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Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
practical realizations of metamaterials are

Zoom on a metamaterial:
achieved by a periodic assembly of small resonators

f

!¥¥¥§!§!

i

B TATATATAYY

. ‘A %
&) 'l‘;l
mmhuvm

.~_§v‘vp.

2R TATATY

Circuit
board

\

Split-ring
resonators

EXAMPLE OF METAMATERIAL (NASA)

Mathematical justification of the homogenized model (Bouchitté,
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Introduction: applications

» Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

|4.
A =1,600 nm

» The negative refraction at the interface metamaterial/dielectric could
allow the realization of perfect lenses (Pendry 00), photonic traps ...

Interfaces between negative materials and dielectrics occur in all (exciting)

applications...
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Introduction: in this talk

Problem set in a bounded domain Q C R3:

e>0 Q <0
n>0 2 n<0

Metamaterial

» Unusual transmission problem because the sign of the coefficients £ and
1 changes through the interface X.

» Well-posedness is recovered by the presence of dissipation: Sme, u > 0.
But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

@ Does well-posedness still hold?
) @ What is the appropriate functional framework?
° @ What about the convergence of approximation methods?
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Outline of the talk

@ The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transforma-
tions to study div(p~'V:): H}(2) — H1(Q) (improvement over
Bonnet-Ben Dhia et al. 10, Zwolf 08).
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© A new functional framework in the critical interval

We propose a new functional framework when div(p='V:):X —Y
is not Fredholm for X = H{(Q) and Y = H71(2) (extension of Dauge,
Texier 97, Ramdani 99).

© Study of Maxwell’s equations
We develop a T-coercivity method based on potentials to study
curl (e tcurl-) : Vy(u; Q) — Vr(u; Q)*.

@ The T-coercivity method for the Interior Transmission Problem
We study A(cA-) : H2(Q) — H™2(Q).
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A scalar model problem

Problem for E, in 2D in case of an invariance with respect to z:

Find E, € H}(Q) such that:

div(u= ' VE,) + w*¢E, = —f in Q.
Q
o HA(Q) = {v € L3(Q) | Vv € L2(Q); v]sq = 0} (m — tla, 07

pa = plo, <0
(constant)

@ f is the source term in H1(2)

Since H}(Q) cc L?(Q), we focus on the principal part.

Find u € H}(Q) s.t.:
div(p=t Vu) = —f in Q.

Find u € H{(Q) s.t.:

& [(Py) a(u,v) = I(v), Yv € HY(Q).

(2)

with a(u,v) z/u_l Vu-Vo and I(v) = (f,v)q.
o

DEFINITION. We will say that the problem (&?) is well-posed if the operator
A = div (p~1V") is an isomorphism from H}(2) to H=(Q).

7 /34



Mathematical difficulty

e Classical case p > 0 everywhere:

a(u,u) = /Q/fl |Vu? > min(p 1) HU’H?{})(Q) coercivity

Lax-Milgram theorem = () well-posed.
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Mathematical difficulty
o Classical case p > 0 everywhere:
a(u, u) / p | Vaul? > min(p” )HuHH1 (@)  coercivity

Lax-Milgram theorem = () well-posed.

@ The case u changes sign:

a(u,u) = = C HUH%{(%(Q) loss of coercivity

» When po = —p1, (£) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. ¥) we can build a kernel of
infinite dimension.
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Ry tmnsfer/ extension operator continuous from €21 to Q9

- - Riup = w3 on X
Riyg =0 ond\X
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@ Define Tyu = with
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Young’s inequality = @ is T-coercive when |ua| > || Ry || p1-

Uy — 2R2u2 in Ql

. where Ry : Q9 — 1, one
— g in QQ ) 2 2 15

O Working with Tou =

proves that a is T-coercive when pu; > || Ral|? |p2].

