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General setting
I We are interested in methods based on the propagation of waves to
determine the shape, the physical properties of objects, in an exact or
qualitative manner, from given measurements.

I General principle of the methods:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.

• Many techniques: Xray, ultrasound imaging, seismic tomography, ...
• Many applications: biomedical imaging, non destructive testing of
materials, geophysics, ...

2 / 28



Goal of the talk
I The goal of imaging techniques is to find features of the structure from
the knowledge of measurements.

I In this talk, we are interested in questions of invisibility when one has a
finite number of measurements .

- Less ambitious than usual cloaking and therefore, more accessible.

- Also relevant for applications, in particular in waveguides.

I At least two reasons to study invisibility questions:
- We can wish to hide objects.
- It allows to understand limits of imaging techniques.
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Outline of the talk

1 Construction of invisible penetrable defects

2 Can one hide a small Dirichlet obstacle?

3 Can one hide a perturbation of the wall?
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Waveguide problem
I Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients ρ) in Ω := {(x, y) ∈ R× (0; 1)}.

Ω

ρ = 1
D

ρ 6= 1

+`−`

w+

(P)

Find u = ui + us s. t.
−∆u = k2ρ u in Ω,
∂nu = 0 on ∂Ω,

us is outgoing.

I For k∈ (0;π), only 2 propagative modes w± = e±ikx. Set ui = w+.

I us is outgoing ⇔ us = χ+s+w+ + χ−s−w− + ũs,

with s± ∈ C, ũs exponentially decaying at ±∞.

Definition: ui = incident field (data)
u = total field (defined by (P))
us = scattered field (defined by (P)).
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Definition of invisibility
I At infinity, one measures the reflection coefficient s− and/or the

transmission coefficient 1 + s+ (other terms are too small).

Definition: Inclusion is said non reflective if s− = 0
completely invisible if s+ = 0.

I From conservation of energy |s−|2 + |1 + s+|2 = 1, “complete invisibility”
implies “non reflectibility” (s+ = 0⇒ s− = 0). The converse is wrong.

GOAL
We explain how to construct inclusions such that

s− = 0 or s+ = 0.

These inclusions cannot be detected from far field measurements.

We assume that k and the support of the inclusion D are given.
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Goal

Find a real valued function ρ 6≡ 1, with ρ − 1 supported in D, such
that the solution to the problem

Find u = us + w+ such that
−∆u = k2ρ u in Ω,

us is outgoing

satisfies s− = 0 or s+ = 0.
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Sketch of the method

I We will work as in the proof of the implicit functions theorem.

The idea was used in Nazarov 11 to construct waveguides for which
there are embedded eigenvalues in the continuous spectrum.

(N complex measurements ⇒ 2N real measurements)

Assume that dF (0) : L∞(D)→ R2N is onto.

∃µ0, µ1, . . . , µ2N ∈ L∞(D) s.t. dF (0)(µ0) = 0
[dF (0)(µ1), . . . , dF (0)(µ2N )] = Id2N .

I Take µ = µ0 +
2N∑
n=1

τnµn where the τn are real parameters to set:

0 = F (εµ) ⇔ where ~τ = (τ1, . . . , τ2N )>

and
Gε(~τ) = −εF̃ ε(µ).

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set σsol := εµsol. We have F (σsol) = 0 (invisible inclusion).
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Sketch of the method
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Calculus of dF (0)
I For our problem, we have (σ = ρ− 1)

F (σ) = (<e s−,=ms−,<e s+,=ms+, ).

To compute dF (0)(µ), we take ρε = 1 + εµ with µ supported in D.

I We denote uε, uεs the functions satisfying

Find uε = uεs + ui,with uεs outgoing, such that
−∆uε = k2ρε uε in Ω.

•

is± =

• We can prove that uεs = O(ε).

I We obtain the expansion (Born approx.), for small ε

s± = 0 + ε ik2
∫
D
µw+ w∓ dx +O(ε2).

Conclusion: dF (0)(µ) =
(∫
D
µ cos(2kx) dx,

∫
D
µ sin(2kx) dx,

∫
D
µdx, 0

)
.
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Penetrable inclusion

I For F (σ) = (<e
s−

ik2,=m
s−

ik2,<e
s+

ik2,=m
s+

ik2), we obtain

dF (0)(µ) =
( ∫
D
µ cos(2kx) dx ,

∫
D
µ sin(2kx) dx ,

∫
D
µdx, 0

)
.

