maxwell 2/2

Consider E € Xy (¢).
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T-coercivity for Maxwell 2/2
Consider E € Xy (¢).
@ Introduce ¢ € H} () such that curl E— V¢ € Xy (u). To proceed, solve

/Qw VY do = /QMCUPIEW’ dz, W' € Hy(Q).

31 / 40



T-coercivity for Maxwell 2/2

Consider E € Xy (¢).
@ Introduce ¢ € H} () such that curl E— V¢ € Xy (u). To proceed, solve

/ uVi -V de = / pcurl E-V' dx, Vi)' € H;&(Q) [" Qk When Ay J
Q Q is an isom.
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@ Introduce ¢ € H} () such that curl E— V¢ € Xy (u). To proceed, solve

@ Ok when A,

is an isom.

/Qw VY do = /QMCUPIEW’ dz, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that

curlu = p(curl E — V)  in Q.
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@ Introduce ¢ € H} () such that curl E— V¢ € Xy (u). To proceed, solve

@ Ok when A,

is an isom.

/Qw VY do = /QMCUPIEW’ dz, W' € Hy(Q).
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T-coercivity for Maxwell 2/2

Consider E € Xy (¢).
@ Introduce ¢ € H} () such that curl E— V¢ € Xy (u). To proceed, solve

@ Ok when A,

is an isom.

/Qw VY do = /QMCUPIEW’ dz, W' € Hy(Q).

® Since div (u(curl E — V) = 0, there is v € X (1) such that
curlu = p(curl E — V)  in Q.

@ Introduce » € H(Q) such that « — Vi € Xy (g). To proceed, solve

/ eV -Vy'dx = / eu-Vy'dr, Vo e HY Q). |* ,Ok When 4e
Q Q is an isom.
@ Finally, define TE := v — V» € Xy(e). There holds:
a(E,TE) = / p tcurl E - curl wde = / |curl E|? dz.
Q Q
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T-coercivity for Maxwell 2/2

LEMMA. Suppose that
A, : H}(Q) — H{(Q) is an isomorphism
A, Hy () — H(Q) is an isomorphism.
Then, there exists T : X (¢) — X /() such that, for all E, E’

a(E,TE') = o(TE, E') = / curl E - curl E' du
Q

(this implies in particular that T is an isomorphism of Xy (g)).
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Compact embedding and final result

Using a similar construction, we prove the

THEOREM. If A, : H{(Q) — H{() is an isomorphism, then Xy (¢) is com-
pactly embedded in L?(R2) and (curl -, curl-) is a inner product in X ().
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Compact embedding and final result

Using a similar construction, we prove the

THEOREM. If A, : H{(Q) — H{() is an isomorphism, then Xy (¢) is com-
pactly embedded in L?(R2) and (curl -, curl-) is a inner product in X ().

» This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 14”):

THEOREM. Assume that
A, : H}(Q) — H{(Q) is an isomorphism
A, Hy () — H(Q) is an isomorphism.

Then, the problem for the electric field is well-posed for all w € C\.# where
& is a discrete (or empty) set of C.
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Comments and example

» We have a similar result for the magnetic problem.

» These results extend to:
- situations where A., A, are Fredholm of index zero with a non zero kernel;

- situations where  is not simply connected /9§ is not connected.

EXAMPLE OF THE FICHERA’S CUBE:

PROPOSITION. Assume that
E_ 1 _ 1 ,
;%[*73,*;] and *¢[*7§*§]- *®
Then, the problems for the electric and magnetic fields are well-posed for all
w € C\. where . is a discrete (or empty) set of C.

)
:5 Note that 7 is the ratio of the blue volume over the red volume. This interval is not optimal. 33 / 40



@ The Interior Transmission Eigenvalue Problem
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The ITEP in nutshell

\‘\‘ » We want to determine the
\N support of an inclusion (2 embedded
in a using

the Linear Sampling Method.
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The ITEP in nutshell

\\ Au+ k?u=0 » We want to determine the
\ support of an inclusion (2 embedded
in a using
the Linear Sampling Method.
» We can use the method when k is not an eigenvalue of the Interior
Transmission Eigenvalue Problem:

Find (k,v) € C x H3(2) \ {0} such that:

1
/ W(Av + k2n%0)(AY + k') =0, Yo' € HE(Q).
01—
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Find (k,v) € C x H3(2) \ {0} such that:

1
/ W(Av + k2n%0)(AY + k') =0, Yo' € HE(Q).
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» One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.

» This problem has been widely studied since 1986-1988 (Bellis, Cakoni,
Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Paivarinta,
Rynne, Sleeman, Sylvester...) whenn >1on Qorn <1 on Q.
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The ITEP in nutshell

\,\‘ Au+ku=0 » We want to determine the
\ support of an inclusion (2 embedded
in a using

the Linear Sampling Method.

» We can use the method when k is not an 'T““value of the Interior

Transmission Eigenvalue Problem: s g MISSIo
IGN_CHAN NPROBL
Find (k,v) € C x H2(Q) \ {0} such that: CING o™ W,

1
/ T2 ——— (Av + E*n%0)(AY + E') =0, Yo' € HA(Q).

» One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.

» This problem has been widely studied since 1986-1988 (Bellis, Cakoni,
Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Paivarinta,
Rynne, Sleeman, Sylvester...) whenn >1on Qorn <1 on Q.

