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Introduction: objective
Scattering by a negative material in electromagnetism in 3D in
time-harmonic regime (at a given frequency):

Negative material
ε< 0

and/or µ< 0

Positive material
ε> 0

and µ> 0

Do such negative materials occur in practice?

I For metals at optical frequencies, ε < 0 and µ > 0.

Drude model for a metal (high frequency):

ε(ω) = ε0

(
1−

ωp
2

ω2

)
,

where ωp is the plasma frequency.

ω

ε0

0
ωp

ε(ω)

ε(ω) < 0 for ω < ωp

I Recently, artificial metamaterials have been realized which can be
modelled (at some frequency of interest) by ε < 0 and µ < 0.

Zoom on a metamaterial: practical realizations of metamaterials are
achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)
Mathematical justification of the homogenized model (Bouchitté,
Bourel, Felbacq 09).
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Introduction: applications
I Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

S

e 2en = −1

n = 1
S

I The negative refraction at the interface metamaterial/dielectric could
allow the realization of perfect lenses (Pendry 00), photonic traps ...

Interfaces between negative materials and dielectrics occur in all (exciting)
applications...
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Introduction: in this talk
Problem set in a bounded domain Ω ⊂ R3:

Ω2
Metamaterial

ε< 0
µ< 0

Ω1
Dielectric

Σε> 0
µ> 0

I Unusual transmission problem because the sign of the coefficients ε and
µ changes through the interface Σ.

I Well-posedness is recovered by the presence of dissipation: =m ε, µ > 0.

But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

Does well-posedness still hold?
What is the appropriate functional framework?
What about the convergence of approximation methods?
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Outline of the talk
1 The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transforma-
tions to study div(µ−1∇·) : H1

0(Ω)→ H−1(Ω) (improvement over
Bonnet-Ben Dhia et al. 10, Zwölf 08).

2 A new functional framework in the critical interval

We propose a new functional framework when div(µ−1∇·) : X→ Y
is not Fredholm for X = H1

0(Ω) and Y = H−1(Ω) (extension of Dauge,
Texier 97, Ramdani 99).

3 Study of Maxwell’s equations
We develop a T-coercivity method based on potentials to study
curl (ε−1curl ·) : VT(µ; Ω)→ VT(µ; Ω)∗.

4 The T-coercivity method for the Interior Transmission Problem

We study ∆(σ∆·) : H2
0(Ω)→ H−2(Ω).
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A scalar model problem
Problem for Ez in 2D in case of an invariance with respect to z:

Find Ez ∈ H1
0(Ω) such that:

div(µ−1∇Ez) + ω2εEz = −f in Ω.

H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

Since H1
0(Ω) ⊂⊂ L2(Ω), we focus on the principal part.

(P) Find u ∈ H1
0(Ω) s.t.:

div(µ−1∇u) = −f in Ω. ⇔ (PV ) Find u ∈ H1
0(Ω) s.t.:

a(u, v) = l(v), ∀v ∈ H1
0(Ω).

with a(u, v) =
∫

Ω
µ−1∇u · ∇v and l(v) = 〈f , v〉Ω.

Definition. We will say that the problem (P) is well-posed if the operator
A = div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).
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Mathematical difficulty

Classical case µ > 0 everywhere:

a(u, u) =
∫

Ω
µ−1 |∇u|2 ≥ min(µ−1) ‖u‖2H1

0(Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case µ changes sign:

a(u, u) =
∫

Ω
µ−1 |∇u|2 ≥ C ‖u‖2H1

0(Ω)
loss of coercivity

I When µ2 = −µ1, (P) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. Σ) we can build a kernel of
infinite dimension.
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For a symmetric domain (w.r.t. Σ) we can build a kernel of
infinite dimension.
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Idea of the T-coercivity 1/2
Let T be an isomorphism of H1

0(Ω).

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
0(Ω).

Goal: Find T such that a is T-coercive:
∫

Ω
µ−1∇u · ∇(Tu) ≥ C ‖u‖2

H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT
V ) (and so (PV )) is well-posed.