The interval depends on the

@ Conclusion:
norms of the transfer operators

THEOREM. If the contrast s, = ua/p1 €| [—||R1l|*; —1/||Rz|/?] | then the
operator div (u~! V+) is an isomorphism froni Hg($2) €6 H = (t1]"
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Choice of R{,R5?
» A simple case: symmetric domain
so that |Ry]| = ||Rz2|| =1
“ (Z) well-posed < £, # —1
» Interface with a 2D corner
z Action of Ry: symmetry + dilatation w.r.t 6
— Action of Rs: symmetry + dilatation w.r.t 6

IR = [| Rol|* = R (27T —a)/o
(Z2) well-posed < K, ¢ [—Ro;—1/R,]
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Choice of R{,R5?

» A simple case: symmetric domain

Ry = Ry = 5%

£ -1

» Interface with

z > tation w.r.t 6
~ 04 tation w.r.t 0

Im—o)/o
e’/T; *I/RW]
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Choice of R{,R5?

» A simple case: symmetric domain

PR R | B o T | I Il :1

» Interface with

2 > tation w.r.t 6
—~ Q4 tation w.r.t 0

it —0)/

{5 —1/Ro]

» By localization techniques, we prove

PROPOSITION. (&2) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff k,, ¢ [—7R,; —1/R,] where o is the smallest angle.

=When ¥ is smooth, (£?) is well-posed in the Fredholm sense iff x, # —1.
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Extensions for the scalar case

» The T-coercivity approach can be used to deal with non constant py, s
and with the Neumann problem.

» 3D geometries can be handled in the same way.

‘ -
z
Y
T
Y T
Y y

» The T-coercivity technique
allows to justify convergence of
standard finite element method
for simple meshes (Bonnet-Ben
Dhia et al. 10, Nicaise,

Venel 11, Chesnel, Ciarlet 12).
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Transition: from variational methods to
Fourier /Mellin techniques

For the corner case, what happens when the contrast lies inside the
® | criticial interval, i.e. when K, € [-R,;—1/R,]?7?

N

13 / 34



Transition: from variational methods to
Fourier /Mellin techniques

For the corner case, what happens when the contrast lies inside the
® | criticial interval, i.e. when K, € [-R,;—1/R,]?7?

N

., | Idea: we will study precisely the regularity of the “solutions” using
(27 | the Kondratiev’s tools, i.e. the Fourier/Mellin transform (Dauge,
= Texier 97, Nazarov, Plamenevsky 94).
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9 A new functional framework in the critical interval
= collaboration with X. Claeys (LJLL Paris VI).
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Problem considered in this section

» We recall the problem under consideration

(2) Find u € H}(Q2) such that:
—div(p=Vu)=f in Q.

» To simplify the presentation, we work on a particular configuration.
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» We recall the problem under consideration

Find u € H}(Q2) such that:

(Z) —div(p=Vu)=f in Q.

» To simplify the presentation, we work on a particular configuration.

» Using the variational method of the previous section, we prove the

PROPOSITION. The problem (&) is well-posed as soon as the contrast £, =
W2/ satisfies k, & [—3; —1].

What happens when x, € [-3; —1)?
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Analogy with a waveguide problem

e Bounded sector €2

O (r,0)

e Equation:
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e Bounded sector €2

O (r,0)

e Equation:
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Analogy with a waveguide problem

1

We compute the singularities s(r,0) = r*p() and we observe two cases:

» Outside the critical interval

n 7 M
Ky=—4 | 1 1
ERVRRESYE Az
R YRR PR TORRR ... ({000 (i T
9 -l 1 2 0

+-1
not H! § S -1

» Inside the critical interval

Ky = —2 1 A
A2 . A1 A2
@ o fooeeees o>
-2 -17/\1 . 2
not H! i H!

How to deal with the propagative singularities inside the critical interval?