Is dF (0) : L∞(D)→ R4 onto

I No! But we can get s− = 0 .

Can we have s+ = 0 or

ui s+ = 0

Waveguide
˜ θinc u∞s (θinc) = 0

Free space

u∞s (θinc) = 0 ⇒ us ≡ 0 ∈ Rd \D

Impose s− = 0
=ms+ = 0 . Then, |s

−|2 + |1 + s+|2 = 1
s+ = O(ε) ⇒ s+ = 0 .
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Main result

Proposition: For ε small enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
3∑

n=1
τ sol
n µn.

Then the solution of the scattering problem

Find uε = uεs + w+

−∆u = k2ρ sol u in Ω,
us is outgoing

satisfies s− = s+ = 0.

Comments:
→ We need ε to be small enough to prove that Gε is a contraction.
→ We have µ sol 6≡ 0 (non trivial inclusion). To see it, compute dF (0)(µ sol).

→ We have τ sol = O(ε) ⇒ µ sol ≈ µ0. We control the main form of the defect.
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Numerical experiments: algorithm and data

I We can solve the fixed point problem using an iterative procedure: we
set ~τ 0 = (0, 0, 0)> then define

~τ n+1 = Gε(~τ n).

I At each step, we solve a scattering problem. We use a P2 finite element
method in Ω4 := (−4; 4)× (0; 1). On x = ±4, a truncated Dirichlet-to-Neu-
mann map with 10 harmonics serves as a transparent boundary condition.

I We set k = 3 and D = (−π/(2k);π/(2k))× (1/4; 3/4)
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Results at the end of the fixed point loop

σ = ρ− 1

<e us

With this approach, we produce small contrast invisible perturbations of
the reference medium.

Can we increase the perturbation to obtain larger defects
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Can we increase the perturbation?

I Schematic view of what we did (F : R2 → R is the measurements map):

0

F (σ) = 0

F (εµ0)

F (εµsol)

Can we reiterate the process
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Numerical results to impose s− = 0
I Same setting, 3 steps of iterations.

σ = ρ− 1

<e us

→ First results are encouraging. Still some questions: at each step, how to
choose the new directions?

Depending on the directions, we may have

0

F (σ) = 0

or 0

F (σ) = 0

→ We are not able to prove that ds−(σ) : L∞(D)→ C is onto for σ 6≡ 0.
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1 Construction of invisible penetrable defects

2 Can one hide a small Dirichlet obstacle?

3 Can one hide a perturbation of the wall?
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Small Dirichlet obstacle
I Can one hide a small Dirichlet obstacle Oε

1 = M1 + εO centered at M1?

Oε
1

Find u = ui + us s. t.
−∆u = k2u in Ωε := Ω \ Oε

1 ,

u = 0 on ∂Ωε,
us is outgoing.

I Again, us is outgoing ⇔ us = χ+s+w+ + χ−s−w− + ũs , with s± ∈ C,
ũs expo. decaying at ±∞.

Due to Dirichlet B.C., w± are not the same as previously (but this is not
important).
I In 3D, we obtain

s− = 0 + ε (4iπ cap(O)w+(M1)2) +O(ε2)

s+ = 0 + ε (4iπ cap(O)|w+(M1)|2) +O(ε2).

Non zero terms!
(cap(O) > 0)

⇒ One single small obstacle cannot even be non reflective.

18 / 28



Small Dirichlet obstacle
I Can one hide a small Dirichlet obstacle Oε

1 = M1 + εO centered at M1?

Oε
1

Find u = ui + us s. t.
−∆u = k2u in Ωε := Ω \ Oε

1 ,

u = 0 on ∂Ωε,
us is outgoing.

I Again, us is outgoing ⇔ us = χ+s+w+ + χ−s−w− + ũs , with s± ∈ C,
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ũs expo. decaying at ±∞.

Due to Dirichlet B.C., w± are not the same as previously (but this is not
important).
I In 3D, we obtain

s− = 0 + ε (4iπ cap(O)w+(M1)2) +O(ε2)

s+ = 0 + ε (4iπ cap(O)|w+(M1)|2) +O(ε2).

Non zero terms!
(cap(O) > 0)

⇒ One single small obstacle cannot even be non reflective.