(What happens when 1 — n? changes sign?)
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A bilaplacian with a sign-changing coefficient

» We define 0 = (1 — n2)~! and we focus on the principal part:
Find v € HZ(Q) such that:

(Fy) /QO'A’UAU’Z (f,v')g, W' € H3(Q).
—_—_— ——
a(v,v’) L(v")
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A bilaplacian with a sign-changing coefficient

» We define 0 = (1 — n2)~! and we focus on the principal part:
Find v € HZ(Q) such that:

(Fy) /QO’A’UAU’ = (f,v)g, V' €H3(Q).
—_—_— ——
a(v,v’) L(v")

=4 Message: The operators A(cA-) : H3(2) — H=2(Q2) and div (¢V") :
H}(Q) — H=1(Q) have very different properties.
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A bilaplacian with a sign-changing coefficient

» We define 0 = (1 — n2)~! and we focus on the principal part:
Find v € HZ(Q) such that:
(Fy) /QO'A’UA’U’ = (f,v)g, V' €H3(Q).

—_— ——
a(v,v’) L(v")

=4 Message: The operators A(cA-) : H3(2) — H=2(Q2) and div (¢V") :
H}(Q) — H=1(Q) have very different properties.

THEOREM. The problem (%) is well-posed in the Fredholm sense as soon
as o does not change sign in a neighbourhood of 9f2.

Fredholm H
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A bilaplacian with a sign-changing coefficient

IDEAS OF THE PROOF: We have

a(v,v) = (cAv, Av)q.

Fredholm o=—-1
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IDEAS OF THE PROOF: We have
Not simple!

a(v,v) = (cAv, Av)q.
We would like to build T : H3(Q2) — H2(€2) such that |A(Tv) = o~ 'Av
so that a(v,Tv) = (cAv, A(Tv))q = (Av, Av)q.

@ Let w € HY(Q) such that Aw = o~ Aw.
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A bilaplacian with a sign-changing coefficient

IDEAS OF THE PROOF: We have
Not simple!

a(v,v) = (cAv, Av)q.
We would like to build T : H3(Q2) — H2(€2) such that |A(Tv) = o~ 'Av
so that a(v,Tv) = (cAv, A(Tv))q = (Av, Av)q.

@ Let w € HY(Q) such that Aw = o~ Aw.

@ Let ¢ € €5°(Q). Define Tv = Cw + (1 — ()ve HZ().
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A bilaplacian with a sign-changing coefficient

IDEAS OF THE PROOF: We have
Not simple!
a(v,v) = (cAv, Av)q.

We would like to build T : H3(Q2) — H2(€2) such that |A(Tv) = o~ 'Av
so that a(v,Tv) = (cAv, A(Tv))q = (Av, Av)q.

@ Let w € HY(Q) such that Aw = o~ Aw.
@ Let ¢ € 65°(Q). Define Tv = Cw + (1 — ¢)ve H3(Q).

@ We find a(v,Tv) = ([( + (1 — {)]Av, Av)q + (Kv,v)nz(0)
where K : H2(Q) — H2(Q) is compact.
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Find v € HZ(Q) such that:
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A bilaplacian with a sign-changing coefficient

» We define 0 = (1 — n2)~! and we focus on the principal part:
Find v € HZ(Q) such that:
(Fy) /QO'A’UA’U/ = (f,v)g, V' €H3(Q).

—_— ——
a(v,v’) £(v')

=4 Message: The operators A(cA-) : H3(2) — H=2(Q2) and div (¢V") :
H}(Q) — H=1(Q) have very different properties.

... but (Zv) can be ill-posed (not Fredholm) when o changes sign “on 9"

| ||
| ||

Not always

Fredholm Fredholm
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@ Scalar problem: variational techniques

© Scalar problem: a new functional framework in the critical interval

© Maxwell’s equations

@ The Interior Transmission Eigenvalue Problem
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Conclusions

‘Scalar problem outside the critical interval | div (p™'V:) : HY(Q) — H Q)

& Concerning the approximation of the solution by FEM, in practice, usual
methods converge. Only partial proofs are available.

& In 3D, are the interval obtained optimal?
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Conclusions

‘Scalar problem outside the critical interval | div (p™'V:) : HY(Q) — H Q)

& Concerning the approximation of the solution by FEM, in practice, usual
methods converge. Only partial proofs are available.

& In 3D, are the interval obtained optimal?

‘Scalar problem inside the critical interval div (p™'V:) : VTH(Q) — Va(Q)*

& What happens in 3D (edge, intersection of edges,...)?

& What can be done with integral equations in this case?

‘Maxwell’s equations‘ curl (u 'curl ) : Xn(e) — Xn(e)*

& Convergence of an edge element method has to be studied.

& We also have developed new functional frameworks inside the critical interval.

How to approximate the solution in that cases?

‘Interior Transmission Eigenvalue Problem‘ A(cAY) - H3(Q) — H2(Q)

& How to compute the transmission eigenvalues when there are oscillating
singularities? (coll. with F. Monteghetti).

[51e]
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p) ? Open questions ? 2

¢ ® . ?

The new model in the critical interval raises many questions related to the
physics of plasmonics and metamaterials.

Can we observe this black-hole effect in practice? For rounded corners, we
showed that the solution is unstable with respect to the rounding parameter...

The case k, = —1 (the graal for applications) has still to be studied. New
frameworks have been proposed (Joly-Vinoles, Nguyen,
Benhellal-Pankrashkin,...): ‘:> how to approximate the solutions?

For metamaterials, can we reconsider the homogenization process to take
into account interfacial phenomena?

= See the work of Claeys-Fliss-Vinoles.

In practice € and p depend on w.

What happens for the spectral problems? in time-domain regime? Is the
limiting amplitude principle still valid?

= See the works of Hazard-Paolantoni, Cassier-Joly-Kachanovska.
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Thank you for your attention!!!
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