16 / 34



Analogy with a waveguide problem

e Bounded sector €2

O (r,0)

e Equation:
—div(p~! Vu) =f
S —

—1 =2 (4= (r0,)2+ 001~ Do) u

e Singularities in the sector
s(r,0) = 1p(0)

16 / 34



Analogy with a waveguide problem

e Bounded sector 2 E o Half-strip B

/4 (Zve):(_lnT76)
\/ 0=m/4
0 (rn0) (r,0) = (Ie_Z,G) z
o Equation:
—div(p~! Vu) =f
(S —

—1 =2 (4= (r0,)2+ 001~ Do) u

e Singularities in the sector
s(r,0) = 10(6)

16 / 34



Analogy with a waveguide problem

e Bounded sector 2 E o Half-strip B

/4 (Zve):(_lnT79)
v 0=m/4
0 (rn0) (r,0) = (Ie_z,e) z
e Equation: o Equation:
—div(p~! Vu) =f —div(p~'Vu) =e 2 f
S — —_——

—r=2(u=(rd,)2+0o " 10)u —(u=192+0ou=100)u

e Singularities in the sector
s(r,0) = 1p(0)

16 / 34



Analogy with a waveguide problem

e Bounded sector 2 E o Half-strip B

/4 (zve):(_lnT79)
v 0=m/4
0 (rn0) (r,0) = (Ie_z,e) z
e Equation: o Equation:
—div(p~! Vu) =f —div(p~'Vu) =e 2 f
S — —_——

—r=2(u=(rd,)2+0o " 10)u —(u=192+0ou=100)u

e Singularities in the sector
s(r,0) = 1p(0)

o Modes in the strip
m(z,6) = e #p(0)

16 / 34



Analogy with a waveguide problem

e Bounded sector 2 E o Half-strip B
(2,0) =(—1nr,0)

(r,0) = (Ie_z,e)

o Equa

e Singularities in the sector
s(r,0) = 1p(0)

o Modes in the strip
m(z,6) = e #p(0)

s€ HY(Q) ReA> 0 m is evanescent

v 0=m/4

16 / 34
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e Bounded sector 2 E o Half-strip B

(2,0) =(—1nr,0)

—"

(r,0) = (Ie_z,e)

e Singularities in the sector
s(r,0) = 1rp(0)
:><(cos blnr+ ésin blnr)p(d)

o Modes in the strip
m(z,0) = e p(0)
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I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
1
1
I
1S

(ReX =a, SmA=0b)
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Analogy with a waveguide problem

e Bounded sector €2

/4 (Z,e) A
&f
0 (rn0) (r,0) = (Ie

e Equation:
—div(p~! Vu)
S —

—r=2 (1 (r0,)2+0e ™1 Op)u
e Singularities in the sector
s(r,0) = 1rp(0)
:><(cos blnr+ ésin blnr)p(d)

o Half-strip B

nr,0)
/ 0=m/4
_270) z
o Equation:
—div(p~'Vu) =e 2 f
—_————

—(p=19240p = 10p)u
o Modes in the strip
m(2,6) = e #(0)
% (cos bz — isin bz)p(0)

(ReX =a, S
s€ HY(Q) Re N
s¢ HY(Q) Re

A=1)
0 m is evanescent
=0 m is propagative

» This encourages us to use modal decomposition in the half-strip.
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Modal analysis in the waveguide
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Modal analysis in the waveguide

— A
o =4 L= » Outside the critical interval . All the
Ao =)\ 1 Ao modes are exponentially growing or decaying.
-‘2 {1 v 1 ; - — We look for an exponentially decaying
=-1 solution.
» Inside the critical interval . There are
Ky =—2 . i exactly two propagative modes.
o o)\ Ao — The decomposition on the outgoing modes
. : ; | o.» | leads to look for a solution of the form
2 _1—)\1 ) 2 u= €11 M ? + Ug.
o propagative part evanescent part
[non H! framework]

A\

... but the modal decomposition is not easy to justify because two sign-

changing appear in the transverse problem: dgoOpp = —a 2.
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= span(Cp; eM?) @ W_5  propagative part 4 evanescent part

W = {v]e P e H}(B)} space of exponentially growing functions

THEOREM. Let k, € (—3;—1) and 0 < § < 2. The operator
div(p=1V-) from to W7 is an isomorphism.

IDEAS OF THE PROOF:
Q A ;5 :div(p~tV:) from W_5 to W3 is injective but not surjective.
Q A :div(p=tV:) from Wy to W* g 1s surjective but not injective.