1 Define
R1 transfer/extension operator

ΣΩ1 Ω2

R1

R1u1 = u1 on Σ
R1u1 = 0 on ∂Ω2 \ Σ

On Σ, we have −u2 + 2R1u1 = −u2 + 2u1 = u1 ⇒ T1u ∈ H1
0(Ω).

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)
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Idea of the T-coercivity 2/2

3 One has a(u, T1u) =
∫

Ω
|µ|−1|∇u|2 − 2

∫
Ω2

µ−1
2 ∇u · ∇(R1 u1)

Young’s inequality ⇒ a is T-coercive when |µ2| > ‖R1‖2 µ1.

4 Working with T2u = u1 − 2R2u2 in Ω1
−u2 in Ω2

, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when µ1 > ‖R2‖2 |µ2|.

5 Conclusion:

Theorem. If the contrast κµ = µ2/µ1 /∈ [−‖R1‖2;−1/‖R2‖2], then the
operator div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

[−‖R1‖2;−1/‖R2‖2]

The interval depends on the
norms of the transfer operators
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Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ

R1 = R2 = SΣ
so that ‖R1‖ = ‖R2‖ = 1

(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ
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Extensions for the scalar case
I The T-coercivity approach can be used to deal with non constant µ1, µ2
and with the Neumann problem.

I 3D geometries can be handled in the same way.

I The T-coercivity technique
allows to justify convergence of
standard finite element method
for simple meshes (Bonnet-Ben
Dhia et al. 10, Nicaise,
Venel 11, Chesnel, Ciarlet 12).
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Transition: from variational methods to
Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the
criticial interval, i.e. when κµ ∈ [−Rσ;−1/Rσ]???

Ω1

Ω2

σ

O

Σ

Idea: we will study precisely the regularity of the “solutions” using
the Kondratiev’s tools, i.e. the Fourier/Mellin transform (Dauge,
Texier 97, Nazarov, Plamenevsky 94).
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 Study of Maxwell’s equations

4 The T-coercivity method for the Interior Transmission Problem

⇒ collaboration with X. Claeys (LJLL Paris VI).
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Problem considered in this section
I We recall the problem under consideration

(P) Find u ∈ H1
0(Ω) such that:

−div(µ−1∇u) = f in Ω.

I To simplify the presentation, we work on a particular configuration.

Σ

Ω1
µ1 > 0

Ω2
µ2 < 0O

I Using the variational method of the previous section, we prove the

Proposition. The problem (P) is well-posed as soon as the contrast κµ =
µ2/µ1 satisfies κµ /∈ [−3;−1].

What happens when κµ ∈ [−3;−1)?
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Analogy with a waveguide problem

(z, θ) = (− ln r , θ)

(r , θ) = (e−z , θ)

(<e λ = a, =m λ = b)

s∈ H1(Ω) <e λ > 0 m is evanescent
s/∈ H1(Ω) <e λ = 0 m is propagative

• Bounded sector Ω

Σ

π/4

Ω1 Ω2

O (r, θ)

• Equation:
−div(µ−1∇u)︸ ︷︷ ︸

−r−2(µ−1(r∂r )2+∂θµ−1∂θ)u

= f

• Singularities in the sector
s(r , θ) = rλϕ(θ)

s(r , θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

• Half-strip B

z

θ

B1

B2
Σ θ = π/4

• Equation:
−div(µ−1∇u)︸ ︷︷ ︸

−(µ−1∂2
z +∂θµ−1∂θ)u

= e−2z f

• Modes in the strip
m(z, θ) = e−λzϕ(θ)

m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

I This encourages us to use modal decomposition in the half-strip.

r0

r 7→ <e rλ
1

−1

z0

z 7→ <e e−λz
1

−1

We compute the singularities s(r , θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κµ = −4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κµ = −2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κµ = −2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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Analogy with a waveguide problem

(z, θ) = (− ln r , θ)

(r , θ) = (e−z , θ)