18 / 28



Small Dirichlet obstacle
I Can one hide a small Dirichlet obstacle Oε

1 = M1 + εO centered at M1?

Oε
1

Find u = ui + us s. t.
−∆u = k2u in Ωε := Ω \ Oε

1 ,

u = 0 on ∂Ωε,
us is outgoing.

I Again, us is outgoing ⇔ us = χ+s+w+ + χ−s−w− + ũs , with s± ∈ C,
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Small Dirichlet obstacles

I Let us try with two small Dirichlet
obstacles centered at M1, M2.

Oε
1

Oε
2

I We obtain s− = 0 + ε (4iπ cap(O)
2∑

n=1
w+(Mn)2) +O(ε2)

s+ = 0 + ε (4iπ cap(O)
2∑

n=1
|w+(Mn)|2) +O(ε2).

We can findM1, M2 such that s− = O(ε2). Then moving Oε
1 fromM1 to

M1 + ετ , and choosing a good τ ∈ R3 (fixed point), we can get s− = 0 .

Comments:
→ Hard part is to justify the asymptotics for the fixed point problem.
→ We cannot impose s+ = 0 with this strategy.
→ When there are more propagative waves, we need more obstacles.

Acting as a team, flies can become invisible!
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1 Construction of invisible penetrable defects

2 Can one hide a small Dirichlet obstacle?

3 Can one hide a perturbation of the wall?
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Can one hide a perturbation of the wall?
I Pick h ∈ C∞0 (−`; `), ` > 0. Set k ∈ (0;π), w± = e±ikx, ui = w+.

0

1 + εh(x)

Ωε

−` ` Find u = ui + us s. t.
−∆u = k2u in Ωε,
∂nu = 0 on ∂Ωε,

us is outgoing.

I Again, us is outgoing ⇔ us = χ+s+w+ + χ−s−w− + ũs , with s± ∈ C,
ũs expo. decaying at ±∞.

I We obtain

s− = 0 + ε

(
−1

2

∫ `

−`
∂xh(x)(w+(x))2 dx

)
+O(ε2)

s+ = 0 + ε 0 +O(ε2).

⇒ With this approach, we can impose s− = 0 but not s+ = 0 .
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Obstruction to invisibility

I More generally, for any Neumann wave-
guide, one can show that s+ = 0 implies∫

Ω
|∇us|2 − k2|us|2 dx = 0.

Ω

Ωc` Ω`

−` `

• Decomposing in Fourier series, one finds∫
Ωc

`

|∇us|2 − k2|us|2 dx ≥ 0.

• Note that s+ = 0⇒ us ∈ Y := {v ∈ H1(Ω`) |
∫
x=±` v dσ = 0}. Define

λ† := infv∈Y\{0}

(∫
Ω`

|∇v|2 dx
)/(∫

Ω`

|v|2 dx
)
> 0.

Proposition: For a given shape, s+ = 0 cannot hold for k2 ∈ (0;λ†).

→ To impose invisibility at low frequency, we need to work with special shapes.
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→ For a small smooth perturbation of amplitude εh, one finds |λ† − π2| ≤ C ε.

→ To impose invisibility at low frequency, we need to work with special shapes.
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Non smooth perturbation of the wall
I We study the same problem in the geometry Ωε

ε

ε
ε

h1
h2 h3

Ωε

M1 M2 M3

I We obtain s− = 0 + ε
(
ik
∑3
n=1(w+(Mn))2 tan(khn)

)
+O(ε2)

s+ = 0 + ε
(
i/2
∑3
n=1 tan(khn)

)
+O(ε2)

1) We can find Mn, hn such that s− = O(ε2) and s+ = O(ε2) .
2) Then changing hn into hn + τn, and choosing a good τ = (τ1, τ2, τ3) ∈ R3

(fixed point), we can get s− = 0 and =ms+ = 0 .
3) Energy conservation + [s+ = O(ε)] ⇒ s+ = 0 .
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Geometry at the end of the numerical process
I We set k = 0.8π. We start with h0

1 = h0
2 = h0

3 = π/k. At each step j ≥ 0
of the fixed point loop, we change the geometry modifying hj1, h

j
2, h

j
3.