@ The intermediate operator : — W7 is injective (energy
B
integral) and surjective (residue theorem).

© Limiting absorption principle to select the outgoing mode.
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A funny use of PMLs

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip

IS.B079

10

0

-10

=20

-25.1087 -25.1087

Contrast £, = —1.001 € (—3; —1).J
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A black hole phenomenon

» The same phenomenon occurs for the Helmholtz equation.

(z,t) — Re (u(z)e” ™) for , = —1.3 € (—3;—1)

» Analogous phenomena occur in cuspidal domains in the theory of
water-waves and in elasticity (Cardone, Nazarov, Taskinen).
» On going work for a general domain (C. Carvalho).
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Summary of the results for the scalar problem

e
?‘O‘O Find u € H)(Q) s.t.:
(2)
—div (p"'Vu) =f in Q.
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in H{(Q) (T-coercivity)

[ For k, € (=3;-1), (£) is not well-
posed in the Fredholm sense in H§(9)

but well-posed in V' (PMLs)

@ k,=—1,(2) ill-posed in H§(Q)

21 / 34



© Study of Maxwell’s equations
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T-coercivity in the vector case 1/3

Let us consider the problem for the magnetic field H:
Find H € V7(u; Q) such that for all H' € Vr(u; Q) :
/ e lcurl H - curl H' fw2/ uH - -H = / F.H,
Q Q Q

a(H,H') c(H,H') I(H)

with Vp(u; Q) := {u € H(curl; Q) |div (pu) =0, pu-n =0 on 9N},
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T-coercivity in the vector case 2/3

Let us consider the problem for the magnetic field H:
Find H € V7(u; Q) such that for all H € Vp(u; Q) :
/ e tcurl H - curl H’ —w2/ vH-H = / F.-H,
Q Q Q

a(H,H') c(H,H") I(H")

with Vp(p; Q) := {u € H(curl; Q) |div (pu) =0, pu - n =0 on 9Q}.

By analogy with the scalar case, we look for T € L(V r(u; ©)) such that
o(H,TH') = / e tcurl H - curl (TH') is coercive on V p(u; Q).

Maxwell approach
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curl (TH) =eccurl H inQ so that a(H,TH) = / |curl H|?.
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@ Introduce » € HY(Q) s.t. div (e(curl H — V1)) = 0.
vV Ok if (p,¢) — / eV - V' is T-coercive on H(Q).  (A.)
Q
® Introduce v € V7 (1; Q) (Anrouche et al.98) the function satisfying
curlu =¢(curl H — V) in Q.
® Introduce ' € HY(Q)/R s.t. u— Vi € Vp(p; Q) (div (u(uw — Vo)) = 0).
v Ok if (1,9 — / V- Vi is T-coercive on HY(Q)/R.  (A,,)
Q
O Finally, define TH := v — V' € V(u; Q). There holds:

o(H,TH) = /
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6‘“ Use the results of the previous section to check (\A.) and (-Au))
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(A.) and (A,,) are true.

A Refinements are necessary when:

» The geometry is non trivial (€ non simply connected and/or 92 non
connected).

» The scalar problems are Fredholm with a non trivial kernel.
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The result for the magnetic field

Consider F € L*(Q) such that div F € L*(Q).

THEOREM. Suppose

(p, ") — /95V<p - V' is T-coercive on H}(Q);

Then, the problem for the magnetic field

Find H € H(curl; Q) such that:
curl (e tcurl H) —w?yH =F inQ
elcurl H xn=0 on 9

(p, ") = /QMVQD - V' is T-coercive on H(Q)/R.

uH-n=0 on 0f).

is well-posed for all w € C\.¥ where . is a discrete (or empty) set of C.
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Find H € H(curl; Q) such that:
curl (e tcurl H) —w?yH =F inQ
elcurl H xn=0 on 9

(p, ") = /QMVQD - V' is T-coercive on H(Q)/R.

uH-n=0 on 0f).

is well-posed for all w € C\.¥ where . is a discrete (or empty) set of C.