(<e λ = a, =m λ = b)

s∈ H1(Ω) <e λ > 0 m is evanescent
s/∈ H1(Ω) <e λ = 0 m is propagative

• Bounded sector Ω

Σ

π/4

Ω1 Ω2
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• Equation:
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• Half-strip B

z

θ
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Modal analysis in the waveguide

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κµ = −4
I Outside the critical interval . All the
modes are exponentially growing or decaying.
→ We look for an exponentially decaying
solution. H1 framework

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κµ = −2
I Inside the critical interval . There are
exactly two propagative modes.
→ The decomposition on the outgoing modes
leads to look for a solution of the form

u = c1 ϕ1 eλ1 z︸ ︷︷ ︸
propagative part

+ ue.︸︷︷︸
evanescent part

non H1 framework

... but the modal decomposition is not easy to justify because two sign-
changing appear in the transverse problem: ∂θσ∂θϕ = −σλ2ϕ.
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The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 eλ1z)⊕W−β propagative part + evanescent part
Wβ = {v | e−βzv ∈ H1

0(B)} space of exponentially growing functions

Theorem. Let κµ ∈ (−3;−1) and 0 < β < 2. The operator A+ :
div(µ−1∇·) from W+ to W∗β is an isomorphism.

Ideas of the proof:
1 A−β : div(µ−1∇·) from W−β to W∗β is injective but not surjective.

2 Aβ : div(µ−1∇·) from Wβ to W∗−β is surjective but not injective.

3 The intermediate operator A+ : W+ →W∗β is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩
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A funny use of PMLs
I We use a PML (Perfectly Matched Layer) to bound the domain B

+ finite elements in the truncated strip

Contrast κµ = −1.001 ∈ (−3;−1).

PML

PM
L
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A black hole phenomenon
I The same phenomenon occurs for the Helmholtz equation.

(x, t) 7→ <e (u(x)e−iωt) for κµ = −1.3 ∈ (−3;−1)

(. . . ) (. . . )

I Analogous phenomena occur in cuspidal domains in the theory of
water-waves and in elasticity (Cardone, Nazarov, Taskinen).
I On going work for a general domain (C. Carvalho). 20 / 34
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Summary of the results for the scalar problem

Σ

π
4

Ω1
µ1 > 0

Ω2
µ2 < 0

OO

−1−3

<e κµ

=m κµ

(P) Find u ∈ H1
0(Ω) s.t.:

−div (µ−1∇u) = f in Ω.

For κµ ∈ C\R−, (P) well-posed in
H1

0(Ω) (Lax-Milgram)

For κµ ∈ R∗−\[−3;−1], (P) well-posed
in H1

0(Ω) (T-coercivity)

For κµ ∈ (−3;−1), (P) is not well-
posed in the Fredholm sense in H1

0(Ω)
but well-posed in V+ (PMLs)

κµ = −1, (P) ill-posed in H1
0(Ω)

Prob
lem

Resu
lts
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 Study of Maxwell’s equations

4 The T-coercivity method for the Interior Transmission Problem

22 / 34



T-coercivity in the vector case 1/3
Let us consider the problem for the magnetic field H :

Find H ∈ VT(µ; Ω) such that for all H ′ ∈ VT(µ; Ω) :∫
Ω
ε−1curl H · curl H ′︸ ︷︷ ︸

a(H ,H ′)

−ω2
∫

Ω
µH ·H ′︸ ︷︷ ︸

c(H ,H ′)

=
∫

Ω
F ·H ′︸ ︷︷ ︸
l(H ′)

,

with VT(µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT(µ; Ω)) such that
a(H ,TH ′) =

∫
Ω
ε−1curl H · curl (TH ′) is coercive on VT(µ; Ω).

Scalar approach

Let us try TH = H 1 in Ω1
−H 2 + 2R1H 1 in Ω2

, with R1 such that{
(R1H 1)× n = H 2 × n on Σ
µ1(R1H 1) · n = µ2H 2 · n on Σ

Not possible!