<e us

<e u
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Remark
I We could also have worked with gardens of flowers!
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1 Construction of invisible penetrable defects

2 Can one hide a small Dirichlet obstacle?

3 Can one hide a perturbation of the wall?
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Conclusion

What we did

♠ We explained how to construct invisible perturbations of a reference
situation in a setting with a finite number of measurements.

Future work

1) We want to continue the analysis of the reiteration process to
construct large invisible defects of the reference medium.

2) It would be interesting to consider other models (Maxwell, elasticity,
...) and to investigate cases where the differential is not onto.

3) For a given perturbation, can we study the frequencies (invisible
modes) such that invisibility holds?

4) We wish to better understand the link between the invisible modes
and the so-called trapped modes in waveguides.

(k, us) ∈ R×H1(Ω) \ {0} s. t.
−∆us = k2us in Ω,
∂nus = −∂nui on ∂Ω

(k, u) ∈ R×H1(Ω) \ {0} s. t.
−∆u = k2u in Ω,
∂nu = 0 on ∂Ω

Invisible mode Trapped mode
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Thank you for your attention!!!
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1 Construction of invisible penetrable defects

2 Can one hide a small Dirichlet obstacle?

3 Can one hide a perturbation of the wall?

4 Can one construct a completely reflective defect?
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Completely reflective defects

Definition: Defect is said completely reflective if s+ = −1.

I In these waveguides, u = χ+(1 + s+)w+ + χ−(w+ + s−w−) + ũ is
exponentially decaying at +∞.

Can we construct such defects

We cannot consider a small perturbation of the reference waveguide.

`

L

ΩL

I Consider the Helmholtz problem with Dirichlet B.C. in ΩL. It admits a
solution u = χ+(1 + s+

L)w+ + χ−(w+ + s−Lw
−) + ũ.

→ For a given ` > 0, we compute numerically s±L as L→ +∞
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Asymptotic behaviours of s±L as L→ +∞ 1/2
Result depend on the nb. of prop. modes in the vertical branch B∞

`

B∞
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Figure: Numerical approximation of TL, RL for L ∈ (0.4; 10), ` = 1.

? For ` ∈ (π/k; 2π/k) (2 propagative modes w±◦ in B∞), we can prove that

|RL −Rasy(L)| ≤ C e−αL and |TL − Tasy(L)| ≤ C e−αL, (C, α > 0)

where Rasy(L), Tasy(L) run on circles passing period. through 0 as L→ +∞.

We can construct waveguides s.t. |T | ≤ C e−αL for arbitrary large L.
For the moment, we do not know how to impose exactly T = 0.
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Numerical results
I Approximation of t 7→ <e (e−iωtu(x)) for some arbitrary L.

I Approximation of t 7→ <e (e−iωtu(x)) for L such that |TL| ≤ Ce−αL.
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Asymptotic behaviours of s±L as L→ +∞ 2/2

? For ` ∈ (2π/k; 3π/k) (4 propagative modes w±◦ , w±• in B∞), one has

|RL −Rasy(L)| ≤ C e−αL and |TL − Tasy(L)| ≤ C e−αL, (C, α > 0)

but behaviours of Rasy(L), Tasy(L) can be more complex...

Figure: Curves L 7→ Tasy(L), Rasy(L) for L ∈ (0; +∞), ` = π
k

√
4m2−1
m2−1 , m = 2.

For the moment, we are not able to prove that the curves L 7→ Tasy(L),
Rasy(L) pass through zero.
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Figure: Curves L 7→ Tasy(L), Rasy(L) for L ∈ (0; +∞), ` = π
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For the moment, we are not able to prove that the curves L 7→ Tasy(L),
Rasy(L) pass through zero.
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? For ` ∈ (2π/k; 3π/k) (4 propagative modes w±◦ , w±• in B∞), one has

|RL −Rasy(L)| ≤ C e−αL and |TL − Tasy(L)| ≤ C e−αL, (C, α > 0)

but behaviours of Rasy(L), Tasy(L) can be more complex...

Figure: Curves L 7→ Tasy(L), Rasy(L) for L ∈ (0; 100), ` = 1.4.

For the moment, we are not able to prove that the curves L 7→ Tasy(L),
Rasy(L) pass through zero.
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Numerical results
I Approximation of t 7→ <e (e−iωtu(x)) for some arbitrary L.

I Approximation of t 7→ <e (e−iωtu(x)) for L such that TL is small.
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