» This result (with the same assumptions) is also true for the problem for

the electric field.
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Application to the Fichera’s corner

PROPOSITION. Suppose

1 1

ke & [— 777} and /<;M§é[77;f?].

Then, the problems for the electric and magnetic fields are well-posed for all
w € C\.¥ where . is a discrete (or empty) set of C.

Note that 7 is the ratio of the blue volume over the red volume... 27 / 34



@ The T-coercivity method for the Interior Transmission Problem
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\N support of an inclusion (2 embedded
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the Linear Sampling Method.
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The ITEP in three words

\,\‘ Autku=0 » We want to determine the
\ support of an inclusion (2 embedded
in a using

the Linear Sampling Method.

» We can use the method when k is not an ~icenvalue of the Interior

Transmission Eigenvalue Problem: RAJVSMI
Nite] N SS1 O

& N p
@ R
Find (k,v) € C x H3(Q) \ {0} such thatr—Nenyg, PLen

1
/1 5 (Av+ B?0)(AV + K2) =0, Vo' € H3(O).
1o

» One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.

» This problem has been widely studied since 1986-1988 (Bellis, Cakoni,
Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Paivédrinta,
Rynne, Sleeman, Sylvester.. ) whenn >1on Qorn<1on (.

(What happens when 1 — n? changes Sign?)

29 / 34



A bilaplacian with a sign-changing coefficient

» We define 0 = (1 — n?)~! and we focus on the principal part:

Find v € H3(Q) such that:

(Fv) /QUAUAU’: (f,v")q, Vo' € HEQ).

—_— —
a(v,v’) i(v")
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We would like to build T : H3(2) — H3(2) such that | A(Tv) = o 'Av
so that a(v, Tv) = (cAv, A(Tv))o = (Av, Av)q.

@ Let w € HY(Q) such that Aw = o~ 1Aw.
Q Let ¢ € 65°(Q). Define Tv = Cw + (1 — ¢)ve HE(Q).

© Wefind a(v,Tv) = ([( +0(1 = )]Av, Av)q + (Kv, v)12(0)
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A bilaplacian with a sign-changing coefficient

» We define 0 = (1 — n?)~! and we focus on the principal part:

Find v € H3(Q) such that:
(Zv) /QUAUAU' = (f,v)q, Vo' €HEQ).

—_—  —\—
a(v,v’) i(v")

=4 Message: The operators A(cA-) : H3(2) — H™2(Q2) and div (¢V") :
H}(2) — H=1(Q) have very different properties.

... but (Zv) can be ill-posed (not Fredholm) when o changes sign “on 90"
= work with J. Firozaly.

| ||
| ||

Not always

Fredholm Fredholm
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@ The coerciveness issue for the scalar case

9 A new functional framework in the critical interval

© Study of Maxwell’s equations

@ The T-coercivity method for the Interior Transmission Problem
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Conclusions

‘Scalar problem outside the critical interval | div (p™'V:) : Hy(Q) — H Q)

& Concerning the approximation of the solution, in practice, usual methods
converge. Only partial proofs are available.

& In 3D, are the interval obtained optimal?
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& Concerning the approximation of the solution, in practice, usual methods
converge. Only partial proofs are available.

& In 3D, are the interval obtained optimal?

‘Scalar problem inside the critical interval‘ div (p='V:) : VH(Q) = V(Q)*

& Interesting questions of numerical analysis to approximate the solution. What
happens in 3D (edge, conical tip,...)? = PhD thesis of C. Carvalho.

‘Maxwell’s equations‘ curl (e 'eurl ) : Vo(pu; Q) — Vo(u; Q)F

& Convergence of an edge element method has to be studied.

& Can we develop a new functional framework inside the critical interval?

‘Interior Transmission Eigenvalue Problem A(oAY) : H5(Q) — H2(Q)

& Can we find a criterion on o and on the geometry to ensure that A(cA-) is
Fredholm? Many questions remain open for the ITEP...

32 / 34



2 ? Open questions ? p)

?2 ® e 3?

Our new model in the critical interval raises a lot of questions, related to the
physics of plasmonics and metamaterials.