23 / 34



T-coercivity in the vector case 1/3
Let us consider the problem for the magnetic field H :

Find H ∈ VT(µ; Ω) such that for all H ′ ∈ VT(µ; Ω) :∫
Ω
ε−1curl H · curl H ′︸ ︷︷ ︸

a(H ,H ′)

−ω2
∫

Ω
µH ·H ′︸ ︷︷ ︸

c(H ,H ′)

=
∫

Ω
F ·H ′︸ ︷︷ ︸
l(H ′)

,

with VT(µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT(µ; Ω)) such that
a(H ,TH ′) =

∫
Ω
ε−1curl H · curl (TH ′) is coercive on VT(µ; Ω).

Scalar approach

Let us try TH = H 1 in Ω1
−H 2 + 2R1H 1 in Ω2

, with R1 such that{
(R1H 1)× n = H 2 × n on Σ
µ1(R1H 1) · n = µ2H 2 · n on Σ

Not possible!

23 / 34



T-coercivity in the vector case 1/3
Let us consider the problem for the magnetic field H :

Find H ∈ VT(µ; Ω) such that for all H ′ ∈ VT(µ; Ω) :∫
Ω
ε−1curl H · curl H ′︸ ︷︷ ︸

a(H ,H ′)

−ω2
∫

Ω
µH ·H ′︸ ︷︷ ︸

c(H ,H ′)

=
∫

Ω
F ·H ′︸ ︷︷ ︸
l(H ′)

,

with VT(µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT(µ; Ω)) such that
a(H ,TH ′) =

∫
Ω
ε−1curl H · curl (TH ′) is coercive on VT(µ; Ω).

Scalar approach

Let us try TH = H 1 in Ω1
−H 2 + 2R1H 1 in Ω2

, with R1 such that{
(R1H 1)× n = H 2 × n on Σ
µ1(R1H 1) · n = µ2H 2 · n on Σ

Not possible!

23 / 34



T-coercivity in the vector case 1/3
Let us consider the problem for the magnetic field H :

Find H ∈ VT(µ; Ω) such that for all H ′ ∈ VT(µ; Ω) :∫
Ω
ε−1curl H · curl H ′︸ ︷︷ ︸

a(H ,H ′)

−ω2
∫

Ω
µH ·H ′︸ ︷︷ ︸

c(H ,H ′)

=
∫

Ω
F ·H ′︸ ︷︷ ︸
l(H ′)

,

with VT(µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT(µ; Ω)) such that
a(H ,TH ′) =

∫
Ω
ε−1curl H · curl (TH ′) is coercive on VT(µ; Ω).

Scalar approach

Let us try TH = H 1 in Ω1
−H 2 + 2R1H 1 in Ω2

,

with R1 such that{
(R1H 1)× n = H 2 × n on Σ
µ1(R1H 1) · n = µ2H 2 · n on Σ

Not possible!

23 / 34



T-coercivity in the vector case 1/3
Let us consider the problem for the magnetic field H :

Find H ∈ VT(µ; Ω) such that for all H ′ ∈ VT(µ; Ω) :∫
Ω
ε−1curl H · curl H ′︸ ︷︷ ︸

a(H ,H ′)

−ω2
∫

Ω
µH ·H ′︸ ︷︷ ︸

c(H ,H ′)

=
∫

Ω
F ·H ′︸ ︷︷ ︸
l(H ′)

,

with VT(µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT(µ; Ω)) such that
a(H ,TH ′) =

∫
Ω
ε−1curl H · curl (TH ′) is coercive on VT(µ; Ω).

Scalar approach

Let us try TH = H 1 in Ω1
−H 2 + 2R1H 1 in Ω2

, with R1 such that{
(R1H 1)× n = H 2 × n on Σ
µ1(R1H 1) · n = µ2H 2 · n on Σ

Not possible!

23 / 34



T-coercivity in the vector case 1/3
Let us consider the problem for the magnetic field H :

Find H ∈ VT(µ; Ω) such that for all H ′ ∈ VT(µ; Ω) :∫
Ω
ε−1curl H · curl H ′︸ ︷︷ ︸

a(H ,H ′)

−ω2
∫

Ω
µH ·H ′︸ ︷︷ ︸

c(H ,H ′)

=
∫

Ω
F ·H ′︸ ︷︷ ︸
l(H ′)

,

with VT(µ; Ω) := {u ∈ H(curl ; Ω) | div (µu) = 0, µu · n = 0 on ∂Ω}.

By analogy with the scalar case, we look for T ∈ L(VT(µ; Ω)) such that
a(H ,TH ′) =

∫
Ω
ε−1curl H · curl (TH ′) is coercive on VT(µ; Ω).

Scalar approach

Let us try TH = H 1 in Ω1
−H 2 + 2R1H 1 in Ω2

, with R1 such that{
(R1H 1)× n = H 2 × n on Σ
µ1(R1H 1) · n = µ2H 2 · n on Σ Not possible!

23 / 34
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Let us try to define TH ∈ VT (µ; Ω) as “the function satisfying”

curl (TH ) = ε curl H in Ω so that a(H ,TH ) =
∫

Ω
|curl H |2.

♠ Impossible because div (ε curl H ) 6= 0.

Idea: add a gradient...
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T-coercivity in the vector case 3/3

Maxwell approach
Consider H ∈ VT(µ; Ω).

1 Introduce ϕ ∈ H1
0(Ω) s.t. div (ε(curl H −∇ϕ)) = 0.

" Ok if (ϕ,ϕ′) 7→
∫

Ω
ε∇ϕ · ∇ϕ′ is T-coercive on H1

0(Ω). (Aε)

2 Introduce u ∈ VT(1; Ω) (Amrouche et al. 98) the function satisfying

curl u = ε (curl H −∇ϕ) in Ω.

3 Introduce ψ ∈ H1(Ω)/R s.t. u −∇ψ ∈ VT(µ; Ω) (div (µ(u −∇ψ)) = 0).

" Ok if (ψ,ψ′) 7→
∫

Ω
µ∇ψ · ∇ψ′ is T-coercive on H1(Ω)/R. (Aµ)

4 Finally, define TH := u −∇ψ ∈ VT(µ; Ω). There holds:


 Use the results of the previous section to check (Aε) and (Aµ).

Using this idea, we prove that the embedding of VT(µ; Ω) in L2(Ω)
is compact when (Aµ) is true (extension of Weber 80’s result).

We deduce that a(·,T·) is coercive on VT (µ; Ω)×VT(µ; Ω) when
(Aε) and (Aµ) are true.

Refinements are necessary when:

I The geometry is non trivial (Ω non simply connected and/or ∂Ω non
connected).

I The scalar problems are Fredholm with a non trivial kernel.
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The result for the magnetic field
Consider F ∈ L2(Ω) such that divF ∈ L2(Ω).

Theorem. Suppose

(ϕ,ϕ′) 7→
∫

Ω
ε∇ϕ · ∇ϕ′ is T-coercive on H1

0(Ω); (Aε)

(ϕ,ϕ′) 7→
∫

Ω
µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, the problem for the magnetic field

Find H ∈ H(curl ; Ω) such that:
curl (ε−1curl H )− ω2µH = F in Ω
ε−1curl H × n = 0 on ∂Ω
µH · n = 0 on ∂Ω.

is well-posed for all ω ∈ C\S where S is a discrete (or empty) set of C.

I This result (with the same assumptions) is also true for the problem for
the electric field.
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Application to the Fichera’s corner

Proposition. Suppose

κε /∈ [−7;−
1
7 ] and κµ /∈ [−7;−

1
7 ] . N

Then, the problems for the electric and magnetic fields are well-posed for all
ω ∈ C\S where S is a discrete (or empty) set of C.

N Note that 7 is the ratio of the blue volume over the red volume... 27 / 34



1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 Study of Maxwell’s equations

4 The T-coercivity method for the Interior Transmission Problem
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The ITEP in three words

∆u + k2u = 0

Ω

∆u + k2n2u = 0

I We want to determine the
support of an inclusion Ω embedded
in a reference medium (R2) using
the Linear Sampling Method.