Can we observe this black-hole effect in practice? For a rounded corner, “the
solution” seems unstable with respect to the rounding parameter...

The case K, = —1 (the most interesting for applications) is not understood
yet: singularities appear all over the interface.

‘: Is there a functional framework in which (&) is Well—posed?‘

More generally, can we reconsider the homogenization process to take into
account interfacial phenomena?

=METAMATH project (ANR) directed by S. Fliss and PhD thesis of V.
Vinoles.

What happens in time-domain regime? Is the limiting amplitude principle
still valid?
= PhD thesis of M. Cassier.
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Thank you for your attention!!!
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Summary of the results for the 2D cavity

o : ! . o2 0
vy P Find u € Hp(Q) s.t.: 1 2
(2) ' pi>0|  p2<0

—div(p™'Vu) =f in Q.

PROPOSITION. The operator A = div(p~*V-) : H§(Q) — H(Q) is an isomor-
phism if and only k, € C*\.# with . = {— tanh(nma)/tanh(n7b), n € N*}U{-1}.
For k, = —tanh(nma)/ tanh(n7mb), we have ker A = span p,, with

sinh(n7(z + a)) sin(nwy) on 4
on(z,y) = sinh(nma) )
msmh(nﬂ'(x b)) sin(nmwy) on Qo
S
R

For k, € C\R_, (£) well-posed
(Lax-Milgram)
I For , € R*\.&77, (2?) well-posed
[ For k, € &\ {—1}, (£) is well-posed
in the Fredholm sense with a one dimension
kernel

® k., =—1,(2) ill-posed in H}(Q)
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The blinking eigenvalue

» We approximate by a FEM “the Find us € H§(Qs) s.t.:

solution” of the problem —div (u; 'Vus) = f  in Qs.

Kp = —0.9999 (outside the critical interval)

K, = —1.0001 (inside the critical interval)

nnnnnnnnn
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The result for the electric field

Consider F € L*(Q) such that div F € L*(Q).

THEOREM. Suppose
(p, ") — / eV - V' is T-coercive on H}(Q);
Q
(p, ") = / uV - V' is T-coercive on H!(Q)/R.
Q

Then, the problem for the electric field

Find E € H(curl; Q) such that:
curl (ulcurl E) —w?’:E=F in ()
Exn=0 on 0.

is well-posed for all w € C\. where . is a discrete (or empty) set of C.
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What is the ITEP?

» Scattering in time-harmonic regime by an inclusion D (coefficients A
and n) in R?: we look for an incident wave that does not scatter.

N
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and n) in R?: we look for an incident wave that does not scatter.

» This leads to study the Interior Transmission Eigenvalue Problem:
@ y is the total field in D

div(AVu) + k*nu = 0 inD
Aw+ kE*w = 0 inD
U—w = 0 ondD
v-AVu—v-Vw = 0 ondD.

@  is the incident field in D
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What is the ITEP?

» Scattering in time-harmonic regime by an (coefficients A
and n) in R?: we look for an incident wave that does not scatter.

» This leads to study the Interior Transmission Eigenvalue Problem:
@ y is the total field in D @ g is the incident field in D

Find (u, w) € HY(D) x HY(D) such that:

v
div(AVu) +k*nu = 0 in D
Aw+ kE*w 0 inD
U—w 0 ondD
0

v-AVu—v-Vuw on 0D.| TRANSMISSION CONDITIONS ON &D

38 / 34



What is the ITEP?

» Scattering in time-harmonic regime by an (coefficients A
and n) in R?: we look for an incident wave that does not scatter.

» This leads to study the Interior Transmission Eigenvalue Problem:

@ qy is the total field in D

@  is the incident field in D

Find (u, w) € HY(D) x HY(D) such that: v

div(AVu) + k?nu = 0 in D
Aw+ kE*w = 0 inD
U—w = 0 ondD
v-AVu—v-Vw = 0 ondD.

TRANSMISSION CONDITIONS ON 0D

DEFINITION. Values of k € C for which this problem has a nontrivial solution
(u, w) are called transmission eigenvalues.