I We can use the method when k is not an eigenvalue of the Interior
Transmission Eigenvalue Problem:

Find (k, v) ∈ C×H2
0(Ω) \ {0} such that:∫

Ω

1
1− n2 (∆v + k2n2v)(∆v′ + k2v′) = 0, ∀v′ ∈ H2

0(Ω).

I One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.
I This problem has been widely studied since 1986-1988 (Bellis, Cakoni,
Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta,
Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω.

What happens when 1− n2 changes sign?

Transmission problem with a

sign-changing coefficient
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A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.

30 / 34



A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.

30 / 34



A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.

30 / 34



A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

Not simple!

Ideas of the proof: We have

a(v, v) = (σ∆v,∆v)Ω.

We would like to build T : H2
0(Ω)→ H2

0(Ω) such that ∆(Tv) = σ−1∆v

so that a(v, Tv) = (σ∆v,∆(Tv))Ω = (∆v,∆v)Ω.

1 Let w ∈ H1
0(Ω) such that ∆w = σ−1∆v.

2 Let ζ ∈ C∞0 (Ω). Define Tv = ζw + (1− ζ)v∈ H2
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0(Ω) is compact.

ζ = 1

[ζ + σ(1− ζ)]

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.

30 / 34



A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

Not simple!

Ideas of the proof: We have

a(v, v) = (σ∆v,∆v)Ω.

We would like to build T : H2
0(Ω)→ H2

0(Ω) such that ∆(Tv) = σ−1∆v

so that a(v, Tv) = (σ∆v,∆(Tv))Ω = (∆v,∆v)Ω.

1 Let w ∈ H1
0(Ω) such that ∆w = σ−1∆v.

2 Let ζ ∈ C∞0 (Ω). Define Tv = ζw + (1− ζ)v∈ H2
0(Ω).

3 We find a(v, Tv) = ([ζ + σ(1− ζ)]∆v,∆v)Ω + (Kv, v)H2
0(Ω)

where K : H2
0(Ω)→ H2

0(Ω) is compact.

ζ = 1

[ζ + σ(1− ζ)]

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.

30 / 34



A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

Not simple!

Ideas of the proof: We have

a(v, v) = (σ∆v,∆v)Ω.

We would like to build T : H2
0(Ω)→ H2

0(Ω) such that ∆(Tv) = σ−1∆v

so that a(v, Tv) = (σ∆v,∆(Tv))Ω = (∆v,∆v)Ω.

1 Let w ∈ H1
0(Ω) such that ∆w = σ−1∆v.

2 Let ζ ∈ C∞0 (Ω). Define Tv = ζw + (1− ζ)v∈ H2
0(Ω).

3 We find a(v, Tv) = ([ζ + σ(1− ζ)]∆v,∆v)Ω + (Kv, v)H2
0(Ω)

where K : H2
0(Ω)→ H2

0(Ω) is compact.

ζ = 1

[ζ + σ(1− ζ)]

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.

30 / 34



A bilaplacian with a sign-changing coefficient
I We define σ = (1− n2)−1 and we focus on the principal part:

(FV )

Find v ∈ H2
0(Ω) such that:∫

Ω
σ∆v∆v′︸ ︷︷ ︸
a(v,v′)

= 〈f , v′〉Ω︸ ︷︷ ︸
l(v′)

, ∀v′ ∈ H2
0(Ω).

Message: The operators ∆(σ∆·) : H2
0(Ω) → H−2(Ω) and div (σ∇·) :

H1
0(Ω)→ H−1(Ω) have very different properties.

Theorem. The problem (FV ) is well-posed in the Fredholm sense as soon
as σ does not change sign in a neighbourhood of ∂Ω.

σ = −1

σ = 1

Fredholm

Not simple!
Ideas of the proof: We have

a(v, v) = (σ∆v,∆v)Ω.

We would like to build T : H2
0(Ω)→ H2

0(Ω) such that ∆(Tv) = σ−1∆v

so that a(v, Tv) = (σ∆v,∆(Tv))Ω = (∆v,∆v)Ω.

1 Let w ∈ H1
0(Ω) such that ∆w = σ−1∆v.

2 Let ζ ∈ C∞0 (Ω). Define Tv = ζw + (1− ζ)v∈ H2
0(Ω).

3 We find a(v, Tv) = ([ζ + σ(1− ζ)]∆v,∆v)Ω + (Kv, v)H2
0(Ω)

where K : H2
0(Ω)→ H2

0(Ω) is compact.

ζ = 1

[ζ + σ(1− ζ)]

... but (FV ) can be ill-posed (not Fredholm) when σ changes sign “on ∂Ω”
⇒ work with J. Firozaly.
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 Study of Maxwell’s equations

4 The T-coercivity method for the Interior Transmission Problem
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Conclusions

Scalar problem outside the critical interval div (µ−1∇·) : H1
0(Ω)→ H−1(Ω)

♠ Concerning the approximation of the solution, in practice, usual methods
converge. Only partial proofs are available.

♠ In 3D, are the interval obtained optimal?

Scalar problem inside the critical interval div (µ−1∇·) : V+(Ω)→ Vβ(Ω)∗

♠ Interesting questions of numerical analysis to approximate the solution. What
happens in 3D (edge, conical tip,...)? ⇒ PhD thesis of C. Carvalho.

Maxwell’s equations curl (ε−1curl ·) : VT (µ; Ω)→ VT (µ; Ω)∗

♠ Convergence of an edge element method has to be studied.
♠ Can we develop a new functional framework inside the critical interval?

Interior Transmission Eigenvalue Problem ∆(σ∆·) : H2
0(Ω)→ H−2(Ω)

♠ Can we find a criterion on σ and on the geometry to ensure that ∆(σ∆·) is
Fredholm? Many questions remain open for the ITEP...
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Open questions

♠ Our new model in the critical interval raises a lot of questions, related to the
physics of plasmonics and metamaterials.
Can we observe this black-hole effect in practice? For a rounded corner, “the
solution” seems unstable with respect to the rounding parameter...

♠ The case κσ = −1 (the most interesting for applications) is not understood
yet: singularities appear all over the interface.
⇒ Is there a functional framework in which (P) is well-posed?

♠ More generally, can we reconsider the homogenization process to take into
account interfacial phenomena?
⇒METAMATH project (ANR) directed by S. Fliss and PhD thesis of V.
Vinoles.

♠ What happens in time-domain regime? Is the limiting amplitude principle
still valid?
⇒ PhD thesis of M. Cassier.
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Thank you for your attention!!!
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Summary of the results for the 2D cavity
Σ

−a b

Ω1
µ1 > 0

Ω2
µ2 < 0

−1

<e κµ

=m κµ

(P) Find u ∈ H1
0(Ω) s.t.:

−div (µ−1∇u) = f in Ω.

Proposition. The operator A = div (µ−1∇·) : H1
0(Ω) → H−1(Ω) is an isomor-

phism if and only κµ ∈ C∗\S with S = {− tanh(nπa)/ tanh(nπb), n ∈ N∗}∪{−1}.
For κµ = − tanh(nπa)/ tanh(nπb), we have kerA = spanϕn with

ϕn(x, y) =

 sinh(nπ(x + a)) sin(nπy) on Ω1

−
sinh(nπa)
sinh(nπb) sinh(nπ(x − b)) sin(nπy) on Ω2

.

For κµ ∈ C\R−, (P) well-posed
(Lax-Milgram)

For κµ ∈ R∗−\S , (P) well-posed
For κµ ∈ S \ {−1}, (P) is well-posed

in the Fredholm sense with a one dimension
kernel

κµ = −1, (P) ill-posed in H1
0(Ω)

Prob
lem

Resu
lts
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The blinking eigenvalue
I We approximate by a FEM “the

solution” of the problem
Find uδ ∈ H1

0(Ωδ) s.t.:
−div (µ−1

δ ∇uδ) = f in Ωδ.
.