38 / 34



What is the ITEP?

» Scattering in time-harmonic regime by an (coefficients A
and n) in R?: we look for an incident wave that does not scatter.

» This leads to study the Interior Transmission Eigenvalue Problem:
@ y is the total field in D @ g is the incident field in D

Find (u, w) € HY(D) x HY(D) such that: v

Il %

div (AVu) + k2nu 0 inD

Aw+ kE*w = 0 inD

U — w = 0 ondD

v-AVu—v-Vw = 0 ondD.|] TRANSMISSION CONDITIONS ON &1

DEFINITION. Values of k € C for which this problem has a nontrivial solution
(u, w) are called transmission eigenvalues.

» One of the goals is to prove that the set of transmission eigenvalues is at
most discrete.
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Variational formulation for the ITEP

» £ is a transmission eigenvalue if and only if there exists (u, w) € X\{0}
such that, for all (v/, w') € X,

/AVu~W—Vw-Vw’ = K /(nuﬁ—wﬁ),
Q Q
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Variational formulation for the ITEP

» £ is a transmission eigenvalue if and only if there exists (u, w) € X\{0}
such that, for all (v, w") € X,

/AVu~W—Vw-Vw’ = kQ[/(nuU—wW),]
Q Q

not coercive on X not an inner product on X

with X = {(u, w) € HY(Q) x H}(Q) |u — w € H}(Q)}.
» This is a non standard eigenvalue problem.

» We want to highlight an

electric and a double negative metamaterial...

~
=

:@b_ [Idea: Analogy with the transmission problem between a di—]
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Dielectric/Metamaterial Transmission
Eigenvalue Problem (DMTEP)

» Time-harmonic problem in electromagnetism (at a given frequency) set
in a heterogeneous bounded domain  of R?:
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» Time-harmonic problem in electromagnetism (at a given frequency) set
in a heterogeneous bounded domain  of R?:

g9 1= €|, <0

g1 :=¢lg, >0
H2 = /J‘|Q2 <0

p1 = Mlﬂl >0

» Eigenvalue problem for E, in 2D:

Find v € H{(Q2) \ {0} such that:
div(p= ! Vv) + k%2ev =0 in Q.

> [ is a transmission eigenvalue if and only if there exists v € H}(Q2)\{0}
such that, for all v' € H(Q),

/MIIV%W—/ lpa| 1V - Vo = k2 (/ 51117—/ |52|v7>.
N Q, o 0,
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Equivalence DMTEP /ITEP

» DMTEP in the domain :

g1 =
H1 =

S

g = —1
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Equivalence DMTEP /ITEP

» DMTEP in the domain :
TRANSMISSION CONDITIONS ON X

€1 = gg = —1

[ Symmetry with respect to the interface X ]

» We obtain a problem analogous to the ITEP in Q;:

z v

0
TRANSMIISSION CONDITIONS ON X

» The interface X in the DMTEP plays the role of the boundary 9€2 in the
ITEP.
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Study of the ITEP

» Define on X x X the sesquilinear form
a((u, w), (v, w")) = / AVu -V - V- V' — E (nud - wu),
Q

with X = {(u, w) € H'(Q) x H'(Q) | u — w € Hy(Q)}.
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» Define on X x X the sesquilinear form

a((u, w), (v, w")) = /QAVU NV - V- Vo' — kK (nuu’ - wa'),
with X = {(u, w) € HY(Q) x H}(Q) |u — w € H}(Q)}.
» Introduce the isomorphism T(u, w) = (u — 2w, —w).

» For k€ Ri\{0}, 4 > Id and n > 1, one finds
Re a(u, w), T(u, w) > C ([ullf ) + lwlf ),  V(u,w) €X.

» Using the analytic Fredholm theorem, one deduces the

PROPOSITION. Suppose that A > Id and n > 1. Then the set of transmis-
sion eigenvalues is discrete and countable.

» This result can be extended to situations where A — Id and n — 1
change sign in Q working with T(u, w) = (u — 2xw, —w).
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