κµ = −0.9999 (outside the critical interval)
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κµ = −1.0001 (inside the critical interval)
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The result for the electric field

Consider F ∈ L2(Ω) such that divF ∈ L2(Ω).

Theorem. Suppose

(ϕ,ϕ′) 7→
∫

Ω
ε∇ϕ · ∇ϕ′ is T-coercive on H1

0(Ω); (Aε)

(ϕ,ϕ′) 7→
∫

Ω
µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, the problem for the electric field

Find E ∈ H(curl ; Ω) such that:
curl (µ−1curl E)− ω2εE = F in Ω
E × n = 0 on ∂Ω.

is well-posed for all ω ∈ C\S where S is a discrete (or empty) set of C.
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What is the ITEP?

I Scattering in time-harmonic regime by an inclusion D (coefficients A
and n) in R2: we look for an incident wave that does not scatter.

I This leads to study the Interior Transmission Eigenvalue Problem:

 u is the total field in D 
 w is the incident field in D

div (A∇u) + k2nu = 0 in D
ν

ν

D
A 6= Id, n 6= 1

Transmission conditions on ∂D

Definition. Values of k ∈ C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

I One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.
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Variational formulation for the ITEP

I k is a transmission eigenvalue if and only if there exists (u,w) ∈ X\{0}
such that, for all (u′,w′) ∈ X,∫

Ω
A∇u · ∇u′ - ∇w · ∇w′ = k2

∫
Ω

(nuu′ - ww′),

not coercive on X

not an inner product on X

with X = {(u,w) ∈ H1(Ω)×H1(Ω) | u − w ∈ H1
0(Ω)}.

I This is a non standard eigenvalue problem.

I We want to highlight an

Idea: Analogy with the transmission problem between a di-
electric and a double negative metamaterial...
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Dielectric/Metamaterial Transmission
Eigenvalue Problem (DMTEP)
I Time-harmonic problem in electromagnetism (at a given frequency) set
in a heterogeneous bounded domain Ω of R2:

Ω1
Dielectric

Ω2
Metamaterial

Σ

I Eigenvalue problem for Ez in 2D:

Find v ∈ H1
0(Ω) \ {0} such that:

div(µ−1∇v) + k2εv = 0 in Ω.

I k is a transmission eigenvalue if and only if there exists v ∈ H1
0(Ω)\{0}

such that, for all v′ ∈ H1
0(Ω),∫

Ω1

µ−1
1 ∇v · ∇v′ -

∫
Ω2

|µ2|−1∇v · ∇v′ = k2
(∫

Ω1

ε1vv′ -
∫

Ω2

|ε2|vv′
)
.
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Equivalence DMTEP/ITEP
I DMTEP in the domain Ω:

Ω1
Dielectric

Ω2
Metamaterial

Σ νε1 = n
µ1 = A

ε2 = −1
µ2 = −1

Transmission conditions on Σ

Symmetry with respect to the interface Σ

I We obtain a problem analogous to the ITEP in Ω1:

Ω1

Σ ν

Transmission conditions on Σ

I The interface Σ in the DMTEP plays the role of the boundary ∂Ω in the
ITEP.
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Study of the ITEP
I Define on X×X the sesquilinear form

a((u,w), (u′,w′)) =
∫

Ω
A∇u · ∇u′ - ∇w · ∇w′ − k2(nuu′ - ww′),

with X = {(u,w) ∈ H1(Ω)×H1(Ω) | u − w ∈ H1
0(Ω)}.

I Introduce the isomorphism T(u,w) = (u − 2w,−w).

I For k ∈ Ri\{0}, A > Id and n > 1, one finds

<e a((u,w), T(u,w)) ≥ C (‖u‖2
H1(Ω) + ‖w‖2

H1(Ω)), ∀(u,w) ∈ X.

I Using the analytic Fredholm theorem, one deduces the

Proposition. Suppose that A > Id and n > 1. Then the set of transmis-
sion eigenvalues is discrete and countable.

I This result can be extended to situations where A− Id and n − 1
change sign in Ω working with T(u,w) = (u − 2χw,−w).
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